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Abstract

Applying model-based diagnosis techniques to sys-
tems that exhibit hybrid behavior presents an inter-
esting set of challenges that mostly revolve around
interactions of the continuous and discrete compo-
nents of the system. In many real world systems,
the overall physical plant is inherently continuous,
but system control is performed by a supervisory
controller that imposes discrete switching behav-
iors by reconfiguring the system components, or
switching controllers. In this paper, we present a
case study of an aircraft fuel system, and discuss
methodologies for building system models for on-
line tracking of system behavior and performing
fault isolation and identification. Empirical stud-
ies are performed on detection and isolation for a
set of pump and pipe failures.

1 Introduction
Most present-day systems that we use are designed to be re-
pairable. Failures. either physical (hardware) or logical (soft-
ware), and the resulting maintenance are a fundamental part
of the economics of ownership. Fault diagnosis involves the
detection of anomalous system behavior and the isolation and
identification of the cause for the deviant behavior. When the
system includes safety-critical components, failures or faults
in the system must be diagnosed as quickly as possible, and
their effects compensated for so that control and safety can
be maintained. The term, diagnostic capabilities, refers to
the abilities of a system to detect a failure and isolate it to
a failed unit. Quick detection and isolation allows for quick
corrective actions that may include reconfiguration of system
functions to prevent damage and maintain control.

Fault accommodation requires tight integration of online
fault detection, isolation, and identification with the system
control loop that may be designed to take appropriate control
actions to mitigate the effect of the faults and help maintain
nominal system operation. Failure to detect faults reduces
system availability, results in failed or incomplete missions,
and, in some cases, may even lead to catastrophic failures that
lead to loss and destruction of the system. Therefore, fault
diagnosis is critical to achieving system performance and life-
cycle cost objectives.

In general, systems are dynamic, i.e., their behavior
changes over time. Faults impose additional transients on
the dynamic behavior, but that may be difficult to detect and
characterize, especially in the presence of model disturbances
and noisy measurements. Moreover, in physical systems nat-
ural feedback from the system and controller actions may
mask the transient behavior if they are not detected soon after
they occur. This motivates the development and use of online
model-based fault detection and isolation methods. Model-
based techniques employ a model to predict nominal system
behavior. The model must be constructed at a level of detail
where system behavior can be mapped to system components
and parameters. The relations in the model are employed to
map observed deviations between measurements and values
predicted by the model to possible faults in system compo-
nents. Continued monitoring helps establish a unique fault or
set of faults associated with the system.

Most real-life systems are equipped with a limited num-
ber of sensors to track system behavior, and analytic redun-
dancy methods have to be applied to derive non-local in-
teraction between potential faults and observations. These
techniques have been applied to a variety of schemes used
in the diagnosis of discrete [deKleer and Williams, 1987],
discrete event [Lunze, 1999; Sampath et al., 1996] and
continuous systems [Gertler, 1997; Mosterman and Biswas,
1999]. The traditional approach to hybrid system diagno-
sis has been to use a single continuous model with complex
non-linearities, or abstracting the continuous dynamics to a
discrete event model. Complex non-linearities complicate
the analysis and they may introduce numerical convergence
problems. Discrete event abstractions lead to loss of criti-
cal information, such as fault transient characteristics. Fur-
ther, methods to identify the set of events that describe both
nominal and faulty behavior is often a computationally chal-
lenging task bringing to question the scalability of such ap-
proaches. Hybrid system analyses require the use of multi-
ple models of the system. Recent approaches to hybrid sys-
tem diagnosis have incorporated appropriate model selection
and mode estimation techniques at run time to track faulty
behavior and perform fault isolation [McIlraith et al., 2000;
Hofbaur and Williams, 2002; Narasimhan and Biswas, 2001;
2002].

Model-based diagnosis techniques can only be as good as
the models upon which they are based. Incomplete and incor-



rect models cause problems with the tracking and fault isola-
tion tasks. The tracking process may produce false alarms or
worse missed alarms. In the first case, diagnosis is triggered
when there is no fault in the system. In the second situation,
diagnosis is not triggered and a fault may be missed. Fault
isolation with incomplete and inaccurate models may also
produce false candidates and miss true candidates. On the
other hand, building models that include unnecessary detail
may increase computational complexity making online pro-
cessing infeasible. Therefore, a key task in model-based di-
agnosis is to build accurate models at the right level of detail.
This paper focuses on the pragmatics of model building and
fault isolation by performing a case study on the fuel transfer
system of an aircraft.

2 Fuel System Description

High-performance aircraft require sophisticated control tech-
niques to support all aspects of operation, such as flight con-
trol, mission management, and environmental control. An
aircraft’s fuel transfer system maintains the required flow
of fuel to the engines through different modes of operation,
while ensuring that imbalances are not created that affect cen-
ter of gravity of the system. Fig. 1. illustrates a typical fuel
system configuration. The fuel system geometry is symmet-
ric and may be split into left side and right side arrangements.
The overall system can be divided into two main sub-systems:
(i) the engine feed system, and (ii) the transfer system. The
feed system consists of a left and right engine feed tank. The
tanks are connected through pipes with controlled valves so
that fuel can be transferred between the tanks if a fault occurs
in one of the tanks. A boost pump in each of the feed tanks
controls the supply of fuel from the tank to its respective en-
gine. The transfer system moves fuel from the two forward
fuselage and the two wing tanks to the engine feed tanks. The
intent is to keep the engine feed tanks near full at all times so
that sufficient fuel is available on demand, and if failures oc-
cur in the transfer system there is still a significant amount
of fuel available for emergency maneuvers. The fuel trans-
fer sequence is set up in a way that maintains the aircraft’s
center of gravity. To achieve this, pumps located in the fuse-
lage and wing tanks are are turned on in a pre-determined
sequence to transfer their fuel to a common transfer manifold
(set of tubes). The fuel exits the transfer manifold through
level control valves into the feed tanks.

A wide variety of sensors may be included in the fuel
transfer system. Fuel quantity gauging sensors determine the
amount of fuel in a tank. Engine fuel flow meters determine
engine fuel consumption. Pressure transducers measure the
transfer and boost pump pressures. Position sensors deter-
mine the open and closed states of valves. Each sensor comes
at a cost that is determined by its weight, reliability, complex-
ity, and cost. Therefore, designers often try to minimize the
number of sensors while ensuring that the required control
can be achieved.

The transfer system control schedules the pump operation
to match a pre-defined transfer sequence shown in Table 1.
The unit of the amounts in the table is the pound. Initially
one wing pump in each tank is turned on. When a feed tank

Figure 1: Fuel System Schematic

quantity decreases by 100 lbs, the level control valve in that
tank will be opened. The fuel then flows from the transfer
manifold into the feed tank raising its level back to the full
fuel quantity at which point the level control valve will be
closed, stopping the fuel transfer.

Table 1: Fuel Transfer Sequence
Left Wing
Tank

Right
Wing Tank

Left Fuse-
lage Tank

Right Fuse-
lage Tank

2500 2500 3300 3000
2000 2000 3300 3000
2000 2000 3000 3000
1000 1000 2000 2000
0 0 1000 1000
0 0 0 0

The most common failures in this configuration are trans-
fer and boost pump failures, and shutoff valve failures. The
transfer pumps have two primary failure modes. One is a to-
tal loss of pressure caused by the impeller not turning. The
other is a degraded state caused by mechanical wear, leakage,
or electrical failure where the fuel flow rate falls below nom-
inal values. The second failure can lead to the first condition
over time. Faults in the boost pump mirror those in the trans-
fer pumps. Valve failures are stuck-at conditions, i.e., their
positions do not change even when they are commanded to
do so. This can result from mechanical friction/jamming of
the shaft or electrical failure of the motor or power source. In
this work, we also consider partial failures of the valves. A
third class of faults that we consider is leaks in the connecting
pipes. Our goal is to develop an online diagnostic system for
detection, isolation and identification of these faults.



3 Component-based Hierarchical Modeling
for Diagnosis

Complex real-world systems are made up of a number
of subsystems and components. Hierarchical component-
based approaches, e.g., Statecharts [Harel, 1987], 20sim [van
Amerongen, 2000], and Ptolemy [Buck et al., 1994]. are a
practical approach to constructing models of such systems,
We have developed a new methodology for hierarchical com-
ponent based modeling that customizes the graphical Generic
Modeling Environment (GME) with a hybrid bond graph
(HBG) approach for building hybrid models of physical sys-
tems with supervisory controllers. This section reviews our
approach to hybrid bond graph modeling, then presents the
GME methodology for building component-based models for
the aircraft fuel transfer system.

3.1 Hybrid Bond Graphs
Our approach to modeling the fuel system is based on an ex-
tended form of bond graphs [Karnopp et al., 1990], called
Hybrid Bond Graphs (HBG) [Mosterman and Biswas, 1998].
Bond graphs present a methodology for energy-based mod-
eling of physical systems. Generic bond graph components
represent primitive processes, such as the energy storage ele-
ments, inertias and capacitors, and dissipative elements, re-
sistors. Bonds represent the energy transfer pathways in the
system. Junctions, which are of two types: 1 or series, and
0 or parallel, define the component interconnectivity struc-
ture, and impose energy conservation laws. Overall, the bond
graph topology implies system behavior that combines indi-
vidual component behaviors based on the principles of conti-
nuity and conservation of energy.

Extensions to hybrid systems require the introduction of
discrete changes in the model configuration. In the HBG
framework, discontinuities in behavior are dealt with at
a meta level, where the energy model embodied in the
bond graph scheme is suspended in time, and discontinuous
model configuration changes are modeled to occur instanta-
neously. Therefore, the meta level describes a control struc-
ture that causes changes in bond graph topology using ide-
alized switches that do not violate the principles of energy
distribution in the system. Topology changes result in a new
model configuration that defines future behavior evolution.
To ensure physical principles are not violated, we have de-
veloped transformations that derive the initial system state in
the new configuration from the old one. From this point on
behavior evolution is continuous, till another discrete change
is triggered at the meta level.

To keep the overall behavior generation consistent, the
meta-model control mechanism and the energy-related bond
graph models are kept distinct. The switching structure is im-
plemented as localized switched junctions that provide a com-
pact representation of the system model across all its nomi-
nal modes of operation. Instead of pre-enumerating the bond
graph for each mode, the HBG uses individual junctions to
model local mode transitions. The switched 0- and 1- junc-
tions represent idealized discrete switching elements that can
turn the corresponding energy connection on and off. A finite
state machine determines the ON/OFF physical state of the
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Figure 2: Hybrid Bond Graph Example

junctions. The transitions in this automaton depend on both
control signals and internal variable values.

Fig. 2 shows the hybrid bond graph model of a portion of
the fuel system. The dotted subsystem represents the wing
tank, and the dashed subsystem represents the fuselage tank.
In this simplified model, the tank system is modeled as a ca-
pacitor for storage of fuel, pump system as an effort source
to boost the pressure and create an outflow, and pipes as con-
duits with resistive losses. For this configuration with two
switched junctions, the system can be in four different modes.
When the two junctions are off, there is no fuel supplied to the
feed tank, one of the two tanks (wing or fuselage) can supply
fuel to the feed tank, and both tanks may supply fuel to the
feed tank at the same time. Switching of configurations is
achieved by changing the switching signal values. Suppose
the wing tank is supplying fuel, i.e., signal1 = 1 (on) and
signal2 = 0 (off). To switch supplying tanks, we simply set
signal1 = 0 (off) and signal2 = 1 (on). The state equation
model for the new configuration can be easily derived online
using a standard algorithm [Karnopp et al., 1990].

3.2 GME
We have developed an approach for building component-
based system models using a graphical modeling tool called
Generic Modeling Environment(GME) [Ledeczi et al., 2001].
GME is a configurable toolkit for creating domain-specific
modeling and program synthesis environments. The con-
figuration is accomplished through meta-models 1 specifying
the modeling paradigm (modeling language) of the applica-
tion domain. The modeling paradigm contains the syntac-
tic, semantic, and visual presentation information of the do-
main, such as the concepts that form the building blocks for
constructing models, the relationships among these concepts,
how the concepts may be organized and viewed by the mod-
eler, and the rules governing the composition of individual
concepts and sets of concepts to form component and system

1The concept of meta-models in GME differs from the meta level
switching models in HBG.



models. The modeling paradigm defines the family of models
that can be created using the resultant modeling environment.

The meta-models specifying the modeling paradigm are
employed to automatically generate the target domain-
modeling environment, e.g., the HBG environment. The gen-
erated modeling environment is then used to build domain
models that are stored in a model database. The primarily
graphical, domain models can be conveniently stored in stan-
dard formats including XML to be used by specific applica-
tions. We have developed a GME modeling paradigm that
describes the HBG modeling environment.

3.3 Hierarchical and Compositional Modeling in
the fluid domain

Real life systems with embedded control tend to be complex,
and system designers and engineers typically have a lot of
difficulty in generating flat models of the entire system. Hi-
erarchical and compositional modeling are useful tools that
allow the system to be constructed in a structured way by
modeling subsystems independently and composing them to
generate system models. The two main steps in this approach
are: (i) decomposition into subsystems and building mod-
els of subsystems, and (ii) specifying interactions between
subsystems and using composition operators to build system
models. This approach provides a number of advantages,
such as simplicity in model building, independence in build-
ing subsystem models, and modularity and reusability of the
generated components.

To model the fuel transfer system, we develop models of
typical components in the fluid domain, such as tanks, pipes,
and pumps. Pipes may include valves that regulate flow.
Pumps and valves can be turned on and off. We assume that
their switching time constants are much faster than the time
constants in the fluid domain. Therefore, pumps and pipes
with valves are modeled as hybrid systems. In our GME
paradigm, subsystems are modeled as components. Interac-
tions between the components are specified as relations be-
tween their in-ports and out-ports. Components connected
by ports define the system model. The ports can model: (i)
energy transfer between components in the bond graph frame-
work, and (ii) communication of information by signals. Sig-
nals are assumed to have no energy content.

For this work, we build first order linear models2. Tanks
are modeled as a bond graph segment with a capacitor con-
nected to a 0 junction. Each tank component can have multi-
ple in-ports and out-ports. In-ports have energy connections
(bonds) to the 0 junction and out-ports have bonds from the
0 junction. Ports may be marked as in and out based on a
conventional direction for energy flow, but this does not mean
that energy cannot flow in the opposite direction. In case there
is an energy flow in the opposite direction, the corresponding
variable takes on a negative value.

Pipes are modeled as resistors connected to a 1 junction.
Pipes have exactly one in port and one out-port that can be
connected to ports of other tanks and pipes. The switching
on the pipes is achieved by specifying switching signals on
the 1 junction connected to the resistor. As discussed earlier,

2In reality the pressure flow relations are nonlinear.

pumps are modeled as an effort source connected to a trans-
former, which is connected to a 0 junction. Pumps have one
out-port for representing the pressure delivered by the pump.

Figure 3: Hierarchical and Compositional Modeling

As an example, the left wing tank is connected to the left
feed tank by instantiating two tank components, one pipe
component, and one switched pipe component. The switched
pipe controls the flow into the feed tank. The out port of the
first tank (left wing tank) is connected to the in port of the
pipe and out-port of the pipe is connected to the in-port of the
second pipe. Since the pump is modeled to pull fuel out of the
left wing tank, we connect the out port of a pump component
to the in port of the pipe. Fig. 3 illustrates the component
based and hierarchical model of this subsystem and the un-
derlying model of the some of the components.

3.4 Modeling for diagnosis
Models form the core component of the tracking and diag-
nosis algorithms [Biswas and Yu, 1993; Narasimhan et al.,
2000]. The hybrid observer uses quantitative state space
models for tracking nominal system behavior, the fault iso-
lation and identification unit uses temporal causal graphs
(TCG) for qualitative analysis and input output equation
(IOE) models for quantitative parameter estimation. We have
devised schemes to systematically derive these model repre-
sentations from the HBG models created in GME.

Precise tracking of nominal system behavior requires the
component parameter values in the bond graph model be ac-
curately estimated. We describe our parameter estimation
methodology in the next section. For fault isolation and iden-
tification, there has to be a a one to one correspondence be-
tween faults and parameters in the model. For example, if we
abstract a pump model and represent it as an effort source,
we cannot differentiate among faults in the electrical versus
mechanical/fluid part of the pump. Including a transformer
component that models the electrical to fluid energy trans-
formation at an abstract level solves this problem. A partial
fault or degradation in the mechanical part of the pump can
be attributed to a change in the transformation parameter.

Once the model structure has specified and all parame-
ters have been estimated, the hybrid bond graph model of
the complete system is derived by composing the compo-
nent models and flattening out the hierarchy. The designation
of ports as in- and out-ports, and restricting connections to
be from out-ports to in-ports only ensures the consistency of
bond connections when the components are composed. The



Figure 4: Component Model of Fuel System

resulting hybrid bond graph may be used to systematically
derive the state space and temporal causal graph model of the
system. In the bond graph framework, each element describes
equations that need to be satisfied for that component. For ex-
ample, for a 0 junction the pressures on all bonds incident is
equal and net flow of all bonds is equal to zero. The proce-
dure to convert to state space equations may be summarized
as [Karnopp et al., 1990]:

1. Identify state variables (efforts on capacitors and flow on
inductors).

2. identify input variables (effort and flow sources).

3. Use constituent equations of the bond graph components
to derive the relations between the effort and flow vari-
ables in the system.

4. Substitute for all non-state and non-input variables to de-
rive the state equation model. This step is applied repeat-
edly till all unnecessary variables are eliminated.

The algorithm to derive the TCG from the bond graph is de-
scribed in [Mosterman and Biswas, 1999].

3.5 Building Models of the Fuel System
From our discussion in earlier sections, the primary model
building steps are: (i) identify subsystems and model them at
the appropriate level of detail, (ii) compose system models by
specifying interactions among the subsystems, and (iii) esti-
mate parameters of the model.

As discussed earlier, tanks, pipes, and pumps are the main
components of the fuel system model. In addition, we need
to build models for the transfer manifold and the engines. For
the scenarios we deal with, it was sufficient to model the en-
gines as constant flow sources, i.e., a sink. Engines have one
in-port that represents the flow into the engine from the feed
tank. The transfer manifold is modeled as a single capacitor
connected to the 0 junction. The transfer manifold has mul-
tiple in-ports representing flow into, and multiple out-ports
representing flow out of the transfer manifold.

The next step is to determine the complete system config-
uration. For the fuel system we instantiate 6 tanks: 2 wing
tanks, 2 fuselage tanks and 2 engine feed tanks. Each has a
corresponding pump. Since the outlets of the wing and fuse-
lage tanks and the inlet of feed tanks all have valves, we cre-
ated switched pipe components for each of these components.
Two instances of the engine are created, and the transfer man-
ifold component is also included in the model. Fig. 4 depicts
our component-based GME model of the entire fuel system.

The individual components are connected using bond
graph junctions to build the energy model of the overall sys-
tem. The fuselage tanks supply the transfer manifold, where
the flows from the fuselage tanks sum up. This is modeled by
connecting one out-port of the fuselage tank to the in-port of a
pipe, and the out-port of the pipe to the in-port of the transfer
manifold. The pump associated with each tank is also con-
nected to the in port of the pipe. This develops a high pres-
sure at the inlet of the pipe, and hence pulls fuel from the tank
into the pipe. The flow from the wing tanks and the transfer
manifold combine and distribute evenly to the left and right
feed tanks. One out-port of the wing tank is connected to the
in port of a pipe. The out-port from these pipes and the out-
port from the transfer manifold are connected to a 0 junction
to combine the flows. The 0 junction is connected to the in-
port of switched pipes whose out-ports are connected to the
in-ports of the feed tanks. In order to maintain stability when
both feed tanks are closed, a bleed resistor is added to the
piping. This resistor bleeds fuel into the left feed tank. The
out-ports of the feed tanks are connected to the in-ports of the
corresponding engines through pipes.

The next step is to estimate the model parameter values.
For the scenarios we model, the engine fuel consumption rate
is set at g gpm for both engines3. All other parameters are es-
timated from experimental data of an entire fuel burn curve,
where all the fuel from the wing and fuselage tanks was con-

3In this discussion the actual numbers are not used to avoid any
concerns about releasing sensitive data.



sumed by the engines. We used the rate of depletion of fuel
in the tanks and the flow out of the tanks when the level con-
trol valves are closed to calculate the individual tank capaci-
tances. For the left feed tank the fuel depletion rate is approxi-
mately d lbs/s, and hence we determine the capacitance of the
left feed tank to be cl

ft5sec2

lb . Similarly, the right feed tank ca-

pacitance is estimated to be cr
ft5sec2

lb . We performed similar
calculations to determine the wing and fuselage tank capac-
ities (approximately cw

ft5sec2

lb ). To estimate the resistances,
we used the pressure drop and flow through the pipe corre-
sponding to the resistance to calculate the resistance value.
The pump effort and efficiency values were given nominal,
realistic values.

4 Diagnosis

Figure 5: Software Architecture for Diagnosis

The diagnosis task involves tracking dynamic system be-
havior that includes continuous evolution plus discrete model
changes till the fault detector signals a fault. At this point,
the fault isolation unit is invoked. Discrete mode changes
require dynamic switching of system models, and may also
involve discontinuous changes in the system variables. The
fault isolation unit also needs to consider change in modes
when matching fault signatures with actual system behavior.
This motivates the software architecture for diagnosis, illus-
trated in Fig. 5. The input to the diagnosis system is the model
as an XML file and the experimental data as a text file. Each
line of the data file represents one sample of the data. Al-
though the current version uses a data file as input, replacing
it with data from an actual system does not alter the rest of the
architecture. Each sample of data includes all input values,
all measured output values, and the values of all switching
signals. The output of the diagnosis module is the set of diag-
nostic hypotheses that are consistent with the model and data.
The diagnosis output at each time step can be observed in a
GUI implemented in Python (www.python.org). The active
state model (ASM) is an internal data structure that maintains
information about the system including the current mode, cur-
rent state estimates, and current diagnostic hypotheses. This
structure is updated at each time step from information re-
ceived from the observer and the diagnosis module. The hy-
brid bond graph (HBG) data structure contains the flattened
HBG model of the system after composition of all active com-

ponent subsystems. The HBG model also contains the switch-
ing conditions for mode changes. These are parsed and stored
in the ASM. All the diagnosis algorithms modules were im-
plemented in C++. The SWIG toolkit was used for Python-
C++ interactions.

The parser reads in the model file, interprets it and cre-
ates the HBG data structure. The symbolic equation gener-
ator (SEG) takes the HBG and the current mode of the sys-
tem and derives the state space equation (SSE) model of the
system, which is stored in the ASM. When tracking system
behavior, the hybrid observer reads in the data sample for the
next time step from the data file, and checks to see if any con-
trolled (specified in data file) or autonomous (stored in ASM)
mode changes have occurred. When mode changes occur,
the SEG is invoked to re-calculate the SSE model. To ac-
commodate for model disturbances and measurement noise,
a Kalman filter is built from the current SSE model to track
system behavior. At each time step, the fault detector com-
pares the system output with the observer estimates to deter-
mine if a fault has occurred in the system. When the fault
detector triggers, the diagnosis module is activated. The di-
agnosis module uses propagation algorithms on the TCG to
generate fault candidates that are consistent with the observed
discrepancies. Continued tracking by matching the fault sig-
natures generated for each candidate hypotheses helps refine
the candidate set. For details on the hybrid observer and di-
agnosis algorithms, refer to [Mosterman and Biswas, 1999;
Narasimhan and Biswas, 2002].

In subsequent sections we briefly describe the hybrid ob-
server and the diagnosis modules and illustrate their function-
ing by applying them to a diagnosis problem on the fuel sys-
tem. In the experimental setup, the fuel system is controlled
by the sequence defined in Table 1. The data for the experi-
ments was generated using a Matlab/Simulink simulation that
was developed at Vanderbilt University. We assume pressure
values are measured at the output of each of the six tanks of
the fuel system. The fault introduced is an abrupt decrease in
the left fuselage tank pump efficiency at time step 200. This
occurs in the mode when only the left fuselage tank is sup-
plying fuel, and only the left feed tank is receiving fuel.

4.1 Hybrid Observer and Fault Detector

The hybrid observer tracks the system behavior as it evolves
and the fault detector compares the observer output to the sys-
tem output to determine if a fault is present in the system. The
hybrid observer performs the following tasks:

• Continuous tracking of system behavior in current mode,

• Determining if a mode change has occurred, and

• Initializing the observer in a new mode, with the new
state and new model.

The discrete time form of the SSE models are derived to
track system behavior. To account for model disturbances and
noisy measurements, we use a Kalman filter to track system
behavior. This requires computation of the R and Q matrices
that model the disturbance and noise variances, and K , which



represents the Kalman gain matrix.

˙̂x = Ax̂ + Bu + K(y − ŷ)
ŷ = Cx̂

Ṗ = AP + PAT + BQBT − KRKT

K = PCT R−1

In our experiments, R and Q are diagonal matrices with val-
ues of 0.01 along the diagonal. The Kalman gain (K) is ini-
tialized to a diagonal matrix of arbitrarily high value (100 in
our experiments). This gain matrix typically converges to its
true value in a few time steps.

Mode changes may be of two types: controlled or au-
tonomous. Controller issued switching commands need to
be provided in the data file. These correspond to the con-
trolled mode changes in the system. At each time step, the
observer checks to see if the data set indicates a mode change.
All autonomous change conditions are converted so that they
contain only state and input variables. The observer uses in-
put data and estimated state values to calculate if the con-
ditions for any autonomous change evaluates to true. This
is done at each time step also. For the fuel system, there
are no autonomous changes and hence the data file provides
sufficient information to determine if a mode change has oc-
curred. If a controlled or autonomous mode change is indi-
cated, the observer computes the new mode. The equation
solver is invoked to derive the new SSE model. The ob-
server re-initializes the state based on the reset function spec-
ified, and continues the tracking in the new mode with a new
Kalman filter that is derived from the A and B matrices in the
new mode.

Fig. 6 illustrates a sample run of the hybrid observer for the
experimental setup described earlier. Gaussian noise with a
2% noise variance was generated using the Matlab models as
described earlier. We illustrate the tracking of pressure in the
left fuselage tank. The thick line represents the noisy system
output (it is more like a waveform than a line due to the noise
in the measurements) and the thin line represents the observer
estimates. Until time step 200 (at which point the fault was
introduced) we notice that this line is completely subsumed
by the thick line indicating accurate tracking. However, after
time step 200 the thin line deviates from the thick line indicat-
ing a fault. The fault detector (uses a 5% detection threshold)
flags the fault. In the next section, we describe the fault iso-
lation scheme.

4.2 Fault Isolation and Identification
Our fault isolation and identification methodology, described
in greater detail in [Narasimhan and Biswas, 2002], for hy-
brid systems is broken down into three steps:

1. A fast roll back process using qualitative reasoning tech-
niques to generate possible fault hypotheses. Since the
fault could have occurred in a mode earlier than the cur-
rent mode, fault hypotheses need to be characterized as
a two-tuple (mode, fault parameter), where mode indi-
cates the mode in which the fault occurs, and fault pa-
rameter is the parameter of an implicated component
whose deviation possibly explains the observed discrep-
ancies in behavior.

Figure 6: Hybrid Observer Sample Run

2. A quick roll forward process using progressive moni-
toring techniques to refine the possible fault candidates.
The goal is to retain only those candidates whose fault
signatures are consistent with the current sequence of
measurements. After the occurrence of a fault, the
observer’s predictions of autonomous mode transitions
may no longer be correct, therefore, determining the
consistency of fault hypotheses also requires the fault
isolation unit to roll forward to the correct current mode
of system operation.

3. A real-time parameter estimation process using quan-
titative parameter estimation schemes. The qualitative
reasoning schemes are inherently imprecise. As a result
a number of fault hypotheses may still be active after
Step 2. We employ least squares based estimation tech-
niques on the input-output form of the system model to
estimate consistent values of the fault parameter that is
consistent with the sequence of measurements made on
the system.

The models used in these three steps, temporal causal graph
(TCG) and input output equations (IOE) model, are derived
directly from the hybrid bond graph.

We illustrate the diagnosis algorithms for the experiment
discussed in the previous section. As Fig. 5 illustrates, after
time step 200 the actual pressure in the left fuselage tank is
below the predicted value. The fault detector flags this and
triggers the diagnosis process. We use the roll back proce-
dure to propagate this discrepancy back through our models
to generate the fault candidates. In the current mode, we get
the following candidates: Left Fuselage Pump-, Left Fuselage
Pipe+, Transfer Manifold+, Bleed Resistor+, Left Switched
Pipe+, Left Feed Pump-. Since the left fuselage tank was not
open in any of the previous modes, no candidates are gener-
ated in any previous modes.

The next step rolls forward to check for the consistency
of the effects of the faults hypothesized against actual sys-
tem measurements. Since no autonomous mode changes
are present and we assume that all controller commands are
known, we know exactly what mode the system is in. We
generate signatures (effects of fault) in that mode for all the
above candidates. In the current mode we cannot distinguish



between the candidates because they have similar signatures.
However, when a mode change occurs (right feed tank is also
opened), we regenerate signatures in the new mode and note
that Left Switched Pipe+ and Left Feed Pump- do not affect
the right feed tank pressure. However, we notice a discrep-
ancy in the right feed tank pressure, hence we can drop these
candidates. We cannot distinguish between the other candi-
dates (Left Fuselage Pump-, Left Fuselage Pipe+, Transfer
Manifold+) with the selected set of measurements. In order
to distinguish between these candidates we need more mea-
surements. For example, we could model the pump in more
detail and add a sensor to measure the current drawn by the
pump motor. This would let us identify faults in the pump as
opposed to faults in pipes that the pump is connected to.

Table 2 lists the different fault classes in the fuel system.
Each fault class represents multiple instances of the faults
in the same component. The fault classes are numbered as
follows: 1) Wing Tank Pump (WTP), 2) Wing Tank Pipe
Resistance (WTR), 3) Fuselage/Transfer Tank Pump (TTP),
4) Fuselage/Transfer Tank Pipe Resistance (TTR), 5) Trans-
fer Manifold Resistance (TMR), 6) Switched Pipe Resistance
(SPR, 7) Feed Tank Pump (FTP), and 8) Feed Tank Pipe Re-
sistance (FTR). The results of our diagnosis experiments for
these sets of faults appear in the table. The

√
mark in row i

and column j indicates that if the roll back process generated
candidates i and j, one of them will be dropped by the roll for-
ward process. The × mark indicates that the current control
sequence and set of measurements are not sufficient to distin-
guish between the pair in question. In general, the algorithm
cannot distinguish between pump and pipe faults associated
with the same tank. We need more detailed models and more
measurements to do this. We also see that we cannot distin-
guish between the transfer manifold and fuselage pipe faults.
We can distinguish between all other fault classes. The abil-
ity to distinguish between all fault classes is critical since the
change in control strategy depends on the fault type.

Table 2: Fuel System Fault Diagnosability
WTP WTR TTP TTR TMR SPR FTP FTR

WTP - × √ √ √ √ √ √
WTR × -

√ √ √ √ √ √
TTP

√ √
- × × √ √ √

TTR
√ √ × - × √ √ √

TMR
√ √ × × -

√ √ √
SPR

√ √ √ √ √
-

√ √
FTP

√ √ √ √ √ √
- ×

FTR
√ √ √ √ √ √ × -

5 Conclusions
We have presented a case study on modeling a real system
and building a diagnosis engine for the system. The key
to successful tracking and diagnosis is to have models that
are topologically correct, with parameter value estimates that
match the nominal observed behavior so as not to generate
false alarms. This can be a difficult and time consuming task,
with a lot of experimental data being required to build accu-

rate models. The presence of noise in the data complicates
the tracking and fault detection task. For the given set of
measurements, our tracking mechanisms worked well with
fault-free data provided the variance of the added Gaussian
noise was limited to 2%. Part of the reason for such low
noise thresholds was the use of a naive threshold-based fault
detector in these experiments. The diagnosis system always
generated the true fault hypothesis, but in a number of cases
the hypothesis set contained more than one fault candidate.
This could be attributed to lack of detail in the models and the
need for more measurements in the analysis. Also, parameter
estimation was not included as part of the experiment. In pre-
vious work [Narasimhan and Biswas, 2002], we have shown
that parameter estimation often helps to isolate the true fault.

In future work, we would like to build more detailed mod-
els of the different components of the fuel system in an at-
tempt to diagnose a larger set of faults. The experiments need
to be extended to run with real data provided from Boeing, as
opposed to simulated Matlab data that we generated at Van-
derbilt University. We would also like to run sensitivity anal-
ysis tests to the diagnosis system performance under varying
noise and disturbance conditions. Finally we would like to
build more robust techniques for fault detection and parame-
ter estimation to combat the effects of noise and disturbance.
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