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Abstract. We consider multilevel set-covering models for diagnos-
tic reasoning: though a lot of work has been done in this field,knowl-
edge acquisitionefforts have been investigated only insufficiently.
We will show how set-covering models can be build incrementally
and how they can be refined by knowledge enhancements or repre-
sentational extensions. All these extensions have a primary charac-
teristic: they can be applied without changing the basic semantics of
the model.
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1 Introduction

In this paper we will present a new interpretation of set-covering
models [1] which is a suitable representation for the manual devel-
opment of knowledge-based systems. Because of its simple seman-
tics set-covering models are rapidly understood by the experts, but
still maintain a well-known model-based interpretation. In [2] we
showed how knowledge-based diagnostic systems can be developed
incrementally with set-covering models, thus supporting rapid pro-
totyping of such systems. In this paper we will extend this approach
to multilevel set-covering models, and we will describe how simple
set-covering models can be enhanced by representational extensions.
Practical experience has shown that these additions facilitated the de-
velopment of a real world example from a medical ICU domain.

A set-covering modelconsists of a set of diagnoses, a set of find-
ings (observations) and covering relations between the elements of
these two sets. There exists a covering relation between a diagnosis
and a finding, iff the diagnosis implies the observation of the find-
ing. We can define covering relations between diagnoses as well, iff
a diagnosis implies the observation of another diagnosis. The basic
idea of set-covering diagnosis is the detection of a reasonable set of
diagnoses which can explain the given observations. To do this, we
propose an abductive reasoning step: Firstly, hypotheses are gener-
ated in order to explain the given observations. Secondly competing
hypotheses are ranked using aquality measure.

Reasoning with set-covering models has got a long tradition in di-
agnostic reasoning: Early work was done by Patil [3] with his sys-
tem ABEL, which implemented a comprehensive set-covering rep-
resentation including causal, associational and grouping relations.
Reggia et al. [1] contributed a formal approach to set-covering mod-
els and addressed the problem of hypothesis generation with a pre-
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cise description ofgenerator sets. Later [4] they introduced the in-
tegration of Bayesian probabilities in set-covering models. With the
system MOLE [5] Eshelman focussed on the problem of acquiring
set-covering knowledge. He proposed an interactive process that al-
lows for refining previously acquired knowledge after a reasoning
step to differentiate between conflicting hypotheses. Console et al.
[6] showed with the system CHECK how to combine heuristic and
causal knowledge. There heuristic knowledge was used to find rea-
sonable hypotheses for a given observation. In a second step the
causal knowledge was used to generate abductive explanations for
the hypotheses. Long [7] extended covering models with probabili-
ties and a rich syntax of temporal and non-temporal causation events.
Since knowledge acquisition is a cost sensitive task, reuse of existing
knowledge is another emerging aspect. Puppe [8] showed how set-
covering knowledge can be combined with other classes of knowl-
edge like heuristic rules, case-based knowledge or decision trees.

Most of these approaches only investigated syntax and semantics of
the reasoning process, but did not consider the knowledge engineer-
ing process. Eshelman’s MOLE system [5] differs from our knowl-
edge acquisition approach, since there knowledge refinement is per-
formed by adding new covering relations to the model. In our paper
we will present (multilevel) set-covering models and show how to
enrich these simple models with knowledge enhancements likesimi-
larities andweightsor representational extensionsfor more complex
covering relations. A primary characteristic of the presented exten-
sions is the incrementality: each extension can be applied indepen-
dently from other enhancements and will not change the basic se-
mantics of the model, but refine special aspects of it.

The rest of the paper is organized as follows: In Section 2 we will
introduce the basic concepts of set-covering models and show how
to enrich set-covering models with additional knowledge like simi-
larities and weights. Beyond that we will introduce representational
extensions of set-covering models in Section 3 that will enable us to
formulate exclusions, necessary relations and complex covering rela-
tions (conjunctions, disjunctions, cardinalities). In Section 4 we will
shortly summarize the problem of hypothesis generation and we will
introduce constraints that shrink the exponentiell size of possible hy-
potheses. We will conclude this paper in Section 5 with an overview
of the work we have done so far and promising directions we are
planning to work on in the future.

2 Set-Covering Models

A set-covering model consists of a set of diagnoses, a set of findings
(observations) and covering relations between the elements of these
two sets. There exists a covering relation between a diagnosis and



a finding, iff the diagnosis predicts the observation of the finding.
Furthermore we can define covering relations between two diagnoses
to state that a diagnosis implies another diagnosis. In this way we
can build acovering-treefor a diagnosis, where we postulate that
the leafs of the covering-tree have to be observable findings. So each
covering path will start with a diagnosis and lead to an observable
finding.

2.1 The Basic Model

The basic idea of set-covering diagnosis is the detection of a reason-
able set of diagnoses which can explain the given observation of find-
ings. In anabductive reasoningstep hypotheses are firstly generated
in order to explain the given observations (hypothesis generation). In
a second step, we define a quality measure for ranking competing hy-
potheses (hypothesis testing). Set-covering models describe relations
like:

A diagnosisD predicts that the parametersA1, . . . , An are
observed with corresponding valuesv1, . . . , vn.
A diagnosisD predicts the diagnosesD1, . . . , Dm.

We call each of these relationscovering relationsand we denote them
by

ri = D → Ai :vi, 1 ≤ i ≤ n,

r′i = D → Di, 1 ≤ i ≤ m.

Covering models can be visually described like in Figure 1. In this
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Figure 1. Basic set-covering model for diagnosesFlu, FeverandCold.

example the model states that diagnosisFlu implies the observation
of the diagnosesFever andCold. DiagnosisFever itself forces the
observation of the attributesTemperatureandSkinwith their corre-
sponding valuesIncreasedandSweating.

The basic algorithm for set-covering diagnosis is very simple: Given
a set of observed findings, it uses a simple hypothesize-and-test strat-
egy, which generates hypotheses (coined from diagnoses) in the first
step and tests them against the given observations in a second step.
The test is defined by calculating a quality measure, which expresses
the covering degree of the hypothesis regarding the observed find-
ings. The generation and evaluation of the hypotheses is an iterative
process, which stops when a satisfying hypothesis has been found or
all hypotheses have been considered. Usually the algorithm will look
at single diagnoses, compute the corresponding quality measure, and
then it will generate hypotheses with multiple diagnoses, if needed.

In the worst case this procedure will generate2n candidates forn
diagnoses. So heuristics are needed to keep the method computation-
ally tractable (c.f. Section 4).

The basic sets for this task are the following: We defineΩD to be
the set of all diagnoses andΩA the set of all observable parameters
(attributes). To each parameterA ∈ ΩA a rangedom(A) of values
is assigned, andΩV =

⋃
A∈ΩA

dom(A) is the set of all possible
values for the parameters. If a parameterA is assigned to a valuev,
then we callA :v afinding.

ΩF =
{

A :v |A ∈ ΩA, v ∈ dom(A)
}

is the set of all findings. Furthermore we call an elementS ∈ ΩS =
ΩD ∪ ΩF astate.

A covering relationr between a diagnosisD and a stateS (S 6= D)
is denoted byr = D → S. We say that “D predictsS” or that “D
coversS”. Thencr = D is called thecauseander = S is called the
effect. We defineΩR to be the set of all covering relations contained
in the model. ThenD+ ∈ ΩR is the set of all covering relations with
diagnosisD as the cause, i.e.D+ = { r ∈ ΩR | cr = D }. E.g.,
for the model in Figure 1 we obtaincr1 = Flu ander1 = Fever ,
Cold+ = {r5, r6}.
SinceS can be a diagnosis itself, we are able to buildmultilevelset-
covering models. A stateS transitively coversanother stateS′, if
eitherS coversS′ or S covers another stateS′′ that transitively cov-
ersS′.

We callFO ⊂ ΩF the set ofobserved findingsand a setH ⊆ ΩD
of diagnoses ahypothesis. A finding that is not transitively covered
by the hypothesisH is called isolated, and the set of all observed
findings that are isolated will be denoted byF isolated

H,O ⊆ FO. E.g. for
a hypothesisH = {D1} andFO = {A1 : v1, A2 : v2, A4 : v4} we
obtainF isolated

H,O = {A2 :v2}.
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Figure 2. Basic set-covering model for diagnosisD

Now we will describe the computation of the precision of a state for
a given observation. The precisionπ(S) of a stateS provides a real
value between0 and1 to describe the degree of accuracy the covered
states ofS are observed.

Bottom-Up Computation of Precisions.Given the setFO of ob-
served findings, the precisionπ of each state is computed bottom-up
starting with the findings:

π
(
A :v

)
=

{
1, if A :v ∈ FO
0, otherwise

(1)



The precisionπ(D) of a diagnosisD can be computed as soon as the
precisions of all its successorsS are known. For this we define

D+
≥c =

{
r ∈ D+

∣∣ π(er) ≥ c(er)
}
,

D+
>0 =

{
r ∈ D+

∣∣ π(er) > 0
}
,

as the sets of allrelevantcovering relations, i.e. relations that predict
states with a precision greater than a user defined threshold function.

π(D) =


∑

r∈D+
≥c

π(er)

|D+
>0|

, if D+
>0 6= ∅

0, otherwise

(2)

The denominator counts all successor states ofD with a positive pre-
cision, which gives us the maximally achievable score. The nomina-
tor sums up the precision of all successor states with a precision, that
is greater than or equal to the completeness value, which gives us the
actually achieved score.

Thecompleteness valuec(D) of a diagnosis is specified by the mod-
eler and is motivated by the fact, that a covering model for a diagnosis
will contain more states than the diagnosis will cause in an average
case. Nevertheless in most cases the observation of a percentage of
the modeled states will legitimate the validation of this diagnosis. To
emphasize this percentage the modeler has to specify a completeness
valuec(D). Unless this factor is reached by the observation set in
the current case, the diagnosis may neither be considered as a validly
observed state, nor will it be considered as a valid hypothesis candi-
date.

Since we also want to consider multiple faults, i.e. hypotheses con-
taining more than one diagnosis, we define

H+ =
⋃

D∈H

D+ H+
>0 =

⋃
D∈H

D+
>0 H+

≥c =
⋃

D∈H

D+
≥c

The covering relationsr ∈ H+
≥c are calledrelevantfor H. Observe,

that relevancy depends onFO, since the precisions have been com-
puted based onFO.

Quality Measures.The quality measures are used to rank the possi-
ble hypotheses with respect to the given observation. As we already
introduced the precision of a single diagnosis we now will define
the quality of a hypothesis, which can contain multiple diagnoses.
The quality of a hypothesis provides a real value between0 and1
to describe the degree of accuracy with which the hypothesisH can
explain the given observationFO.

Definition 2.1 (Quality Measure) Thequality %(H) of a hypothe-
sisH is given by

%(H) =

∑
r∈H+

≥c

π(er)

|H+
>0|+ | F isolated

H,O |
. (3)

Notice that, in contrast to the precision, the quality measure does not
evaluate a single diagnosis with respect to the transitively observed
predictions, but assesses a hypothesis (containing possibly multiple
diagnoses) on the basis of the transitively predicted and observed
findings and the unexplained (isolated) findings.

We see that%(H) ∈ [0, 1] for any hypothesisH ∈ ΩH: The lower
bound0 is obtained, ifH+

≥c = ∅. The upper bound1 is obtained,

if all predictions are fully observed, i.e.H+
≥c = H+

>0 , and the set

F isolated
H,O = ∅.

Example.For the covering relation given in Figure 2, the set

FO = {A2 :v2, A3 :v3, A4 :v4, A5 :v5, A6 :v6 }

of findings, and the hypothesisH = {D1}, we obtainπ(D2) = 1,
π(D3) = 1 (with c(D2) = c(D3) = 0.7). Since we obtainH+ =
{r1, r2, r3} for hypothesisH we can calculate

H+
≥c = { r1, r2 },

F isolated
H,O =

{
A2 :v2, A3 :v3

}
.

Up to now we presented the basic representation for set-covering
models containing diagnoses and findings connected with cover-
ing relations. Of course this simple representation might not always
meet the requirements of real world applications. Therefore we will
shortly present knowledge extensions of set-covering models. In [2]
we showed how to apply these extensions in an incremental way.

2.2 Extension by Similarities and Weights

Similarities between findings and weights for states provide signifi-
cant knowledge extensions for set-covering models. In the following
we will show how to include these enhancements into the quality
measures given above.

Similarities. Consider a parameterA with the domain

dom(A) = {no, si, mi, hi },

with the meanings normal (no), slightly increased (si), medium in-
creased (mi), and heavily increased (hi), whereA : hi is predicted.
We clearly see that the observationA :mi deserves a better precision
than the observationA :no. Nevertheless the simple quality measure
considers both observations as unexplained findings and makes no
difference between the similarities of the parameter values. For this
reason we want to definesimilaritiesas an extension to set-covering
models.

We define the similarity function

sim : ΩV × ΩV → [0, 1]

to capture the similarity between two values assigned to the same
parameter. The value0 means no similarity and the value1 indicates
two equal values. In cluster analysis problems this function is also
calleddistance function(cf. [9]).
With similarities we need to adapt Equation (1) for computing the
precision of findings.

π
(
A :v

)
= sim

(
ValH(A),ValFO (A)

)
,

whereVal returns the value of a specified attribute contained in a
specified set of states.

Val : 2ΩS × ΩA → ΩV .

If no special similarity is included in the model, then we get the sim-
ple quality measure by defining thedefault similaritysim(v, v′) =
δv,v′ , whereδv,v′ = 1, if v = v′, andδv,v′ = 0, otherwise.

Weights. The introduction of weights for covered states is another
common generalization of the basic covering model. Here we apply



a weight functionw : ΩS → IN+, to emphasize that some states
(findings and diagnoses) have a more significant pathological impor-
tance than other states.
When applying weights to the model we need to adapt Equation (2)
which calculates the precision for a given diagnosis:

π(D) =



∑
r∈D+

≥c

w(er) · π(er)∑
r∈D+

>0

w(er)
, if D+

>0 6= ∅,

0, otherwise.

Like for the precision of a diagnosis, we need to adapt Equation (3)
to calculate the quality of a given hypothesis:

%(H) =

∑
r∈H+

≥c

w(er) · π(er)∑
r∈H+

>0

w(er) +
∑

F∈F isolated
H,O

w(F )

If all states have the same weight, i.e.,w(S) = 1 for all S ∈ ΩS ,
then the model reduces to the simple covering model.

In addition to similarities and weights we already have introduced
uncertain covering relations and causal effect functions as possible
extensions (cf. [2]).

3 Complex Covering Relations

In the previous section we introduced the basic set-covering model
and extensions that allow for the refinement of set-covering knowl-
edge build with basic covering relations. In this section we propose
some further extensions of the representation, AND-, OR- and [MIN ,
MAX ]-relations.

To keep the interpretation of covering models simple, we only al-
low these extensions for covering relations between diagnoses and
(directly observable) findings.

3.1 Conjunction of Covering Relations

It is desirable to be able to represent conjunctions between covering
relations. An AND-covering relation

D →AND {F1, . . . , Fn }

denotes the characteristic, that all covering relationsD → Fi have
to be fulfilled simultaneously.

D
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F
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Figure 3. Covering relationD →AND {F2, F3}

Then the weights of the AND-connected findingsFi will only con-
tribute to the precision ofD if all of these findings are observed.
If not all findings are observed, thenD cannot explain the findings
and we have to check if another diagnosis from the hypothesis can
explain these observations. All remaining findings – so far unex-
plained – will be added to the set of isolated findingsF isolated

H,O . This
will decrease the quality measure for the current hypothesis, since
H+
≥c will not contain relations covering the unexplained observa-

tions. Given an AND-covering relation of the form

r = D →AND {F1, . . . , Fn }

we define for eachFi ∈ {F1, . . . , Fn }:

πr(Fi) =

{
π(Fi), if for all Fj ∈ er : π(Fj) > 0

0, otherwise

We try to explain all findingsFi with πr(Fi) = 0 butπ(Fi) > 0 by
other diagnosesD′ ∈ H \ {D}. All remaining findingsFi, which
cannot be explained by other diagnoses are added toF isolated

H,O .

Example. Assume that we have the covering model of Figure 3,
where c(D) = 0.5, and we observe the setFO = {F1, F2}.
Thenπ(F3) = 0, sinceF3 is not inFO. Therefore not all preci-
sions of the AND-covered findings are greater than0, and we define
πr(F2) = πr(F3) = 0. We obtainF isolated

H,O = {F2} for hypothesis
H = {D}. Notice, thatF3 is not inF isolated

H,O , since it is not observed.

3.2 Disjunction of Covering Relations

We also can express alternative covering relations with disjunc-
tion. Here we can distinguish between inclusive (OR) and exclusive
(XOR) disjunctions.

In Figure 4 we can see two different disjunctive covering relations
for diagnosisD: in the left one the findingsF2, F3 are connected
with the OR-covering relationD →OR {F2, F3}, whereas at the
right side the findings are connected with an XOR-covering relation
D →XOR {F2, F3}. These OR/XOR-relations state, that only one

D
0.6

F
1

F
2

F
3

OR

D
0.6

F
1

F
2

F
3

XOR

Figure 4. OR-/XOR-covering relations.

of the connected finding has to be observed to fulfill the relation.
Of course we need to consider the different semantics in covering
models. When computing the quality measures we have to take the
following three cases into account:

1. If noneof the predicted findings is observed, then nothing has
to be done. The covering relations connected with the OR/XOR-
condition cannot contribute to the quality measure of the parent
state.



2. If oneof the predicted findings is observed, then we simply cut
all other states connected by OR/XOR-relations from the model.
When computing the quality measure we only take the observed
finding into account.

3. If more than oneof the predicted findings are observed (e.g.
{F2, F3} ⊆ FO), then we have to differentiate between OR and
XOR relations. For both we take the finding with the maximal con-
tribution; e.g. regarding the weighted precision

πw(F ) = π(F ) · w(F ).

For OR-relations we simply ignore the remaining observations for
assessing the quality. They will neither contribute to the quality of
the hypothesis nor will they need to be explained by other diag-
noses.
For XOR-relations the observations left over still have to be ex-
plained. Like for the AND-relations we try to explain them with
the other diagnoses contained in the current hypothesis. All re-
maining findings, that cannot be explained by other diagnoses, are
added to the set of isolated findingsF isolated

H,O .

We see that we carefully have to use OR/XOR-relations, because of
their different interpretation of the observation. For example, multi-
ple observations of one XOR-covering relation are taken negatively
into account (i.e., they are assumed to be unexplained findings of the
current hypothesis), whereas in ordinary OR-relations they will not
contribute in any way.

As shown for AND-covering relations we also have to locally define
the precision for OR/XOR-covered findings in context of the given
diagnosis: Consider an OR-relation (analogous for XOR):

r = D →OR {F1, . . . , Fn }.

We select a findingFmax ∈ {F1, . . . , Fn }, such thatπw(Fmax ) =
max

(
πw(Fi), 1 ≤ i ≤ n

)
. Then we say that

πr(Fi) =

{
π(Fi), if Fi = Fmax

0, otherwise.

If there is more than oneFi with maximum weighted precision
πw(Fi), then all but one (randomly selected) finding will set to the
precisionπr(Fi) = 0.
When we compute the precisionπ(D) of a diagnosisD, then the pre-
cisions of the findingsFi that are covered by an OR/XOR-covering
relation contribute with the measureπr(Fi) and not with the usual
precision measureπ(Fi).
For XOR-relations we have to explain the remaining findings by other
diagnoses contained in the hypothesis or add them toF isolated

H,O .

3.3 Cardinalities in Covering Relations

Another enrichment of the set-covering representation is the connec-
tion of covering relations by cardinality constraints. We express such
cardinalities by [MIN, MAX ]-covering relations. Consider the exam-
ple in Figure 5. The covering relation between diagnosisD and the
findingsF1, F2, F3, F4 andF5 means, that between2 and4 of the
predicted findings have to be observed. We denote such relations by

r = D →[2,4] {F1, F2, F3, F4, F5 }.

When we interpret [MIN, MAX ]-relationsr =D →[M IN,MAX ] F , then
we have to consider three possible cases for the numberk = |F ∩
FO| of relevant findings:
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Figure 5. A [M IN, MAX ]-covering relation.

1. If k ∈ [M IN, MAX ], then all findings inF ∩ FO will contribute.
2. If k > MAX , then letFmax ( F ∩ FO be the MAX findings

with the maximum weighted precisions among the findings inF
(i.e. |Fmax| = MAX ). We explain the findings inFmax by D.
Then we try to explain the findings in(F ∩FO) \ Fmax by other
diagnoses also contained in the hypothesis. These findings(F ∩
FO) \ Fmax, which we cannot explain by other diagnosesD′ ∈
H \ {D}, are added toF isolated

H,O .
3. If k < M IN, then we try to explain all findings inF∩FO by other

diagnosesD′ ∈ H \ {D}. Findings, which cannot be explained
by other diagnoses, are added toF isolated

H,O .

We integrate [MIN, MAX ]-relations into set-covering models by lo-
cally defining the precision for findings connected by a [MIN, MAX ]-
relationr =D →[M IN,MAX ] F . Then we say that for eachF ∈ F :

πr(F ) =


0, if k < M IN

or if k > MAX ∧ F /∈ Fmax

π(F ′), if k ∈ [M IN, MAX ]

or if k > MAX ∧ F ∈ Fmax

whereFmax is again the set of the MAX findings with the best
weighted precisions among the findings inF .
When calculating the quality measure for a diagnosis or hypothesis
we apply the precisionπr(F ) for all findingsF connected by the
relationr. FindingsF with πr(F ) = 0 but π(F ) > 0 need to be
explained by other diagnoses contained in the hypothesis or will be
added toF isolated

H,O .

It is worth mentioning that ordinary covering relations for a diagno-
sis are following a similar concept, since we only will consider pre-
dicted findings that are also observed but not all predicted findings of
the diagnosis. But as opposed to [MIN, MAX ]-relations all observed
predictions will contribute to the quality. In [MIN, MAX ]-relations
only MAX observed findings will contribute; more than MAX find-
ings have to be explained by other diagnoses. In general, an ordinary
covering model for a diagnosisD with n covered findings is compa-
rable to a[c(D) · n, n]-relation connecting then findings.

3.4 Bounded Covering Relations

The introduction of similarities for finding values is a useful knowl-
edge extension. Nevertheless in some situations the expert wants to
express that a relation is only fulfilled if a covered parameter is ob-
served with exactly the predicted value, rather than a similar value.
Therefore we supplement necessary covering relations, disjunctive,



conjunctive and constrained covering relations with the optional la-
bel bounded. We obtain the required behaviour by locally defining
thedefault similaritymeasure for bounded relations:

sim
(
ValH(A),ValFO (A)

)
= δValH(A),ValFO (A).

I.e., only if a parameterA is observed with the predicted value, then
1 is assigned to its precision.

4 Constraints for Hypothesis Generation

As mentioned in the introduction of Section 2, the problem of hy-
pothesis generation is exponential, since forn diagnoses we need to
consider about2n hypotheses in the worst case for an observation.
In the following we want to sketch some heuristics to restrict the hy-
pothesis space.

In a first step, we will filter all diagnosesD ∈ ΩD, that arerele-
vant, i.e. having the minimum precision. For this, we define the set
of relevant diagnoses

Ωrel
D =

{
D ∈ ΩD

∣∣ π(D) ≥ c(D)
}
.

Then, only diagnosesD ∈ Ωrel
D will be taken into account, when

generating hypotheses. Before describing concepts to shrink the set
of hypotheses, we will definegeneratorsas a compact representation
for sets of hypotheses, which had been introduced by Reggia et al.
[1].

Definition 4.1 (Generator) A generatorGI = {G1, . . . , Gn} con-
sists of non-empty pairwise-disjoint subsetsGi ⊆ Ωrel

D The hypothe-
sesHGI generated byGI is defined as

HGI =
{
H ⊆ ΩD

∣∣ |H ∩Gi| ≤ 1, for all 1 ≤ i ≤ n
}
.

For GI = ∅, it holds thatHGI = {∅}. We can see, thatHGI is
analogous to a cartesian set product.

For example, for the set-covering model defined in Figure 1 and
FO = {temp : inc, skin : sweat, nose : red}, we obtainG =
{G1,G2} with G1 =

{
{cold}, {fever}

}
andG2 =

{
{flu}

}
. So we

can computeHG =
{
∅, {cold}, {fever}, {cold, fever}, {flu}

}
to be

the set of interesting hypotheses.

A method for computing and updating generator sets is extensively
described in [4]. Generators are used to efficiently generate hypothe-
ses in an incremental manner: In a first step, sets of generators de-
scribing higher level diagnoses (concepts) are created. For hypothe-
ses containing higher level diagnoses and having a high quality mea-
sure, we build sets of generators containing underlying specialized
diagnoses and test them with their corresponding quality measure.
In the following, we introduce two basic knowledge extension, that
additionally shrink the space of generated hypotheses.

4.1 Exclusion Constraints

We can defineexclusion constraintsto filter diagnoses from the pro-
cess of hypotheses generation. In general, two kinds of constraints
are possible:

¬(D ∧ F1 ∧ · · · ∧ Fn)
If findings F1, . . . , Fn are observed, then remove generated hy-
potheses, containing diagnosisD.

¬(D1 ∧ · · · ∧Dm)
Remove generated hypotheses, containing all the diagnoses
D1, . . . , Dm at the same time.

Thus, we create hypotheses using generator sets and check each gen-
erated hypothesis against the available exclusion constraints. If one
exclusion constraint evaluates true, the hypothesis is discarded.

It it worth noticing, that the modification of generator sets with re-
spect to exclusion constraints yields a combinatorial size of gener-
ators and therefore is not reasonable. An evaluation of the gener-
ated hypotheses according to existing exclusion constraints has been
proven to be more efficient.

4.2 Necessary Covering Relations

A stronger type of covering relations arenecessary covering rela-
tions. A necessary covering relation between a diagnosisD and a
finding F1 means, thatD necessarily coversF1 and thatF1 always
has to be observed ifD is hypothesized. We depict a necessary cov-
ering relation withD

nec−→ F1 as shown in Figure 6.
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2
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Figure 6. Necessary Covering relation for a diagnosisD.

For applying necessary covering relations we introduce an adapted
definition of the precisionπnec for each diagnosisD ∈ ΩD:

πnec(D) =


0, if ∃ r ∈ ΩR : r = D

nec−→ F with

F ∈ ΩF ∧ π(F ) < τ

π(D), otherwise

whereτ ∈ [0, 1] is a specified threshold, which defines when a find-
ing is sufficiently observed (e.g.τ = 0.8).

Therefore a diagnosisD does not propagate any contribution to its
parent states until all necessarily covered findings are (sufficiently)
observed. Consequently,D will not appear in any generator and thus
will not be included in any hypothesis.

5 Conclusions and Future Work

After describing the basic structures of set-covering relations we
have shown how to enrich the model with additional knowledge like
similarities or weights. We also considered the computation of qual-
ity measures of these parts. Furthermore, we have shown represen-
tational extensions to the set-covering model to facilitate necessary,
disjunctive, conjunctive or constrained covering relations. An impor-
tant characteristic of all these extensions is the incrementality: some
enhancements can be added to refine special aspects of the model
but will not change its basic semantics; others are used to guide the
process of candidate generation.



In the future we are planning to work on the following fields: In-
cremental development requires restructuring the model from time
to time. We are currently working on restructuring methods for set-
covering models that do not alter the basic semantics but improve the
design of the diagnosis knowledge. In software engineeringrefactor-
ing [10, 11] has been emerged as the corresponding method. In gen-
eral we have to look atvalidation techniquesfor set-covering mod-
els besides simple case testing. Because of the special structure of
the model we also¡ have to consider static verification techniques for
the set-covering representation. For a survey in this field we refer to
[12, 13, 14, 15].
In this paper we presented a hand-driven development of set-covering
models. But it seems to be possible tolearn coarse modelsautomat-
ically from a small number of available cases. Later on these models
should be refined by the developer with additional knowledge. With
such a semi-automatic development step, the initial costs of knowl-
edge acquisition can be reduced conveniently. Some work in this field
has been done by Thompson et al. [16] and Wang et al. [17]. This step
is not considered if we have a sufficiently large set of data, since then
traditional machine learning methods (e.g. learning neural networks,
learning Bayes networks) seem to be more appropriate.
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