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Abstract. We consider multilevel set-covering models for diagnos- cise description ofienerator setsLater [4] they introduced the in-

tic reasoning: though a lot of work has been done in this fleldwl- tegration of Bayesian probabilities in set-covering models. With the
edge acquisitiorefforts have been investigated only insufficiently. system MOLE[[5] Eshelman focussed on the problem of acquiring
We will show how set-covering models can be build incrementallyset-covering knowledge. He proposed an interactive process that al-
and how they can be refined by knowledge enhancements or reprisws for refining previously acquired knowledge after a reasoning
sentational extensions. All these extensions have a primary charastep to differentiate between conflicting hypotheses. Console et al.
teristic: they can be applied without changing the basic semantics db] showed with the system CHECK how to combine heuristic and
the model. causal knowledge. There heuristic knowledge was used to find rea-

Keywords: set-covering diagnosis; model-based diagnosis; qualita=°’°n‘5‘bIe hypotheses for a given observation. In a second step the
tive modeling; knowledge acquisition; abductive reasoning causal knowledge was used to generate abductive explanations for
' ' the hypotheses. Lon@l[7] extended covering models with probabili-

ties and a rich syntax of temporal and non-temporal causation events.
Since knowledge acquisition is a cost sensitive task, reuse of existing
knowledge is another emerging aspect. Puppe [8] showed how set-
covering knowledge can be combined with other classes of knowl-

In this paper we will present a new interpretation of set-covering ) e g
. L . ) edge like heuristic rules, case-based knowledge or decision trees.
models [1] which is a suitable representation for the manual devel-

opment of knowledge-based systems. Because of its simple semallost of these approaches only investigated syntax and semantics of
tics set-covering models are rapidly understood by the experts, biifie reasoning process, but did not consider the knowledge engineer-
still maintain a well-known model-based interpretation. [Th [2] we ing process. Eshelman’s MOLE system [5] differs from our knowl-
showed how knowledge-based diagnostic systems can be developélge acquisition approach, since there knowledge refinement is per-
incrementally with set-covering models, thus supporting rapid proformed by adding new covering relations to the model. In our paper
totyping of such systems. In this paper we will extend this approachve will present (multilevel) set-covering models and show how to
to multilevel set-covering models, and we will describe how simpleenrich these simple models with knowledge enhancementsiikie
set-covering models can be enhanced by representational extensiolities andweightsor representational extensiofisr more complex
Practical experience has shown that these additions facilitated the deovering relations. A primary characteristic of the presented exten-

velopment of a real world example from a medical ICU domain. sions is the incrementality: each extension can be applied indepen-
dently from other enhancements and will not change the basic se-

cr)r?antics of the model, but refine special aspects of it.

1 Introduction

A set-covering modetonsists of a set of diagnoses, a set of find-
ings (observations) and covering relations between the elements
these two sets. There exists a covering relation between a diagnosi$e rest of the paper is organized as follows: In Sedtjon 2 we will
and a finding, iff the diagnosis implies the observation of the find-introduce the basic concepts of set-covering models and show how
ing. We can define covering relations between diagnoses as well, itp enrich set-covering models with additional knowledge like simi-
a diagnosis implies the observation of another diagnosis. The baslarities and weights. Beyond that we will introduce representational
idea of set-covering diagnosis is the detection of a reasonable set 8ktensions of set-covering models in Secfipn 3 that will enable us to
diagnoses which can explain the given observations. To do this, wlrmulate exclusions, necessary relations and complex covering rela-
propose an abductive reasoning step: Firstly, hypotheses are gen&ns (conjunctions, disjunctions, cardinalities). In Secfipn 4 we will

ated in order to explain the given observations. Secondly competinghortly summarize the problem of hypothesis generation and we will
hypotheses are ranked usinguality measure introduce constraints that shrink the exponentiell size of possible hy-

Reasoning with set-covering models has got a long tradition in di_potheses. We will conclude this paper in Secfipn 5 with an overview

agnostic reasoning: Early work was done by Padil [3] with his Sys_of the work we have done so far and promising directions we are

tem ABEL, which implemented a comprehensive set-covering repplannlng to work onin the future.

resentation including causal, associational and grouping relations.
Reggia et al[[1] contributed a formal approach to set-covering mod

els and addressed the problem of hypothesis generation with a pre- Set-Covering Models
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a finding, iff the diagnosis predicts the observation of the finding.In the worst case this procedure will generatecandidates fon
Furthermore we can define covering relations between two diagnoselagnoses. So heuristics are needed to keep the method computation-
to state that a diagnosis implies another diagnosis. In this way wally tractable (c.f. Sectidn]4).

can build acoverlng-.treefor a diagnosis, where we po;tulate that The basic sets for this task are the following: We defihe to be

the leafs of the covering-tree have to be observable findings. So eaqne set of all diagnoses aitl4 the set of all observable parameters

covering path will start with a diagnosis and lead to an Observabl?attributes). To each parametdre (.4 a rangedom(A) of values
finding. is assigned, anfy = (J .o, dom(A) is the set of all possible
values for the parameters. If a paramefeis assigned to a value

21 The Basic Model then we callA : v afinding
The basic idea of set-covering diagnosis is the detection of a reason- QrF = {A:v | A € Qu, v e dom(A) }
able set of diagnoses which can explain the given observation of finq
ings. In anabductive reasoningtep hypotheses are firstly generated
in order to explain the given observatiomyfothesis generatignin ’ _ ) )
a second step, we define a quality measure for ranking competing hy* covering relation- between a diagnosi® and a states (S # D)

potheseshypothesis testingSet-covering models describe relations is denoted by = D — 5. We say that D predictsS” or that “D
like: coversS”. Thenc, = D is called thecauseande, = S is called the

effect We define2z to be the set of all covering relations contained
in the model. ThetD™ € Qx is the set of all covering relations with
diagnosisD as the cause, i.eDt = {r € Qr|c, = D}. Eg,
for the model in Figur§]1 we obtaie,, = Flu ande,, = Fever,
Cold™ = {rs,r6}.

SinceS can be a diagnosis itself, we are able to buildltilevelset-
covering models. A stat§' transitively coversanother states’, if
We call each of these relationsvering relationsaind we denote them  qitherS coversS’ or S covers another statg’ that transitively cov-

by erss’.
ri=D— A;:v,, 1<i<mn,

s the set of all findings. Furthermore we call an elemgmrt Qs =
Qp U QF astate

A diagnosisD predicts that the parameters;, ..., A, are
observed with corresponding values .. ., v,,.
A diagnosisD predicts the diagnosds;, . .., Dy,.

We call Fo C QF the set ofobserved findingand a set{ C Qp
ri=D—D;, 1<i<m. of diagnoses aypothesisA finding that is not transitively covered
Covering models can be visually described like in Figgre 1. In thisPY the hypothesist is calledisolated and th?f‘ft of all observed
findings that are isolated will be denoted By; 5" C Fo. E.g. for
a hypothesis{ = {D:} andFo = {A1:v1, Az :v2, Ay :v4} We
obtainF°g = {Az:va}.

r

3
Temp : Increased

Figure 1. Basic set-covering model for diagnodds, FeverandCold.

example the model states that diagnddisimplies the observation

of the diagnose&everand Cold. DiagnosisFever itself forces the Figure 2. Basic set-covering model for diagnodis
observation of the attributeEemperatureand Skinwith their corre-

sponding valuetncreasedandSweating

The basic algorithm for set-covering diagnosis is very simple: GiverNow we will describe the computation of the precision of a state for
a set of observed findings, it uses a simple hypothesize-and-test str@&Jiven observation. The precisiatt5) of a stateS provides a real
egy, which generates hypotheses (coined from diagnoses) in the firs@lue between and1 to describe the degree of accuracy the covered
step and tests them against the given observations in a second st&fates ofS are observed.

The test is defined by calculating a quality measure, which expressesottom-Up Computation of Precisions.Given the setFo of ob-

the covering degree of the hypothesis regarding the observed fingerved findings, the precisionof each state is computed bottom-up
ings. The generation and evaluation of the hypotheses is an iteratiarting with the findings:

process, which stops when a satisfying hypothesis has been found or

all hypotheses have been considered. Usually the algorithm will look .
{1, if A:v € Fo

at single diagnoses, compute the corresponding quality measure, and m(Aw) =
0, otherwise

then it will generate hypotheses with multiple diagnoses, if needed.

@)



The precisionr(D) of a diagnosisD can be computed as soon as the if all predictions are fully observed, i,efzrc = H¥, , and the set

>0
precisions of all its successassare known. For this we define Fisolated _
H,0 .
D; — {7« e Dt |7T(er) > c(er) }, Example. For the covering relation given in Figurg 2, the set
DiO = {TGD+|7T(6T)>0}7 .7:(9:{A23U2,A32’U37A4:’U4,A52U5,A62U6}

as the sets of atelevantcovering relations, i.e. relations that predict of findings, and the hypothesi¥ = {D:}, we obtainr (D) = 1,
states with a precision greater than a user defined threshold functiop( D;) = 1 (with ¢(D2) = ¢(D3) = 0.7). Since we obtair{t =

{r1,r2, 73} for hypothesisH we can calculate

m(er
re%:; (er) Hic = {ri,r2},
— = i + _ =
"= g TPl @ FiE™ = {Avivn Agivs ).
0, otherwise

. » Up to now we presented the basic representation for set-covering
The denominator counts all successor state3 viith a positive pre-  aqels containing diagnoses and findings connected with cover-

cision, which gives us the maximally achievable score. The nomingj rejations. Of course this simple representation might not always

tor sums up the precision of all successor states with a precision, tha{eet the requirements of real world applications. Therefore we will
is greater than or equal to the completeness value, which gives us t'%‘ﬁortly present knowledge extensions of set-covering models In [2]

actually achieved score. we showed how to apply these extensions in an incremental way.
Thecompleteness valug D) of a diagnosis is specified by the mod-
eler and is motivated by the fact, that a covering model for a diagnosis

will contain more states than the diagnosis will cause in an averag€-2  EXtension by Similarities and Weights

case. Nevertheless in most cases the observation of a percentage of =~ L . i N
Similarities between findings and weights for states provide signifi-

the modeled states will legitimate the validation of this diagnosis. To K led . ; ) del he followi
emphasize this percentage the modeler has to specify a (:ompleten¢§§§‘t nowledge extensions for set-covering models. In the following

value ¢(D). Unless this factor is reached by the observation set in’¢ Will show howbto include these enhancements into the quality
the current case, the diagnosis may neither be considered as a va”dweasures given above.
observed state, nor will it be considered as a valid hypothesis candBimilarities. Consider a parametet with the domain
date. S
i ) ) . dom(A) = { no, si, mi, hi},
Since we also want to consider multiple faults, i.e. hypotheses con-

taining more than one diagnosis, we define with the meanings normahg), slightly increaseds), medium in-
creasedrti), and heavily increasedi), where A : hi is predicted.
nt=J p" Hi, = b, Hl.=J DL We clearly see that the observatidnmi deserves a better precision
DeH DeH DeH than the observatiod : no. Nevertheless the simple quality measure

considers both observations as unexplained findings and makes no

difference between the similarities of the parameter values. For this

reason we want to defir@milaritiesas an extension to set-covering

models.

Quality Measures:The quality measures are used .to rank the POSSIy\ o define the similarity function

ble hypotheses with respect to the given observation. As we already

introduced the precision of a single diagnosis we now will define sim : Qy x Qy — [0,1]

the quality of a hypothesis, which can contain multiple diagnoses.

The quality of a hypothesis provides a real value betw@amd 1 to capture the similarity between two values assigned to the same

to describe the degree of accuracy with which the hypotiigsian ~ parameter. The valugmeans no similarity and the valaendicates

explain the given observatiofo . two equal values. In cluster analysis problems this function is also
calleddistance functiorgcf. [9]).

Definition 2.1 (Quality Measure) Thequality o(*) of a hypothe- With.s.imilarit.ies. we need to adapt Equatigrj (1) for computing the

sis’H is given by precision of findings.

The covering relations € HIC are calledelevantfor H. Observe,
that relevancy depends oFv, since the precisions have been com-
puted based offo.

T€§+ m(er) m(A:v) = sim(Valy(A), Valr, (A)),
- 3)

T LIS

H - . . .
o(H) where Val returns the value of a specified attribute contained in a

specified set of states.
Notice that, in contrast to the precision, the quality measure does not
evaluate a single diagnosis with respect to the transitively observed
predictions, but assesses a hypothesis (containing possibly multipleno special similarity is included in the model, then we get the sim-
diagnoses) on the basis of the transitively predicted and observegle quality measure by defining thiefault similarity sim. (v, v') =
findings and the unexplained (isolated) findings. 8y, Whered, ., = 1, if v = o, andé, ,» = 0, otherwise.

We see thab(H) € [0, 1] for any hypothesigt € Qs The lower  weights. The introduction of weights for covered states is another
bound0 is obtained, if{, = . The upper bound is obtained,  common generalization of the basic covering model. Here we apply

Val : 295 x Q4 — Qy.



a weight functionw : Qs — IN4, to emphasize that some states Then the weights of the ¥D-connected findingg; will only con-
(findings and diagnoses) have a more significant pathological impottribute to the precision oD if all of these findings are observed.

tance than other states. If not all findings are observed, theh cannot explain the findings
When applying weights to the model we need to adapt Equdfjon (2&nd we have to check if another diagnosis from the hypothesis can
which calculates the precision for a given diagnosis: explain these observations. All remaining findings — so far unex-
plained — will be added to the set of isolated findifg$’s . This
S w(e) - m(er) will decrease the quality measure for the current hypothesis, since
rend H; will not contain relations covering the unexplained observa-
>c . + . =" . . .
(D) = S w(e) , DIy #0, tions. Given an AiD-covering relation of the form
TEDJ;O r:D—)AND{Fl F}
0, otherwise T
. . . . we define for eaclt; € { F1, ..., F, }:
Like for the precision of a diagnosis, we need to adapt Equdtion (3)
to calculate the quality of a given hypothesis: ) {W(Fi)7 ifforall F; € e : w(F}) > 0
Tr\L's) = .
0, otherwise
Z+ w(er) - w(er)
o(H) = etz We try to explain all findings; with 7.(F;) = 0 butw(F;) > 0 by
Z+ w(er) + %lmw(F) other diagnose®’ € H \ {D}. All remaining findingsF;, which
remd, FeFsd cannot be explained by other diagnoses are add#gi{g .
If all states have the same weight, ie(S) = 1 for all S € Qs, Example. Assume that we have the covering model of Figure 3,
then the model reduces to the simple covering model. where ¢(D) = 0.5, and we observe the sefo = {1, 2}

Thenw(F3) = 0, sinceF3 is not in Fo. Therefore not all preci-

st o st 0w e ey e OO i ot s e gas v e
° F,) = 7,.(F5) = 0. We obtainFis°4std — {F,} for hypothesis
extensions (cf[]2]). wr(F2) = mr(F3) H,0 {£2} for hyp

H = {D}. Notice, thatF is notinFy;°s"?, since it is not observed.

3 Complex Covering Relations 3.2 Disjunction of Covering Relations

In the previous section we introduced the basic set-covering model ) . ) o
and extensions that allow for the refinement of set-covering knowl\We also can express alternative covering relations with disjunc-
edge build with basic covering relations. In this section we proposdion- Here we can distinguish between inclusiveRj@nd exclusive
some further extensions of the representationpA ORr- and [MIN, (X0oR) disjunctions.

MAaXx]-relations. In Figure[4 we can see two different disjunctive covering relations

To keep the interpretation of covering models simple, we only al-for diagnosisD: in the left one the findings™, F; are connected

low these extensions for covering relations between diagnoses arffth the Or-covering relationD —or {F3, F3}, whereas at the
(directly observable) findings. right side the findings are connected with ancovering relation

D —xor {F2, F5}. These @&/XoR-relations state, that only one

3.1 Conjunction of Covering Relations a a

It is desirable to be able to represent conjunctions between covering
relations. An AND-covering relation [or ] tom

D —anp {F17 R Fn}
denotes the characteristic, that all covering relatibhs» F; have ° e e G G °

to be fulfilled simultaneously.
Figure 4. OR-/XOR-covering relations.

a of the connected finding has to be observed to fulfill the relation.
Of course we need to consider the different semantics in covering
Ao models. When computing the quality measures we have to take the
following three cases into account:

G ° 1. If noneof the predicted findings is observed, then nothing has

) ) ) to be done. The covering relations connected with tREX®R-
Figure 3. Covering relationD —ano {2, F3} condition cannot contribute to the quality measure of the parent
state.



2. If oneof the predicted findings is observed, then we simply cut
all other states connected byrEXoR-relations from the model.
When computing the quality measure we only take the observed
finding into account.

. If more than oneof the predicted findings are observed (e.qg.
{F>, F3} C Fo), then we have to differentiate betweem @nd
XoRrelations. For both we take the finding with the maximal con-
tribution; e.g. regarding the weighted precision

Tw(F) = w(F) - w(F).

For Or-relations we simply ignore the remaining observations for
assessing the quality. They will neither contribute to the quality of
the hypothesis nor will they need to be explained by other diag-
noses.

For Xor-relations the observations left over still have to be ex-
plained. Like for the AiD-relations we try to explain them with 1
the other diagnoses contained in the current hypothesis. All ret-
maining findings, that cannot be explained by other diagnoses, are
added to the set of isolated finding; "

Figure 5. A [MIN, MAX]-covering relation.

If k € [MIN, MAX], then all findings inF N Fo will contribute.

If & > MAX, then letF .. € F N Fo be the Max findings
with the maximum weighted precisions among the finding&'in
(i.e. |Fmae| = MAX). We explain the findings itF,.q.. by D.
Then we try to explain the findings (i N Fo) \ Fmae by other

We see that we carefully have to us&/®oR-relations, because of
their different interpretation of the observation. For example, multi-
ple observations of one &R-covering relation are taken negatively

diagnoses also contained in the hypothesis. These findifgs
Fo) \ Fmaz, Which we cannot explain by other diagnodes e
H \ {D}, are added to;°5"".

into account (i.e., they are assumed to be unexplained findings of tife If & < MIN, then we try to explain all findings ¥ N Fo by other

current hypothesis), whereas in ordinarg-@lations they will not
contribute in any way.

As shown for AND-covering relations we also have to locally define
the precision for ®@/XoR-covered findings in context of the given
diagnosis: Consider anrerelation (analogous for &R):

L Fa )

We select a findind".a. € { F1, ..., Fy }, such thatry, (Fre) =
maz (7w (Fi), 1 < i < n). Then we say that

{

If there is more than ond’; with maximum weighted precision
mw (F;), then all but one (randomly selected) finding will set to the
precisionr, (F;) = 0.

When we compute the precisiariD) of a diagnosid, then the pre-
cisions of the findings; that are covered by an®DX OR-covering
relation contribute with the measure (F;) and not with the usual
precision measure(F;).

TID—>QR{F1,..

|f F1 = Fmam
otherwise

ﬂ-(Fi)7

7I'T(Fi) 0

diagnoses)’ € H \ {D}. Findings, which cannot be explained
by other diagnoses, are addedﬁéij’g"’f@d,

We integrate [MN, MAX]-relations into set-covering models by lo-
cally defining the precision for findings connected by ajiVMAXx]-
relationr =D —mn,max] F-. Then we say that for eadhi ¢ F:

0, if k< MIN
o (F) = or if K>MAXAF ¢ Fras
n(F"), if ke [MIN,MAX]
or if k> MAXAF € Fras

where F,,., is again the set of the WMx findings with the best
weighted precisions among the findingsin

When calculating the quality measure for a diagnosis or hypothesis
we apply the precisionr,.(F') for all findings F' connected by the
relationr. FindingsF' with m.(F) = 0 butx(F) > 0 need to be
explained by other diagnoses contained in the hypothesis or will be
added taF3;°5"".

It is worth mentioning that ordinary covering relations for a diagno-

For XoRr-relations we have to explain the remaining findings by othersjs are following a similar concept, since we only will consider pre-

diagnoses contained in the hypothesis or add thes1¢j5".

3.3 Cardinalities in Covering Relations

dicted findings that are also observed but not all predicted findings of
the diagnosis. But as opposed toIfM MAXx]-relations all observed
predictions will contribute to the quality. In [M, MAX]-relations
only MAx observed findings will contribute; more thanaM find-

Another enrichment of the set-covering representation is the conned?9S have to be explained by other diagnoses. In general, an ordinary

tion of covering relations by cardinality constraints. We express suc
cardinalities by [MN, MAX]-covering relationsConsider the exam-
ple in Figurdb. The covering relation between diagndsiand the
findings F, F», F3, Fy and F5 means, that betweehand4 of the

predicted findings have to be observed. We denote such relations by

r=D —pq {F1, F2, F5,Fy, F5 }.

When we interpret [NN, MAX]-relationsr =D —mw,max] F, then
we have to consider three possible cases for the nudber|F N
Fo| of relevant findings:

igovering model for a diagnosi8 with n covered findings is compa-

rable to a/c(D) - n, n]-relation connecting the findings.

3.4 Bounded Covering Relations

The introduction of similarities for finding values is a useful knowl-
edge extension. Nevertheless in some situations the expert wants to
express that a relation is only fulfilled if a covered parameter is ob-
served with exactly the predicted value, rather than a similar value.
Therefore we supplement necessary covering relations, disjunctive,



conjunctive and constrained covering relations with the optional la- —(D1 A --- A Dy,)
bel bounded We obtain the required behaviour by locally defining Remove generated hypotheses, containing all the diagnoses
the default similaritymeasure for bounded relations: Ds,..., D, atthe same time.

sim (Valy(A), Valro (A)) = Svaty,(4), Vatz (4)- Thus, we create hypotheses using generator sets and check each gen-

l.e., only if a parameted is observed with the predicted value, then €rated hypothesis against the available exclusion constraints. If one
1is assigned to its precision. exclusion constraint evaluates true, the hypothesis is discarded.

It it worth noticing, that the modification of generator sets with re-
spect to exclusion constraints yields a combinatorial size of gener-
ators and therefore is not reasonable. An evaluation of the gener-
ated hypotheses according to existing exclusion constraints has been
proven to be more efficient.

4 Constraints for Hypothesis Generation

As mentioned in the introduction of Sectiph 2, the problem of hy-
pothesis generation is exponential, sincerfatiagnoses we need to
consider abou2™ hypotheses in the worst case for an observation.
In the following we want to sketch some heuristics to restrict the hy-4 2  Necessary Covering Relations
pothesis space.

In a first step, we will filter all diagnose® € Qp, that arerele- A Stronger type of covering relations anecessary covering rela-
vant, i.e. having the minimum precision. For this, we define the setioNS A necessary covering relation between a diagnésiand a
of relevant diagnoses finding 1 means, thafD> necessarily cover$y and thatF; always
has to be observed i is hypothesized. We depict a necessary cov-
Q' ={D € Qp|n(D) > c(D)}. ering relation withD ™5 I as shown in Figurg|6.

Then, only diagnose® e Q75 will be taken into account, when

generating hypotheses. Before describing concepts to shrink the set 6

of hypotheses, we will defingeneratorsas a compact representation

for sets of hypotheses, which had been introduced by Reggia et al. 5

[J. 3l

Definition 4.1 (Generator) A generatolG; = {G1,...,G,} con- é e 9
sists of non-empty pairwise-disjoint subséts C Q7' The hypothe-

sesHg, generated by, is defined as
Figure 6. Necessary Covering relation for a diagnabis

Hg, ={HCQp||HNGi| <1, foralll <i<n}.

For G; = 0, it holds thatHg, = {0}. We can see, thak{g, is For applying necessary covering relations we introduce an adapted

analogous to a cartesian set product. definition of the precision,,.. for each diagnosi® € Qp:
For example, for the set-covering model defined in Figdre 1 and o

Fo = {temp : inc, skin : sweat,nose : red}, we obtainG = 0, if 3r € Qr :r = D X5 F with
{G1,G2} with G; = {{cold}, {fever}} andG, = {{flu}}. So we Tonee(D) = FeQrAnm(F) <t

can computé{g = {0, {cold}, {fever}, {cold, fever}, {flu}} to be ©(D), otherwise

the set of interesting hypotheses.

A method for computing and updating generator sets is extensivelyherer € [0, 1] is a specified threshold, which defines when a find-
described in4]. Generators are used to efficiently generate hypothd?d is sufficiently observed (e.g.= 0.8).

ses in an incremental manner: In a first step, sets of generators dgherefore a diagnosi® does not propagate any contribution to its
scribing higher level diagnoses (concepts) are created. For hypothgarent states until all necessarily covered findings are (sufficiently)

ses containing higher level diagnoses and having a high quality meayhserved. Consequentlf, will not appear in any generator and thus
sure, we build sets of generators containing underlying specializegill not be included in any hypothesis.

diagnoses and test them with their corresponding quality measure.
In the following, we introduce two basic knowledge extension, that ]
additionally shrink the space of generated hypotheses. 5 Conclusions and Future Work

After describing the basic structures of set-covering relations we
4.1 Exclusion Constraints have shown how to enrich the model with additional knowledge like

similarities or weights. We also considered the computation of qual-
We can definexclusion constraint® filter diagnoses from the pro- ity measures of these parts. Furthermore, we have shown represen-
cess of hypotheses generation. In general, two kinds of constraintgtional extensions to the set-covering model to facilitate necessary,

are possible: disjunctive, conjunctive or constrained covering relations. An impor-
tant characteristic of all these extensions is the incrementality: some
“(DAFLA---ANFy) enhancements can be added to refine special aspects of the model
If findings F1, ..., F,, are observed, then remove generated hy-but will not change its basic semantics; others are used to guide the

potheses, containing diagnogis process of candidate generation.



In the future we are planning to work on the following fields: In- [13]
cremental development requires restructuring the model from time
to time. We are currently working on restructuring methods for set-14]
covering models that do not alter the basic semantics but improve the
design of the diagnosis knowledge. In software engineeefagtor-  [15]
ing [10,[11] has been emerged as the corresponding method. In gen-
eral we have to look atalidation technique$or set-covering mod-

els besides simple case testing. Because of the special structure of
the model we alsoj have to consider static verification techniques fqi 7
the set-covering representation. For a survey in this field we refer to
[12,[13[1a[15].

In this paper we presented a hand-driven development of set-covering
models. But it seems to be possibldearn coarse modelautomat-

ically from a small number of available cases. Later on these models
should be refined by the developer with additional knowledge. With
such a semi-automatic development step, the initial costs of knowl-
edge acquisition can be reduced conveniently. Some work in this field
has been done by Thompson etlall[16] and Wang et al. [17]. This step
is not considered if we have a sufficiently large set of data, since then
traditional machine learning methods (e.g. learning neural networks,
learning Bayes networks) seem to be more appropriate.

ACKNOWLEDGEMENTS

The authors would like to thank Frank Puppe for his helpful sugges-
tions and comments.

REFERENCES
[1] James A. Reggia, Dana S. Nau, and Pearl Y. Wang. Diagnostic Expert
Systems Based on a Set Covering Modédburnal of Man-Machine
Studies19(5):437-460, 1983.

Joachim Baumeister, Dietmar Seipel, and Frank Puppe. Incremental
Development of Diagnostic Set—-Covering Models with Therapy Ef-
fects. InProceedings of the KI-2001 Workshop on Uncertainty in Arti-
ficial Intelligence Vienna, Austria, 2001.

Ramesh S. Patil, Peter Szolovits, and William B. Schwartz. Modeling
Knowledge of the Patient in Acid-Base and Electrolyte Disordérs.
Szolovits, P. (Ed.). Artificial Intelligence in Medicine, Westview Press,
Boulder, Coloradp1982.

Yun Peng and James A. Regghibductive Inference Models for Diag-
nostic Problem-SolvingSpringer, Berlin, 1990.

Larry EshelmanMole: A Knowledge-Acquisition Tool for Cover-and-
Differentiate Systemgages 37-79. In: Sandra Marcus (ed.): Automat-
ing Knowledge Acquisition for Expert Systems. Kluwer Academic
Publishers, 1988.

Luca Console, Luigi Portinale, Daniele Theseider Dupr, and Pietro
Torasso. Combining Heuristic and Causal Reasoning in Diagnostic
Problem Solving. In Jean-Marc David, Jean-Paul Krivine, and Reid
Simmons, editorsSecond Generation Expert Systempages 46—68.
Springer, 1993.

William J. Long. Temporal Reasoning for Diagnosis in a Causal Proba-
bilistic Knowledge BaseaAtrtificial Intelligence in Medicing8(3):193—
215, 1996.

Frank Puppe. Knowledge Reuse among Diagnostic Problem-Solving
Methods in the Shell-Kit D3lnt. J. Human-Computer Studie®9:627—

649, 1998.

Jiawei Han and Micheline Kambebata Mining: Concepts and Tech-
niques Morgan Kaufmann Publishers, San Mateo, California, 2000.
William F. Opdyke. Refactoring Object-Oriented Framework$hD
thesis, University of lllinois, Urbana-Champaign, IL, USA, 1992.

Martin Fowler. Refactoring. Improving the Design of Existing Code
Addison-Wesley, 1999.

Anca Vermesan and Frans Coenemvalidation and Verification of
Knowledge Based Systems. Theory, Tools and PracKbewer Aca-
demic Publishers, 1999.

[2]

(3]

(4]
(3]

(6]

(7]

(8]

(9]
(10]
(11]

[12]

Alun Preece. Building the Right System Right. Rioceedings of
KAW'98 Eleventh Workshop on Knowledge Acquisition, Modeling and
Management1998.

Frans Coenen and Trevor Bench-Capé#aintenance of Knowledge-
Based System#cademic Press, 1993.

Marc Ayel and Jean-Pierre LaureMalidation, Verification and Test of
Knoweldge-Based SystenWiley, 1991.

Cynthia A. Thompson and Raymond J. Mooney. Inductive Learning
for Abductive Diagnosis. IfProceedings of the AAAI-94, \ol, fiages
664-669, 1994.

Xue Z. Wang, M.L. Lu, and C. McGreavy. Learning Dynamic Fault
Models based on a Fuzzy Set Covering MethGdmputers in Chemi-
cal Engineering21:621-630, 1997.



	Introduction
	Set-Covering Models
	The Basic Model
	Extension by Similarities and Weights

	Complex Covering Relations
	Conjunction of Covering Relations
	Disjunction of Covering Relations
	Cardinalities in Covering Relations
	Bounded Covering Relations

	Constraints for Hypothesis Generation
	Exclusion Constraints
	Necessary Covering Relations

	Conclusions and Future Work

