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Abstract. Consistency-based diagnosis is the most widely used ap-
proach to model-based diagnosis within the Artificial Intelligence
community. It is usually carried out through an iterative cycle of be-
havior prediction, conflict detection, and candidate generation and
refinement. Many approaches to consistency-based diagnosis have
relied on some kind of on-line dependency-recording mechanism for
conflict calculation. These techniques have had different problems,
specially when applied to dynamic systems. Recently, off-line com-
pilation of dependencies has been established as a suitable alternative
approach. In this work we compare one compilation technique, based
on thepossible conflictconcept, with results obtained with the clas-
sical on-line dependency recording engine as in GDE. Moreover, we
compare possible conflicts with another compilation technique com-
ing from the FDI community, which is based on analytical redun-
dancy relations. Finally, we study the relationship between possible
conflicts, analytical redundancy relations, and conflicts.

1 Introduction

For more than thirty years different techniques have been applied
to diagnose systems in multiple domains. Diagnosis has been carried
out through knowledge-based systems, case-based reasoning, model-
based reasoning, and so on. This work is focused in the model-based
approach to diagnosis. Moreover, we will only talk about diagnosis
of physical devices [18].

More specifically, consistency-based diagnosis is the most widely
used approach to model-based diagnosis within the Artificial Intelli-
gence community (usually known as DX). It is a research field that
has reported successful results in recent years [39, 7]. This approach
has proven its maturity, both in theory, and in practice. On the one
hand, the diagnosis process and the diagnosis results have been com-
pletely characterized from a logical point of view [32, 12], thus fa-
cilitating further comparison. On the other hand, consistency-based
diagnosis has been successfully applied to a wide variety of domains
such as automotive industry [3, 38], bio-medicine [20], nuclear plants
[24], or ecology [37].

In such a framework, GDE [13] is the most well known imple-
mentation, andde factoparadigm. GDE organizes the diagnosis pro-
cess as an iterative cycle of behavior prediction, conflict detection,
and candidate generation and refinement. But conflict computation
is a non-trivial step, which has deserved a lot of attention from the
consistency-based diagnosis community. In GDE, the set of mini-
mal conflicts is computed by means of an ATMS [11], which records
on-line the set of correctness assumptions, or dependencies, used by
the inference engine. It should be noticed that dependency-recording

can be done forward (whenever new input data are introduced), or
backward (when a discrepancy is found, such as in CAEN [2, 21],
DYNAMIS [6], or TRANSCEND [25]). Another important feature
of the GDE framework is that it calculates labels propagating values
through constraints in every possible direction.

However, one problem related to on-line dependency-recording is
that the set of labels needs to be computed each time a new different
value is introduced. Another problem was found in the combined use
of on-line dependency-recording together with qualitative models for
diagnosing dynamic systems [17, 14]. Mainly for these reasons sev-
eral research groups have looked for alternative methods to such a
kind of on-line dependency-recording. On the one handstate-based
diagnosis[36] has emerged as an alternative tosimulation-based di-
agnosis, just for qualitative models. On the other hand,topological
methodspropose to explicitly use the structural description of the
system to be diagnosed. This information is implicitly stated in the
system description. Within this last approach, we make difference of
two major trends: those methods that use other on-line dependency-
recording than ATMS (by exploring causal-graphs [2, 24], signed
directed graphs [26], or other topological and functional structures
[5]), and those methods that perform off-line dependency-recording.

Last techniques are also known as compilation methods within the
DX community. The main idea supporting this approach is that re-
dundancy within the models can be found off-line. A similar idea
was used in the Control Engineering community (or FDI), where
Staroswiecki and Declerk proposed to use Analytical Redundancy
Relations (ARRs for short), for fault detection and localization [34].
Given such a similarity, there is an ongoing interest from the DX and
the FDI communities in comparing their approaches.

Between the FDI and AI proposals, Lunze and Schiller [23] were
able to perform diagnosis using causal graphs associated with over-
constrained systems. These systems were obtained from the logical
formula in the models of the system.

Within the DX community we have found the following compila-
tion techniques:

• Darwiche and Provan [10] characterized the set of diagnoses using
the consequence concept [9], instead of using the conflict concept.
Analyzing the system structure, those sub-systems which could
lead to a diagnosis can be found off-line.

• Similar information is used by Steele and Leitch [35] to refine the
set of candidates, in an adaptive approach to diagnosis [4].

• In DOGS, Loiez and Taillibert [22] proposed to localize, off-line,
over-constrained sets of equations. They were looking for those
sub-systems capable to become conflicts. The work done is con-



ceptually equivalent to that in [34], as it has been stated in [8].
• Fröhlich and Nejdl [15] used structural information two-fold: they

analyzed the whole set of logical formula in the model to find sub-
sets of formula capable to generate diagnosis, and they benefit
from these sub-sets in order to refine the whole set of diagnosis
candidates.

• Pulido and Alonso [27, 28] proposed to organize consistency-
based diagnosis around thepossible conflictconcept. A possible
conflict is a sub-system in system description which is capable to
become a conflict, within the GDE framework.

In this work we revisit the compilation technique based on thepos-
sible conflictconcept [27, 28]. Initially we summarize the character-
ization of that concept, in order to compare possible conflicts against
real conflicts. Later on, we establish the relationship between pos-
sible conflicts and ARRs. Finally, we revisit the work by Cordier et
al. [8] in order to compare conflicts and ARRs from a computational
point of view.

Due to space limitations we do not compare possible conflicts and
other compilation techniques from the DX community. Such a com-
parison can be found in [28, 30].

2 The possible conflict concept

Main assumptions in this work are that there is no structural fault,
and it is possible to know beforehand the number and placement of
available observations (sensors). An additional assumption is that the
model of the system can be expressed as a set of constraints: quanti-
tative or qualitative, linear or not, algebraic or not.

In Reiter’s framework for model-based diagnosis [32] a minimal
conflict identifies a set of constraints containing enough redundancy
to perform diagnosis. In the most simple case, when constraints are
made up of equations, a minimal conflict would denote a strictly
over-determined system1.

As it was mentioned in the previous Section, shared basis in com-
pilation techniques is: the set of analytically redundant sub-systems,
which can be used for diagnosis purposes, can be computed off-line.
Moreover, it has been proven that GDE provides all the existing
minimal conflicts. Since the set of possible conflicts tries to be a
computational alternative to on-line dependency recording for con-
flict computation, we have imposed an additional requirement: over-
constrained sub-systems should be the same as the set of minimal
conflicts computed by GDE2.

Finding analytical redundancy is a necessary but not a sufficient
condition for a system to be suitable for consistency-based diagnosis
purposes. The system must also be solved using local propagation
alone3. To fulfill both requirements we have split the search process
into two phases. First, we look for over-determined systems. Second,
we check whether these systems can be solved using local propaga-
tion alone. To do so, we just need abstractions of model-description.
For the sake of readability, below we include a summary of defini-
tions the reader can find in [27, 28].

1 In an over-determined system the number of equations,e, is greater than the
number of unknowns,u: e ≥ u + 1. In a strictly over-determined system,
e = u + 1.

2 For this reason, we always assume that we have the same model (system
description orSD in Reiter’s terminology) as GDE has.

3 Current consistency-based diagnosis systems do not impose that constraint
[19]. In [30] we extended the possible conflict concept to deal with such
(cyclical) configurations.

2.1 Searching for over-determined systems

We have represented the model inSD as a hyper-graph:HSD =
{V, R} which is made up of:
• V = {v1, v2, . . . , vn}, the set of variables in the model. It is made

up of observedOBS, and not observed or unknown variables,
NOBS: V = OBS

⋃
NOBS.

• R = {r1, r2, . . . , rm} is a family of sub-sets inV , where eachrk

represents a constraint in the model, and it contains some model
variables, observed and not observed ones.
We have calledEvaluation Chainsthe over-constrained sub-

systems inHSD (in Appendix A the reader can find definitions for
terminology in graphs and hyper-graphs c.f. [16, 1]):

Evaluation chain: Hec ⊆ HSD is a partial sub-hypergraph in
HSD: Hec = {Vec, Rec}, whereVec ⊆ V , Rec ⊆ R, and
Xec = Vec ∩ NOBS is the set of unknowns inVec, andHec

verifies:

1. Hec is a connected hypergraph,

2. Vec ∩OBS 6= ∅,
3. ∀vno ∈ Xec ⇒ dHec(vno) ≥ 2,

4. let G(Hec) be a bipartite graph made up of two kinds of nodes:
x ∈ Xec, andriec ∈ Rec, such that two nodes are linked in
G(Hec) if and only if x∈ riec . Then,G(Hec) has amatching
with maximal cardinalitym′ = |Xec| and|Rec| ≥ m′ + 1.

Figure 1 shows a classical example in consistency-based diagno-
sis. In order to make difference of components and constraints, we
will use capital letters for components, and small letters for con-
straints in their models.mi andaj denote the models of multipliers
and adders, respectively. Each model is made up of just one con-
straint; for instance,m1 = {A, C, X}. Whenever a model has more
than one constraint, indices are used to distinguish them. The related
hyper-graph is

Hpolybox = {{A, B, C, D, E, F, G, X, Y, Z}, {m1, m2, m3, a1, a2}}

M1

M2

M3

A1

A2

[A=3]

[B=3]

[C=2]

[D=2]

[E=3]

F=12

G=12

X

Y

Z

[C=2]

[F=10]

[G=12]

Figure 1. Classical polybox example in the consistency-based diagnosis.
Observed values are in brackets.{X, Y, Z} are non-observed values.

Since we are interested in minimal conflicts, only minimal evalu-
ation chains, MEC for short, are useful.

Minimal Evaluation Chain : Hec is a minimal evaluation chain if
there is no evaluation chainH ′

ec ⊂ Hec.

The set of minimal Evaluation chains, SMEC, is built based on
the algorithms:build-every-mec(), build-mec(), and justify() which
perform depth-first search inHSD using backtracking. All these al-
gorithms can be found in Appendix B. In the polybox example, these



algorithms have found three MECs:

Hec1 = {{A, B, C, D, F, X, Y }, {m1, m2, a1}}
Hec2 = {{B, C, D, E, G, Y, Z}, {m2, m3, a2}}
Hec3 = {{A, C, E, F, G, X, Y, Z}, {m1, a1, a2, m3}}

2.2 Can an evaluation chain be solved?

A minimal conflict is a strictly over-determined system that we want
to solve using local propagation alone. However, the hyper-graph has
not enough information about how each constraint can be solved. To
tackle this problem, we create an AND-OR graph for each minimal
evaluation chain. In such a graph, there is one or more AND-OR
arcs for each hyper-arc in the MEC. Each AND-OR arc represents
one way the hyper-arc could be solved. In fact, to solve a MEC, we
should select one AND-OR arc from each constraint. As a conse-
quence, choosing different AND-OR arcs from the AND-OR graph
generates different ways of solving the MEC. Moreover, the over-
determined system can only be solved using local propagation cri-
teria. Each one of the different ways of solving a MEC is called a
Minimal Evaluation Model, or MEM.

For instance, each constraint (mi or ai) used to model the poly-
box system provides three different interpretations to the AND-OR
graph:

mi(vout, vin1 , vin2 ) ⇒
{

mi1 ≡ vout = vin1 × vin2
mi2 ≡ vin1 = vout/vin2 , if vin2 6= 0
mi3 ≡ vin2 = vout/vin1 , if vin1 6= 0

Interpretations for a constraint are usually obtained when applying
the invertibility criterion. Nevertheless, there are additional criteria.
Appendix D shows constraints used to model a physical system made
up of tanks, pumps and valves. Constraintstr13, t23, tr25 are used
to compute the mass in a tank. In such kind of constraint, just one in-
terpretation is allowed, since we have taken an integration approach:

mT (t) =
∫

m′
T (t− 1)dt + mT (t− 1)

This interpretation can not be reversed. Hence, additional concepts
are necessary to define a Minimal Evaluation Model.

Given the relation betweenriec ∈ Rec, and the set of AND-OR
arcsrikem

, derived fromriec , we can state the following proposition.

Proposition 1 Let AOG(Hec) = {Vem, Rem} be the AND-OR
graph obtained fromHec = {Vec, Rec} applying the local reso-
lution criterion, where:
• Vem = Vec,

• ∀riec ∈ Rec ⇒ ∃rikem
∈ Rem, k ≥ 1

Then,riec ∈ Rec induces a partition inRem.

Proof: Eachriec ∈ Rec induces an equivalence class inRem.
By definition, it induces a partition too.

Leaf node: vi is a leaf node in graphH iff Γ̂−1
vi

= 0.
Discrepancy node: vi is a discrepancy node in graphH iff
• (d−H(vi) ≥ 2 ∧ vi ∈ NOBS), or
• (d−H(vi) ≥ 1 ∧ vi ∈ OBS)

That is, a leaf node has no predecessors, and a discrepancy node
can be found in two different ways: estimating an observed variable,
or doing a double estimation for an unknown variable.

Minimal Evaluation Model : A partial AND-OR graph,Hmem ⊆
AOG(Hec), where Hmem = {Vmem, Rmem}, is a minimal
Evaluation model iff:

1. Rmem is a minimal hitting-set for the partition induced by
riec ∈ Rec in Rem,

2. (∀vi | vi ∈ Vmem andvi is a leaf node)⇒ vi ∈ OBS,

3. ∃1xj ∈ Vmem | xj is a discrepancy node,

4. if xj is a discrepancy node, then there exists a directed and
acyclic path inHmem : {xi, xi+1, . . . , xi+k, xj} from each
nodexi to xj .

Algorithms used to calculate every MEM for each MEC:build-
every-mem(), andbuild-mem(), are given in Appendix C. These al-
gorithms are exhaustive too, since they perform depth-first search
using backtracking. For instance, MECHec1 has a related AND-OR
graph:

AOG(Hec1) = {{A, B, C, D, F, X, Y },
{m11 , m12 , m13 , m21 , m22 , m23 , a11 , a12 , a13}}

Given Hec1 and the set of available interpretations in
AOG(Hec1), algorithmbuild-mem()is able to find seven different
MEMs4:

MEMs Equivalent to evaluate the expression
{m11 , m21 , a11} Fobs ≡ Fpred = A× C + B ×D
{m11 , m21 , a12} Xpred1 = A× C ≡ Xpred2 = F −B ×D
{m12 , m21 , a12} Aobs ≡ Apred = (F −B ×D)/C, if C 6= 0
{m13 , m21 , a12} Cobs ≡ Cpred = (F −B ×D)/A, if A 6= 0
{m11 , m21 , a13} Ypred1 = F − (A× C) ≡ Ypred2 = B ×D
{m11 , m22 , a13} Bobs ≡ Bpred = (F −A× C)/D, if D 6= 0
{m11 , m23 , a13} Dobs ≡ Dpred = (F −A× C)/B, if B 6= 0

It should be noticed that a MEC would provide no MEM if the
over-determined system can not be solved using available interpre-
tations and local propagation. In [31] the reader can find additional
information on how temporal information has been included in this
framework and one example of a MEC which can not provide any
MEM.

Once summarized the possible conflict concept, next section stud-
ies the relationship between MECs, and MEMs, which are computed
off-line, and real conflicts computed on-line.

3 Conflicts and possible conflicts

If evaluated, a MEM could lead to discrepancy, i.e., it could lead to
a conflict. However, the set of MEM is computed off-line, without
any model evaluation. And conflicts would appear only when obser-
vations are introduced and the evaluation model is computed. So, we
have introduced the following concept:

Possible conflict: The set of constraints in a Minimal Evaluation
Chain giving rise to, at least, one Minimal Evaluation Model.

For example, in the polybox system in Figure 1, there
are three possible conflicts:{{m1, m2, a1}, {m1, a1, a2, m3},
{m2, m3, a2}}, because every MEC has, at least, one MEM.

In such a case, where component models are made up of only
one relation, the set of possible conflicts is equivalent to the set of
minimal conflicts in Reiter’s terminology computed on-line by GDE,
whatever the faults and whatever the set of available observations.

At this point it is necessary to answer the following question: is
the set of possible conflicts equivalent to the set of minimal conflicts
computed on-line by GDE? In order to answer, we need additional
definitions:

P (S): is the set of subsets in S;

4 Since the MEM will have the same set of variables as MEC, we just include
the set of interpretations.



model : COMPS → P (RSD): model(C) identifies the family
of relations modellingC behavior;

comp : RSD → COMPS: ri → comp(ri) = {C | ri ∈
model(C)}:
comp(ri) indicates the component containing relationri in its
model.

Proposition 2 Letco be a minimal conflict found by GDE, andco is
related to a discrepancy inv ∈ VSD: there is a minimal evaluation
chain,Hec = {Vec, Rec}, such that:

v ∈ Vec andco =
⋃

ri∈Rec
comp(ri)

Proof: GDE solves a minimal over-determined system to find
a minimal conflict related tov [19]. Sincebuild-every-mec()
performs exhaustive search, it is able to find every minimal
over-determined system inHSD. Hence, it will find that over-
determined system too.

Hence, once GDE finds a minimal conflict,build-every-mec()will
find a MEC containing the same set of constraints which were used
to find a conflict. Those constraints belong to the same set of compo-
nents.

Proposition 3 Letco be a minimal conflict found by GDE, andco is
related to a discrepancy inv ∈ VSD: there is a minimal evaluation
model,Hme = {Vem, Rem}, that can obtain a discrepancy inv, and

v ∈ Vem andco =
⋃

ri∈Rem
comp(ri)

Proof: By proposition 2, there is a MEC related toco, such
that:

co =
⋃

ri∈Rec

comp(ri)

Moreover build-every-mem()performs an exhaustive search
too. Therefore, it will find every MEM related to such MEC,
i.e., every possible way the MEC can be solved. Hence, it will
find the over-determined system used to obtain the minimal
conflict. Also, eachrik ∈ Rem is an interpretation for some
ri ∈ Rec. Hence:

co =
⋃

rik
∈Rem

comp(ri)

At least one of the MEM related to the CEM will find a discrep-
ancy inv, in the same way the GDE does.

Unfortunately, the number of MEMs for each MEC is exponen-
tial in the average number of interpretations for each hyper-arc in the
MEC. Due to practical reasons we just select one MEM related to a
MEC. Based on that MEM, we build an executable model which is
used for fault detection. In [31] the reader can find a detailed descrip-
tion of how possible conflicts can be used to perform consistency-
based diagnosis for both static and dynamic systems.

Nevertheless, it is still possible to claim that the set of possible
conflicts is theoretically equivalent to the set of conflicts found on-
line by means of GDE. We will show this fact in next two proposi-
tions.

Proposition 4 If Hec is a MEC,Hem is one of its MEMs and the
evaluation of the executable model associated toHem generates a
discrepancy inv ∈ Vem, then GDE will find a discrepancy inv.

Proof: There is a discrepancy inv related to the evaluation of a
MEM. The MEM is an strictly over-determined system. More-
over, GDE finds any discrepancy related to any minimal over-
determined system. Hence, it will find the discrepancy inv too.

This proposition always holds. Unfortunately, the converse does
not hold universally, because we can not guarantee for an arbitrary set
of non-linear constraints that every MEM for a MEC will provide the
same solution for a given set of observations [40]. This assumption
should be stated in the following way:

Equivalence assumption : Every MEM in a MEC provides the
same set of solutions for any given set of input observations.

Now, it is possible to define the following proposition:

Proposition 5 If GDE finds a minimal conflict,co, related to a dis-
crepancy inv, andthe equivalence assumption holdsfor a Hec con-
tainingv, then the possible conflict related toHec will be confirmed
as a minimal conflict.

Proof: The proof is straightforward based on propositions 2,
and 3.

4 Comparing possible conflicts, conflicts, and
ARRs

As previously mentioned, there is an on-going research interest from
the DX and FDI communities in comparing their approaches. Re-
cently, Cordier et al. [8] proposed a common framework to com-
pare conflicts and ARRs [34, 33]. In that trend, we compare ARRs
and possible conflicts considering the way they are computed. After-
wards, we discuss results in [8] and extract some conclusions.

4.1 Possible conflicts and ARRs

The set of ARRs is obtained from the unique canonical decomposi-
tion of the structural description of the system into under-determined,
just-determined, and over-determined sets of constraints. The canon-
ical decomposition is based on finding a complete matching, w.r.t.
unknown variables, in the bipartite graph associated to the structural
description of the system. Combination of just-determined systems
together with redundant relations is the basis for anAnalytical Re-
dundancy Relation[34].

Each complete matching can be considered as a causality assign-
ment, but it is necessary to obtain a causal matching for the over-
determined system, from the set of causal matchings satisfying the
invertibility condition [33]. Each ARR can be solved and used for
diagnosis purposes once observed values are introduced.

It should be noticed that all the steps, except the solving one, could
be done off-line. Hence, computing ARRs is a compilation technique
in FDI. And, it seems obvious that strong similarities do exist be-
tween the way ARRs and possible conflicts are computed.

• Both methods search for over-determined sub-systems. Direct or
deduced ARRs can be used to estimate a value for an observed
variable in the system. Moreover, algorithms used for computing
MEC, can be used to obtain the whole set of over-determined sub-
systems5. Hence, the algorithms will find an evaluation chain with
the same set of constraints as of the ARR.

• An ARR need a causal matching, because not every causality as-
signment can be done in the complete matching. In the same way,
AND-OR arcs are introduced to limit the ways an hyper-arc can
be solved. It seems obvious that one of the evaluation models for
an evaluation chain will be equivalent to the causal matching in
the ARR.

5 It is straightforward to modify algorithmJustify() to search for any over-
determined system.



• The set of evaluation models for an evaluation chain are built
based on local propagation criterion, i.e., the evaluation model
does not contain any cycle. This condition has been imposed in
the ARR approach too. For this reason, the ARR is obtained once
graph reduction, by means of loop elimination, has been done in
the causal graph [33]. This step is equivalent to loop elimination
in the possible conflict approach [29].

However, there are some differences:

• Staroswiecki et al. [33] assume that in an over-determined sys-
tem the set of unknowns can be computed in different ways, using
constraints and known values, and “deduced redundancy relations
are obtained writing that all these results have to be the same”.
This assumption is the same as the equivalence assumption in the
previous section.
As mentioned above, that assumption is never done in GDE while
computing minimal conflicts, because the assumption does not
hold universally for physical systems made up of general non-
linear constraints [40]. Therefore, based on propositions 4 and
5, it can not be claimed that model-based diagnosis relying upon
ARRs and consistency-based diagnosis using conflicts will pro-
vide always the same set of results. Results obtained using ARRs
would be the same as of those obtained using just one MEM for
each MEC. These results can be sub-optimal, w.r.t. the number of
detected conflicts, unless the equivalence assumption holds.

• Moreover,build-every-mec()provides the whole set of minimal
evaluation chains, because we look for minimal conflicts. This is
not guaranteed in the original ARR approach, which should be
revised to find just minimal ARRs.

4.2 Discussion

Cordier et al. [8] defined thesupportfor an ARR as “the set of com-
ponents involved in the ARR”. This term was also called “potential
R-conflict”, because of their Proposition 4.1:

“Let OBS be a set of observations for a system modeled by
SM (resp. SD). There is an identity between the set of minimal
R-conflicts for OBS and the set of minimal potential R-conflicts
associated to the ARRs which are not satisfied by OBS.”

As stated in the previous section, we think it is necessary to make
three explicit assumptions to guarantee that such a conclusion holds
universally:
• the equivalence assumption holds,
• the set of ARRs is built based on minimality criteria, and
• we have a component-oriented behavior description of the system,

but minimality is considered w.r.t. sets of constraints.
Regarding first two conditions, it seems obvious that proposition

5 in Section 3 is equivalent to proposition 4.1. in [8] when both as-
sumptions hold. Third assumption must be taken into account when
behavioral models are made up of more than one constraint. Mini-
mality w.r.t. sets of constraints is needed because not every possible
conflict is equivalent to a minimal conflict in Reiter’s framework. We
will illustrate this using the system in Figure 2. The system is made
up of common components in process industry such as tanks, pumps,
valves, and so on.

Figure 2. Scheme of the system to be diagnosed. Measured variables are
flowsFT01 = f∗1 , FT02 = f∗8 , FT03 = f∗7 , andFT04 = f∗11; level of
tankLT05 = h∗TR2, and the value of the control action on valveV2 = u2

at the output of tankTR2.

Its related hyper-graph can be described as:

HSD = {VSD, RSD};
VSD = {OBS ∪NOBS};
OBS = {f∗1 , f∗7 , f∗8 , f∗11, h

∗
TR2};

NOBS = {f9, f10, f12, f14, m
′
TR1 , mTR1 , hTR1 , m′

T2 , mT2 ,
hT2 , m′

TR2 , mTR2 , hTR2 , ∆PP2 , ∆PP3 , P1T R1
, P2T R1

, P1T2
,

P2T2
, P1T R2

, P2T R2
, ucont2}

RSD = {tr11, tr12, tr13, tr14, t21, t22, t23, t24, t25, p21, p22,
p23, p31, p32, p33, v21, v22, tr21, tr22, tr23, tr24, tr25, tr26}

The meaning for each equation above can be found in Appendix
D. We have used common equations for computing mass balances,
overflows, and so on. Analyzing the system we have found three pos-
sible conflicts. The reader should notice thatPC3 is minimal w.r.t.
constraints, but not minimal w.r.t. components.

PCi Components
{tr11, tr12, tr13, tr14, t21, t22, t23, {TR1, T2, P2}
t24, t25, p21, p22, p23}
{tr21, tr23, p31, p32, p33, v21, v22} {TR2, P3, V2}
{tr11, tr12, tr13, tr14, t21, t22, t23, {TR1, T2, P2, TR2,
t25, p23, tr24, tr25, tr26, p33, v21} P3, V2}

5 Conclusions

In this paper we have shown that compilation of dependencies by
means of the possible conflict approach is theoretically equivalent to
on-line dependency recording in GDE. However, it is not possible
to claim that, in practice, consistency-based diagnosis using possible
conflicts provides the same results as GDE does, unless the equiva-
lence assumption holds.

We have found out that the model of an ARR is equivalent to some
evaluation model for an evaluation chain. Since we select just one
MEM for each MEC for practical reasons, we conclude that both
approaches can obtain equivalent results (assuming ARRs are com-
puted based on minimality criteria).

Finally, we have concluded that Proposition 4.1 in [8] need to be
revised taking into account results in propositions 4 and 5, and con-
sidering minimality criteria w.r.t. constraints.
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A Graph and hyper-graph notation
H = [V, E] Hyper-graphH, made upV : nodes, and

E: a family of sub-sets inV
Γi Successors for nodei
Γ−1

i Predecessors for nodei
dH(i) Degree for nodei in H
d+

H(i), d−H(i) Output and input demi-degree for nodei in H

Bipartite graph: G = [V, E] is a bipartite graph if there are two
disjoints parts inV = S ∪ T , and edges inE are always directed
from S to T .

Matching: A matchingM in G = [V, E] is a subset ofE such that
no two arcs inM share a common vertex incident to them.

B Algorithms for computing the set of minimal
evaluation chains

Algorithm build-every-mec (SMEC) is
SMEC: set of MEC;{ Each MEC is a set of constraints}
available, to-be-justified, justified, chain: set of constraints;
R, R2: constraint;

Begin
available := Constraints-in(HSD);
whileavailable6= ∅ do
R := Select-constraint(available);
chain :=∅;
available := available\ {R};
build-mec (SMEC, chain, R, available);

end while
End

Algorithm build-mec (SCEM, chain, R, available)is
Begin
Insert R in chain;
to-be-justified := R.nobs;
justified :=∅;
Justify (SMEC, chain, to-be-justified, justified, available);

End

Algorithm Justify (SMEC, chain, to-be-justified, justified, avail-
able)is

v: unknown variable;
related: set of constraints;

Begin
if to-be-justified =∅ then
if there is no subset of chain in SMECthen
Erase chain supersets from SMEC;
Insert chain in SMEC;

end if{ Only minimal chains are included in SMEC.}
else
v := select-variable (to-be-justified);
related := R| R∈ available and v∈ R.nobs;
while related6= ∅ do
R1 := select-r (related);
related := related\ {R1};
chain2 := chain∪ {R1};
Justified2 := Justified∪{v};
to-be-justified2 := (to-be-justified\ v) ∪ (R1.nobs\ justified2};
available2 := available\ R1;
Justify (SMEC, chain2, to-be-justified2, justified2, available2);

end while
end if

End

C Algorithms for computing the set of minimal
evaluation models

Algorithm build-every-mem (SMEC, SMEM)is
Begin
for chain = each MEC in SMECdo
for R = each constraint in chaindo
for I = each interpretation for Rdo
model :={I};
to-be-justified:= I.nobs;
justified :=∅;
chain := chain\ {R};
build-mem (model, chain, to-be-justified, justified, SMEM);

end for
end for

end for
End

Algorithm build-mem (model, available, to-be-justified, justified,
SMEM) is

Begin
if to-be-justified =∅ and available =∅ and∃1 discrepancy node in
modelthen
Insert model in SMEM;

end if
else
for S = each constraint in availabledo
if S.nobs∩ to-be-justified =∅ then
for I2 = each interpretation for Sdo
if head(I2)∩ to-be-justified6= ∅ then
Insert{I2} in model;
available := available\ {S};
to-be-justified := (to-be-justified\ head(I2))∪ tail(I2).nobs;
Insert head(I2) in justified;
Build-mem (model, available, to-be-justified, justified, SMEM);

end if
end for

end if
end for

end if
End

D Constraints used to model the hydraulic system
Constraints Represent
tr11, t21, tr24 Mass balance in T:m′

T =
∑

fin −
∑

fout

tr12, t22 Overflow in T:fout =
√

k · (hT − hext)

tr13, t23, tr25 Mass:mT (t) =
∫

m′
T (t− 1)dt + mT (t− 1)

tr14, t25, tr26 Height in T: :hT = k1 · mT
AT

t24, tr22 Pressure at bottom:PT1 = k2 · hT + Patm

p21, p32 Pump load curve in P:∆PP = tablePQ(fout)

p22, p31 Outflow in T:fout =

√
k3 · (PT1+∆PP−P2)

k4

p23, p33, v21 Flow out of tank:fin = fout

tr21 Control:u = PID(hT )

v22 Flow through a valve:fout =

√
k5 · (PT2−Patm)

k6+( 100
u

)2


