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Abstract. When designing model-based fault-diagnosis systems,
the use ofconsistency relations(also called e.g.parity relations) is
a common choice. Different subsets are sensitive to different subsets
of faults, and thereby isolation can be achieved. This paper presents
an algorithm for finding a small set of submodels that can be used to
derive consistency relations with highest possible diagnosis capabil-
ity. The algorithm handles differential-algebraic models and is based
on graph theoretical reasoning about the structure of the model. An
important step, towards finding these submodels and therefore also
towards finding consistency relations, is to find allminimal struc-
turally singular (MSS) sets of equations. These sets characterize the
fault diagnosability. The algorithm is applied to a large nonlinear in-
dustrial example, a part of a paper plant. In spite of the complexity of
this process, a small set of consistency relations with high diagnosis
capability is successfully derived.

1 Introduction

When designing model-based fault-diagnosis systems, using the
principle of consistency based diagnosis [5, 11, 6], a crucial step is
the conflict recognition. As shown in [3], conflict recognition can be
achieved by using pre-computed consistency relations (also called
e.g.analytical redundancy relationsor parity relations). With prop-
erly chosen consistency relations, different subsets of consistency re-
lations are sensitive to different subsets of faults. In this way isolation
between different faults can be achieved.

The systems considered in this paper are assumed to be modeled
by a set of nonlinear and linear differential-algebraic equations. To
find consistency relations by directly manipulating these equations is
a computationally complex task, especially for large and nonlinear
systems. To reduce the computational complexity of deriving consis-
tency relations, this paper proposes a two-step approach. In the first
step, the system is analyzed structurally to find overdeterminedsub-
models. Each of these submodels are then in the second step trans-
formed to consistency relations. The benefit with this two-step ap-
proach is that the submodels obtained are typically much smaller
than the whole model, and therefore the computational complexity
of deriving consistency relations from each submodel is substantially
lower compared to directly manipulating the whole model.

The main contribution and the focus of the paper is a structural al-
gorithm for finding these submodels. Instead of directly manipulating
the equations themselves, the proposed algorithm only deals with the
structural information contained in the model, i.e. which variables
that appear in each equation. This structural information is collected

in a structural model. In addition to finding all submodels that can
be used to derive consistency relations, the algorithm also selects a
small set of submodels that corresponds to consistency relations with
the highest possible diagnosis capability.

In industry, design of diagnosis systems can be very time con-
suming if done manually. Therefore it is important that methods for
diagnosis-system design are as systematic and automatic as possible.
The algorithm presented here is fully automatic and only needs as
input a structural model of the system. This structural model can in
turn easily be derived from for example simulation models.

Structural approaches have also been studied in other works deal-
ing with fault diagnosis. In [10] a structural approach is investi-
gated as an alternative to dependency-recording engines in consis-
tency based diagnosis. Furthermore a structural approach is used in
the study of supervision ability in [2] and an extension to this work
considering sensor placement is found in [12].

In Sections 2 and 3, structural models and their usefulness in fault
diagnosis are discussed. Then in Section 4, a complete description of
the algorithm is given. The algorithm is then in Section 5 applied to
a large nonlinear industrial process, a part of a paper plant. In spite
of the complexity of this process, a small set of consistency relations
with high diagnosis capability is successfully derived.

2 Structural models

The behavior of a system is described with a model. Usually the
model is a set of equations. A structural model [2] contains only the
information of which variables that are contained in each equation.
Let Morig denote the structural model obtained from the equations,
describing the system to be diagnosed. This structural model will
contain three different kinds of variables: known variablesY , e.g.
sensor signals and actuators; unknown variablesXu, for example
internal states of the system; and finally the faultsF . If faults are
decoupled then they will also be included inXu. The differentiated
and non-differentiated version of the same variable are considered to
be different variables. The time shifted variables in the time discrete
case are also considered to be separate variables.

A structural model can be represented by anincidence matrix[4,
1]. The rows correspond to equations and the columns to variables. A
cross in position(i, j) tells that variablej is included in equationi.

Example 1 A simple example is a pump, pumping water into the top
of a tank. The water flows out of the tank through a pipe connected
to the bottom of the tank. The known variables are the pump inputu,
the measured water level in the tankyh, and the measured flow from



the tankyf . One fault denotedfi is assumed to be associated with
each known variable. The actual flows to and from the tank are de-
notedFi, and the actual water level in the tank is denotedh. Without
knowing the exact physical equations describing the analytic model
the structural model can be set up as follows:

equation unknown fault known

F1F2 h ḣ fufyhfyf ḟf u yhyf

e1 X X X
e2 X X X
e3 X X X
e4 X X
e5 X X X
e6 X

(1)

Equatione1 describes the pump,e2 the conservation of volume in
the tank,e3 the water level measurement,e4 the flow from the tank
caused by the gravity,e5 the flow measurement, ande6 a fault model
for the flow measurement faultfyf .

3 Fault Diagnosis Using Structural Models

The task is to find submodels that can be used to form consistency
relations. To be able to draw a correct conclusion about the diagnos-
ability from the structural analysis, it is crucial that for each of these
submodels there is a consistency relation that validates all equations
included in the submodel. The common definition of consistency re-
lation does not ensure this. Therefore the new definition ofconsis-
tency relation for an equation setis introduced that explicitly points
out the submodel considered. Before consistency relation forE is
defined some notation is needed.

Let x andy denote the vectors of variables contained inXu and
Y respectively. ThenE(x,y) denote an equation set that depends on
variables contained inXu andY .

Definition 1 (Consistency Relation forE) A scalar equation
c(y) = 0 is aconsistency relation forthe equationsE(x,y) iff

∃xE(x,y) ⇔ c(y) = 0 (2)

and there is no proper subset ofE that has property (2).

Definition 1 differ from the common definition of consistency re-
lation in two ways, the left implication in (2) and that there is no
proper subset ofE that has property (2). Refer the latter as the min-
imality condition in Definition 1. The following example shows the
importance of the left implication in (2).

Example 2 Consider the modelE = {y1 = x, y2 = x, y3 = x}.
The equationy1−y2 = 0 is not a consistency relation forE, because
it is true even if e.g.y3 6= y1 = y2 and then it is impossible to find
a consistentx in E. Howevery1 − y2 = 0 is a consistency relation
for {y1 = x, y2 = x}.

The expressiony1 + y2 − 2y3 = 0 includesy3. The right im-
plication in (2) holds, but the opposite direction does not hold. The
conclusion is that also this expression is not a consistency relation
for E or any equation subset ofE.

However(y1 − y2)
2 + (y2 − y3)

2 = 0 is a consistency relation
for E.

The minimality condition in Definition 1 is important, because it
guarantees that any invalid equation can infer an inconsistency.

3.1 Basic Assumptions

Basic assumptions are needed to guarantee that the subsets found
only by analyzing structural properties are exactly those subsets that
can be used to form consistency relations. Before the basic assump-
tions are presented, some notation is needed. LetE be any set of
equations andX any set of variables. Then definevarX(E) = {x ∈
X|∃e ∈ E : e containsx} andequE(X) = {e ∈ E|∃x ∈ X : e
containsx}. Also, letvarX(e) andequE(x) be shorthand notations
for varX({e}) and equE({x}) respectively. Ifg is any equation,
function or variable, letg(i) denote thei:th time derivative ofg. Then
definevarX(E) = {undifferentiatedx|∃i(x(i) ∈ varX(E))}, e.g.
varXu∪Y ({y = ẋ}) = {y, x}. Finally, the number of elements in
any setE is denoted|E|.

The first assumption is introduced to ensure that the model be-
comes finitely differentiated in Section 4.1.

Assumption 1 The modelMorig has the property

∀E ⊆ Morig : |E| ≤ |varXu∪Y (E)|. (3)

The meaning of condition (3) is that each subset of equations include
more or equally many different variables, considering derivatives as
the same variable. If condition (1) is not fulfilled and there are no
redundant equations, the model would normally be inconsistent.

As mentioned earlier, the structural model contains less informa-
tion than the analytical model. The next assumption makes it possible
to draw conclusions about analytical properties from the structural
properties.

Assumption 2 There exists a consistency relationc(y) = 0 for the
equation setH iff

∀X ′ ⊆ varXu(H), X ′ 6= ∅ : |X ′| < |equH(X ′)| (4)

According to Assumption 2 the unknown variables inH can be
eliminated if and only if it holds that for each subset of variables in
H the number of variables is less then the number of equations inH
which contain some of the variables in the chosen subset.

The Assumptions 1 and 2 are often fulfilled. For example all sub-
sets of equations found in the industrial example in the end of the
paper satisfy Assumption 2. Even though the ”only if” direction of
Assumption 2 is difficult to validate in an application, the results of
the paper can still be used to produce a lower bound of the actual
detection and isolation capability.

If all subsets of the model fulfill Assumption 2, the structural anal-
ysis will find all subsets that can be used to find consistency relations.

3.2 Finding Consistency Relations via MSS Sets

Now, the task of finding those submodels that can be used to derive
consistency relations will be transformed to the task of finding the
subsets of equations that have the structural property (4). To do this,
two important structural properties are defined [9].

Definition 2 (Structurally Singular) A finite set of equationsE is
structurally singularwith respect to the set of variablesX if |E| >
|varX(E)|.

Definition 3 (Minimal Structurally Singular) A structurally sin-
gular set is aminimal structurally singular(MSS) set if none of its
proper subsets are structurally singular.



For simplicity, MSS will always mean MSS with respect toXu in
the rest of the text. The next theorem tells that it is sufficient and nec-
essary to find all MSS sets to get all different sets that can be utilized
to form consistency relations. The task of finding all submodels that
can be used to derive consistency relations has thereby been trans-
formed to the task of finding all MSS sets.

Theorem 1 Let H ⊆ Morig, whereMorig fulfills Assumption 1.
Further, let H and all Ei fulfill Assumption 2. Then there exists a
consistency relationc(y) = 0 for H(x,y) where|H| < ∞ iff H =⋃

i Ei where for eachi, Ei is an MSS set.

For a proof, see [7].

4 Algorithm for finding and selecting MSS sets

The objective is to find all MSS sets in a differentiated version of the
modelMorig and then choose a small subset of these MSS sets with
the same diagnosability as the full set of MSS sets. The algorithm
can be summarized in the following steps.

Algorithm 1

1. Differentiating the model: Find equations that are meaningful to
differentiate for finding MSS sets.

2. Simplifying the model: Given the original model and the addi-
tional equations found in step (1), remove all equations that can-
not be included in any MSS set. To simplify the next step, merge
sets of equations that have to be used together in each MSS set.

3. Finding MSS sets: Search for MSS sets in the simplified model.
4. Analyzing Diagnosability: Examine the diagnosability of the MSS

sets found in step (3).
5. Decoupling faults: If the diagnosability has to be improved, some

faults have to be decoupled. For decoupling faults, return to
step (1) and consider these faults as unknown variables inXu.

6. Selecting a subset of MSS sets: Select the simplest set of MSS sets
that contains the desired diagnosability.

Note that to avoid searching for all MSS sets decoupling all possi-
ble faults, Algorithm 1 has been organized so that first, the fault free
model is analyzed. Then if it is necessary for achieving higher isola-
bility, faults are decoupled. The following sections discuss each of
the steps in Algorithm 1.

4.1 Differentiating the Model

To handle dynamic models, Algorithm 1 needs a way to deal with
derivatives. In this section an algorithm for handling derivatives is
defined. This algorithm is referred to as Algorithm 2. A small exam-
ple will show what Algorithm 2 must be capable of handling.

Example 3 Consider the modelE = {e1, e2, e3} = {y1 = x, y2 =
ẋ, y3 = x2}. It is obviously impossible to eliminatėx in e2 if dif-
ferentiation of any equation is forbidden. In general, all derivatives
of E have to be considered. IfE(i) denote the set of thei:th time
derivative of each element, the equation set generally considered is
∪∞

i=0E
(i).

Even thoughvarXu(e1) = varXu(e3) = {x} the derivatives of
e1 ande3 contain different sets of variables, becausevarXu(ė1) =
{ẋ} 6= varXu(ė3) = {x, ẋ}. Sincex is linearly contained ine1,
the variablex in ė1 disappears. Knowledge about which of the vari-
ables that are contained linearly in an equation determines the set of
variables in the differentiated equation completely.

For all natural numbersj, y
(j+1)
1 − y

(j)
2 = 0 is a consistency

relation. Most of these consistency relations contain high orders of
derivatives ofy1 andy2. The derivatives of known variables are in
general not known, but they can usually be estimated. The higher
order of derivative, the more difficult it is to estimate the derivative.
Thus it is reasonable to make a limitationm(y) for variabley of the
order of derivative that can be considered as possible to estimate.
Derivatives up tom(y) are then considered to be known and higher
derivatives belong toXu.

To summarize the example, Algorithm 2 must be capable of differ-
entiating equations. To produce a correct structural representation of
differentiated equations, the algorithm must take linearly contained
variables into account. Further, it has to handle the limitationm(y)
for eachy ∈ Y .

Algorithm 2 consists of two parts. The first part is a modification of
Pantelides’ algorithm [9]. LetM =

⋃n
i=1

⋃αi
j=0{e(j)

i }, thenαi is the
highest number of differentiations inM of equationi. ThenM is a
differentiated model ofMorig =

⋃n
i=1{ei}. Let {e(αi)

i |1 ≤ i ≤ n}
be the set of most differentiated equations inM . The highest deriva-
tive of a non-differentiated variablex in the modelM is defined as
max({i|x(i) ∈ varXu(M)}).

Pantelides’ algorithm differentiates equation subsets, so that the
original equations together with the differentiated equations have a
complete matching[4] of the most differentiated equations into the
unknown variables with the highest derivatives.

The modification of Pantelides’ algorithm is that derivatives of
known variables, higher or equal tom(y), are also allowed to be
included in the matching.

Algorithm 2
Input: The original modelMorig, a description of which variables
that are linearly contained, and for eachy ∈ varY (Morig), m(y) <
∞.

(1) Apply the modified Pantelides’ algorithm toMorig and the limits
m(y). The output is the number of times each equation must be
differentiated to find all MSS sets.

(2) Differentiate the equations inMorig the number of times sug-
gested in step (1) and use the description of which variables that
are linearly contained, to get the correct structural description of
the differentiated structural model denotedMdiff .

Output:Mdiff .

It is critical that step (1) in Algorithm 2 terminates, i.e. no equation
should be differentiated an infinite number of times. In Pantelides
(1988) the condition when the algorithm terminates is stated. This
condition can be written as the structural property (3). Since the
modelMorig has this property according to Assumption 1, the al-
gorithm will terminate.

Let nowMSS(M) denote the set of MSS sets found in equations
M andMSSall(M) = MSS(∪∞

i=0M
(i)). Then it is possible to

state the following theorem proven in [7].

Theorem 2 If Assumption 1 is satisfied and for eachy ∈
varY (Morig), m(y) < ∞, then

MSSall(Morig) = MSS(Mdiff )

The consequence of this theorem is that all MSS sets that are possible
to find if the original modelMorig is differentiated an infinite number
of times, can always be found inMdiff .



Example 4 The following example is a continuation of Example 1
with the structural model shown in (1). Letm(u) = m(yf ) = 1
and m(yh) = 0. According to Algorithm 1 the first iteration uses
the fault free model, i.e. all faults are zero. The equatione6 contains
only a fault. Since all faults are at the moment assumed to be zero,
thene6 is not considered. Further, assume that no variable is linearly
contained in any equation. Then no variable will disappear in the dif-
ferentiation. The structural modelMdiff obtained from Algorithm 2
is

equation unknown fault known

F1F2Ḟ2 h ḣ fufyhfyf ḟf u yhyf ẏf

e1 X X X
e2 X X X
e3 X X X
e4 X X
ė4 X X XX
e5 X X X
ė5 X X X X X X

(5)

4.2 Simplifying the Model

It is a complex task to find all MSS sets in a structural model. There-
fore it can be of great help if it is possible to simplify the model. Here
two kinds of simplifications are used.

In a first step, all equations inMdiff that include any variable
that is impossible to eliminate, are removed. This can be done with
Canonical Decomposition [2].

In a second step, variables that can be eliminated without losing
any structural information are found. The rest of this section will be
devoted to a discussion about this second step.

If there is a setX ⊆ Xu with the property1 + |X| =
|equMdiff (X)|, then all equations inequMdiff (X) have to be used
to eliminate all variables inX. Since all unknown variables must be
eliminated in an MSS set this means particularly that all MSS sets
including any equation ofequMdiff (X) has to include all equations
in equMdiff (X). The idea is to find these sets. Then it is possible to
eliminate internal variables, here denotedX, in these sets. Every set
is replaced with one new equation.

This second simplification step finds subsets of variables that are
included in exactly one more equation than the number of variables.
To reduce the computational complexity, a complete search for such
sets is in fact not performed here. Instead only a search for single
variables included in two equations is done. When a variable is in-
cluded in just two equations, these equations are used to eliminate
the variable. If all variables are examined and some simplification
was possible, then all remaining variables have to be examined once
more. When no more simplifications can be made, the simplification
step is finished and the resulting structural model is denotedMsimp.
Note that with this strategy larger sets than two equations will also
be found, since the algorithm can merge sets found in previous steps.

The next theorem ensures that no MSS set is lost in the simplifica-
tion step.

Theorem 3 MSS(Mdiff ) = MSS(Msimp)

For a proof, see [7]. Consider again Example 4 and the output (5)
from the differentiation step. No equations can be removed in the
first simplification step.

The second step searches for variables which belong only to two
equations. In the first search, the algorithm findsF1 in {e1, e2}, Ḟ2 in
{ė4, ė5}, andḣ in the equations produced by{e1, e2} and{ė4, ė5}.

This makes one group of{e1, e2, ė4, ė5}. This search made simplifi-
cations and therefore the search is performed once more. The second
time no simplifications have been done and the simplification step is
therefore complete. The remaining system is

equation unknown fault known

F2 h fufyhfyf ḟf u yhyf ẏf

{e1, e2, ė4, ė5} X X X X X X X X
e3 X X X
e4 X X
e5 X X X

(6)

4.3 Finding MSS Sets

After the simplification step is completed, step (3) in Algorithm 1
finds all MSS sets in the simplified modelMsimp. This section ex-
plains how the MSS sets are found.

The task is to find all MSS sets in the modelMsimp with equations
{e1, · · · , en}. Let Mk = {ek, · · · , en} be the lastn − k + 1 equa-
tions. LetE be the current set of equations that is examined. The set
of MSS sets found is denotedMalg3. Then the following algorithm
finds all MSS sets inMsimp.

Algorithm 3
Input: The modelMsimp.

1. Setk = 1 andMalg3 = ∅.
2. Choose equationek. LetE = {ek} andX = ∅.
3. Find all MSS sets that are subsets ofMk and include equationek.

(a) LetX̃ = varXu(E)\X be the unmatched variables.

(b) If X̃ = ∅, thenE is an MSS set. InsertE into Malg3.

(c) Else take a remaining variablẽx ∈ X̃ and let X = X ∪
{x̃}. Let Ẽ = equMk\E(x̃) be the remaining equations. For
all equationse in Ẽ let E = E ∪ {e} and goto (a).

4. If k < n setk = k + 1 and goto number (2).

Output: The set of MSS sets found, i.e.Malg3.

Algorithm 3 finds all MSS sets inMorig according to the next theo-
rem proven in [7].

Theorem 4 Malg3 = MSS(Msimp)

The following small example with five equations shows how the al-
gorithm works.

x1 x2 x3

1 X X
2 X X
3 X X X
4 X
5 X

This model gives the following time evolution of current equations,
i.e.E in Algorithm 3 is

2 3 2
2 5 5 2 2 3 3 5

3 3 3 3 4 4 4 4 4 4
1 1 1 1 1 1 1 1 1 1 1

4
4 3 3 5

3 3 5 5 5 4 4
2 2 2 2 2 2 3 3 3 4 5

The bold columns represent the MSS sets found. This example
also shows that if there are several matchings including the same
equations, the algorithm finds the same subset of equations several
times.



4.4 Analyzing Diagnosability

When the MSS sets are found, the next step is to analyze their di-
agnosability. The continuation of the example in (6) will be used to
illustrate how this analysis is done. The 4 MSS sets that can be found
in (6) are shown in the left column in Figure 1 (a). The matrix in this
figure is the incidence matrix of the MSS sets in (6). If any equation
in the MSS seti include faultj, the element(i, j) of the incidence
matrix is equal toX. Note that anX in position(i, j) is no guar-
antee for faultj to appear in the MSS seti. For an example of the
interpretation of an incidence matrix, consider the third MSS set in
Figure 1 (a). This MSS set could containfu andfyf , but it is impos-
sible that it could containfyh, sincefyh is only included in equation
e3. For simplicity, the derivatives of the faults are omitted in Figure 1.

If the number of different faults is large it is not easy to see which
faults that can be isolated from each other. The incidence matrix of
the MSS sets show which faults that could be responsible for an in-
consistency of each MSS set, but it is more interesting to see which
faults that can be explained by other faults. Afault matrixshows the
maximum isolation and detection capability of the diagnosis system.
The maximum isolation capability with a diagnosis system designed
with this structural method is obtained if it is assumed that each fault
makes all MSS sets including this fault inconsistent. If faultj is sen-
sitive to at least all MSS sets that faulti is sensitive to, then element
(i, j) of the fault matrix is equal toX. The interpretation of anX in
position(i, j) is that faultfi can not be isolated from faultfj .

The fault matrix corresponding to the incidence matrix in Fig-
ure 1 (a) is shown in Figure 1 (b). Consider the first row of the fault
matrix. Suppose that faultfu is present. Then, the first three MSS
sets are not satisfied in an ideal case. This means thatfu certainly
can explain faultfu, but alsofyf can explain faultfu. Fault fyh

cannot explain faultfu, since iffyh is present, the third MSS set is
satisfied. Note that the fault matrix is not symmetric. For example
fault fyf can explain faultfu but the opposite is not true. The fault
matrix can more easily be analyzed after Dulmage-Mendelsohn per-
mutations [8]. This algorithm returns amaximal matching[4] which
is in block upper-triangular form. The diagonal blocks corresponds
to strong Hall components of the adjacency graph of the fault ma-
trix. The interpretation is that faults in a diagonal block can never
be distinguished with that diagnosis system. In the small example in
Figure 1 (b), the same matrix is returned after Dulmage-Mendelsohn
permutations, which usually is not the case. The diagonal blocks are
the1 × 1 diagonal elements.

MSS fufyhfyf
{e1, e2, e3, e4, ė4, ė5} X X X
{e1, e2, e3, ė4, e5, ė5} X X X
{e1, e2, e4, ė4, e5, ė5} X X
{e3, e4, e5} X X

present interpreted fault
fault fu fyh fyf
fu X X
fyh X X
fyf X

(a) (b)

Figure 1. The incidence matrix of MSS sets is shown in (a). The fault
matrix of (a) is shown in (b).

4.5 Decoupling faults

Suppose that the element(i, j) of the fault matrix is equal toX for
somei 6= j. It could still be possible to isolate faulti from fault
j by trying to decouple fault j. Include faultj among the unknown

variablesXu and search for new MSS sets by applying Algorithm 1
step (1) to the new model obtained. An MSS set that is able to isolate
fault i from fault j has to include at least one equation that includes
fault i. If any such MSS set is found, it has to include an elimination
of fault j. If not, this MSS would have been discovered earlier.

In the example in Figure 1, the fault matrix shows thatfu andfyh

can not be isolated fromfyf . The problem is that there is no MSS set
that decouple faultfyf . But there could be one iffyf is eliminated.
The faultfyf is moved from the faultsF to the unknown variables
Xu. The procedure starts all over from the step (1) in Algorithm 1.
The result is a new MSS set in whichfyf is decoupled. This gives a
possibility to detect and isolate all faults.

4.6 Selecting a Subset of MSS Sets

It is not unusual that the number of MSS sets found is very large.
Many of the MSS sets probably use almost as many equations as un-
known variables in the entire system. These MSS sets usually rely
on too many uncertainties to be usable for fault isolation. Small MSS
sets are more robust and are usually sensitive to fewer faults. There-
fore the goal must be to find the set of most robust MSS sets but with
the same diagnosis capability as the set of all MSS sets.

Start to sort the MSS sets in an ascending order of complexity. The
complexity measure is here the number of equations, even though
more informative measures are also a possibility. The MSS sets are
examined in the rearranged order. If an MSS set increase the diag-
nosability, then select the MSS set. The diagnosability is increased if
some fault becomes detectable or some faulti can be isolated from
some other faultj. This means that for each detection of a fault and
for each isolation between two faults, the smallest MSS sets with this
diagnosis ability will be one of the chosen MSS sets. In this way the
final output from Algorithm 1 will be the most robust set of MSS sets
with highest possible diagnosis capability.

5 Industrial example: A part of a paper plant

This example is a stock preparation and broke treatment system of a
paper plant located in Australia. The system is used for mixing and
purifying recycled paper for production of new paper. An overview
of the system is shown in Figure 2.
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Figure 2. A stock preparation and broke treatment system of a paper plant.



5.1 System Description

Most parts of the system are nonlinear and it is only the tank and the
pulper that are considered to be dynamic. The model has shown to
compare well to real measured data. Because of space considerations,
the details of the model are omitted, but can be found in [7]. The
system has 4 states: the volume and concentration in the pulper and in
the tank. There are 6 sensors in the system. Sensory1 andy3 measure
the water levels of the pulper and the tank respectively,y2 andy4

measure concentration,y5 andy6 measure pressure. The flows and
concentrations into this system are known and the flows out from the
system are also known. There are 6 valves and two pumps that are
actuators with known inputs.

There are 21 faults that are considered. All sensors can have a con-
stant offset fault(f1, . . . , f6). All valves can have a constant offset
in the actuator signal(f7, . . . , f12). Clogging can occur in the pipes
near the valves(f13, . . . , f18) and also directly after the tankf19.
Finally, the pumps can have a constant offset in the actuator signal
(f20, f21).

The system is described by 29 equations. Equations(e1, . . .,
e4) describe the dynamics,(e5, . . . , e14) are pressure loops,e15

relates the concentration in the junction after the tank with the
flows F4 andF6, (e16, e17) describe the two pumps,(e18, . . . , e23)
are valve equations,(e24, . . . , e26) are flow equations, and finally
(e27, . . . , e29) are sensor equations for sensor 1, 2, and 3. The struc-
tural model for these equations can be viewed in the first 29 rows in
the matrices in Figure 3.

5.2 Differentiating the Model

The highest order of derivatives that is known for all known vari-
ables are assumed to be one. If a variable is contained linearly in
an equation the variable disappears in the differentiated expression.
This knowledge is used since the equations are known. Algorithm 2
is applied to the first 29 equations in Figure 3. The result is that all
equations except equation 1, 2, 3, and 4 are differentiated. This re-
sults in additionally 25 differentiated equations shown in the lower
part of Figure 3.
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Figure 3. Structural model of the stock preparation and broke treatment
system.

5.3 Simplifying the Model

In the first step of simplification applied to the left matrix in Figure 3,
the equations{27, 28, 29} include variables belonging only to one
equation, i.e. they cannot be included in any MSS sets.

The second part of the simplification finds that the vari-
ables{9, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29, 30, 31} can be elim-
inated. The equations that form groups are{1, 52}, {2, 53},
{3, 54}, {4, 15, 40}, {32, 41, 44}, {39, 48, 51}, {31, 43}, {35, 45},
{37, 46} and{36, 47}. The simplified structural model is shown in
Figure 4 (a). Note the simplification of the model by comparing Fig-
ure 3 and Figure 4 (a).
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Figure 4. The simplified structural model is shown in (a). The incidence
matrix of the MSS sets is shown in (b)

5.4 Finding MSS sets

Algorithm 3 is then applied to the simplified model. The algorithm
returns 35770 MSS sets that are contained in the simplified model.
The largest MSS set consists of 24 equations.

5.5 Analyzing Diagnosability

The two different fault matrices are seen in Figure 5. The Dulmage-
Mendelsohn permutations gives that the faults{7, 13}, {8, 14},
{9, 15}, {10, 16},{11, 17} and{12, 18} are never distinguishable.
These pairs of faults all belong pairwise to the same valve. This iso-
lation performance for faults concerning valves is in this case ac-
ceptable. To give an example of how elimination of faults is done,
the attention is focused on isolating faults 4, 8, and 14.

5.6 Decoupling faults

Considering Figure 5, it is still important to discover if any MSS set
can decouple fault 2 or 3 and be sensitive to fault 4. It is also neces-
sary to decouple fault 20. Apply Algorithm 1 to the original model,
but where fault 2 now is considered to be an unknown variable. Then
apply the Algorithm 1 to the model where faults 3 is decoupled and
finally also when fault 20 is decoupled. The algorithm finds thereby
additional MSS sets that isolate fault 4, 8, and 14.



5.7 Selecting a subset of MSS sets

The 24 chosen MSS sets are

MSS
1 13
2 2 53
3 6 18
4 11 22
5 1 16 52
6 22 36 47
7 7 16 19
8 8 9 17 24
9 9 10 17 20
10 12 17 21 25
11 16 19 32 41 44
12 8 10 17 20 24
13 12 14 21 23 26
14 14 17 23 25 26
15 17 24 33 34 42 49
26 7 16 19 32 41 44
17 17 21 25 37 42 46 50
18 8 10 12 20 21 24 25
19 17 23 25 26 39 42 48 50 51
20 3 4 15 16 17 24 40 42 49 54
21 1 3 4 15 17 24 40 42 49 52 54
22 3 4 8 10 15 16 20 33 35 40 45 54
23 2 3 4 15 16 17 24 40 42 49 53 54
24 3 4 8 9 15 16 17 24 40 42 49 54

(7)

From these sets and the structural model in Figure 3 the incidence
matrix in Figure 4 (b) is obtained.
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Figure 5. These matrices are the fault matrices before (a) and after (b) the
Dulmage-Mendelsohn permutation.

5.8 Generating Consistency Relations

Consistency relations corresponding to the 24 MSS sets are calcu-
lated by using the function Eliminate in Mathematica. Most of the
equations in the model are polynomial equations. For polynomial
equation-systems, the function Eliminate uses Gröbner Basis tech-
niques for elimination. Each MSS set with 7 or less equations was
easily eliminated to a consistency relation. The consistency relations
from the MSS set 17 and 18 were obtained from the Eliminate func-
tion, but were to complex to be numerically reliable. Elimination of
the unknown variables in MSS sets with 8 or more equations was
computational intractable with the Eliminate function. Therefore, by
using only consistency relations obtained from the 15 first MSS sets,
the isolation capability was reduced slightly. Some further results of
the investigation can be found in [7].

6 Conclusion

This paper has presented a systematic and automatic method for find-
ing a small set of submodels that can be used to derive consistency
relations with highest possible diagnosis capability. The method is
based on graph theoretical reasoning about the structure of the model.
It is assumed that a condition on algebraic independency is fulfilled.

An important idea, towards finding these submodels, is to use the
mathematical conceptminimal structurally singularsets. These sets
have in Theorem 1 been shown to characterize these submodels, i.e.

the consistency relations, which give the fault detection and the fault
isolation capability.

The method is capable of handling general differential-algebraic
non-causal equations. Further, the method is not limited to any spe-
cial type of fault model. Algorithm 1 finds all submodels that can
be used to derive consistency relations and this is proven in Theo-
rem 2, 3, and 4. The key step in Algorithm 1 is step (3) that finds all
MSS sets in the model it is applied to.

Finally the method has been applied to a large nonlinear industrial
example, a part of a paper plant. The algorithm successfully manage
to derive a small set of submodels. In spite of the complexity of this
process, a sufficient number of submodels could be transformed to
consistency relations so that high diagnosis capability was obtained.
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