
Noname manuscript No.
(will be inserted by the editor)

Solving High School Timetabling with Satisfiability
Modulo Theories

Emir Demirović · Nysret Musliu

Received: date / Accepted: date

Abstract High School Timetabling (HSTT) is a well known and wide spread
problem. The problem consists of coordinating resources (e.g. teachers, rooms),
time slots and events (e.g. lectures) with respect to various constraints. Unfor-
tunately, HSTT is hard to solve and just finding a feasible solution for simple
variants of HSTT has been proven to be NP-complete. In addition, timetabling
requirements vary from country to country and because of this many variations
of HSTT exist. Recently, researchers have proposed a general HSTT problem
formulation in an attempt to standardize the problem from different countries
and school systems.

In this paper, for the first time we provide a new detailed modeling of
the general HSTT as a Satisfiability Modulo Theory (SMT) problem in the
bit vector form. In addition, we present preliminary experimental results and
compare to the winner of the Third International Timetabling Competition
2011 (ITC), using both artificial and real-world instances, all of which were
taken from ITC 2011 benchmark repository. Our current approach provides
feasible solutions for some examples, which in some cases could not have been
obtained with the competition winner algorithm within 24 hours.

Keywords SMT · High School Timetabling · Modeling

1 Introduction

In this paper, we describe a modeling of the high school timetabling problem
(HSTT) as a Satisfiability Modulo Theory (SMT) problem. By doing so, we
were able to find feasible solutions to some problem instances, which were
proposed by the International Timetabling Competition 2011 [13], which in
some cases could not have been obtained using the winning algorithm of the

Vienna University of Technology
Database and Artificial Intelliegence Group
E-mail: {musliu ∨ demirovic}@dbai.tuwien.ac.at

2 Emir Demirović, Nysret Musliu

competition in 24 hours, GOAL. In two smaller instances, optimization could
also be performed, rather than just finding a feasible solution, but optimization
is difficult for our method at its current state.

The problem of timetabling is to coordinate resources (e.g. rooms, teachers,
students) with time slots in order to fulfill certain goals or events (e.g. lectures).

Timetabling is encountered in a number of different domains. Every edu-
cational institution, airport, public transport system, etc requires some form
of timetabling. The difference between a good and a bad timetable can be
significant, but constructing timetables by hand can be time consuming, very
difficult, error prone and in some cases impossible. Therefore, developing high
quality algorithms which would automatically do so is of great importance.
Note that there are many different timetabling problems and algorithms for
one type of problem (e.g. HSTT) might not directly be suitable for another
problem (e.g. University Timetabling), because of their different requirements.
In this work, we focus on HSTT. Respecting constraints is very important, as
timetables directly contribute to the quality of the educational system, sat-
isfaction of students and staff and other matters. Every timetabling decision
affects hundreds of students and teachers for prolonged amounts of time, since
each timetable is usually used for at least a semester.

Unfortunately, High School Timetabling is hard to solve and just finding
a feasible solution of simple variants of High School Timetabling has been
proven to be NP-complete [7].

Apart from the fact that problems that need to be solved can be very large
and have many different constraints, high school timetabling requirements vary
from country to country and because of this many variations of the timetabling
problem exist. Because of this, it was unclear what the state of the art was,
as comparing algorithms was difficult.

Recently have researchers proposed a general high school timetabling prob-
lem formulation [14] in an attempt to standardize the problem from different
countries and school systems and this formulation has been endorsed by the
Third International Timetabling Competition 2011 (ITC 2011) [13] [14]. This
was a significant contribution, as now algorithms can be compared on stan-
dardized instances, that were proposed from different researchers [12].

The winner of the competition was the group GOAL, followed by Lectio
and HySST. All of the algorithms were based on heuristics. In GOAL, an
initial solution is generated, which is further improved by using Simulated
Annealing and Iterated Local Search, using seven different neighborhoods [8].
Lectio uses an Adaptive Large Neighborhood Search [16], while HySST uses a
Hyper-Heuristic Search [9]. Recently, [17] used Integer Programming (IP) in
a Large Neighborhood Search algorithm and [15] introduced a two phase IP
algorithm for a different timetabling problem, but have managed to adjust the
method for a number of high school timetabling instances.

All of the best algorithms on the competition were heuristic algorithms
and this is why introducing a new exact method (our approach) is important.
Some advantages are being able to provide proofs of optimality or infeasibility,
calculate lower bounds as well as an opportunity to hybridize algorithms, as

Solving High School Timetabling with Satisfiability Modulo Theories 3

well as create valuable benchmarks for SMT solvers. Even though significant
work has been put into HSTT, optimal solutions for most instances are still
not known and this is still an active research area.

In this paper, we investigate the formulation of HSTT as SMT. A SMT
problem is a decision problem for logical formulas with respect to combinations
of background theories expressed in classical first-order logic with equality. It
is a generalization of the Satisfiability problem (SAT) in which sets of variables
are allowed to be replaced by predicates from a variety of underlying theories.
SMT is usually used for verification and program analysis, but researchers
have recently been investigating solving Constraint Satisfaction Problems with
SMT [3] and other optimization problems [11]. There is a natural connection
between timetabling and logical formulas. HSTT as itself has many logic based
characteristics and as such some of its constraints can easily be encoded as
SMT. This has motivated us to investigate how efficient can a SMT formulation
for HSTT be. However, due to the generality of the specification that we use,
devising a complete model is not a trivial task, because as we will see later,
some of the constraints are cumbersome. In addition to formulating a general
formulation, one needs to take care of important special cases which arise in
practice and can significantly simplify the encoding.

The main contributions of this paper are as follows:

– We show that HSTT can be modeled as a SMT problem, despite the fact
that HSTT is very general and has many different constraints, both hard
and soft versions. All constraints are included in their general formulations,
as well as important alternative encodings for special cases.

– We give preliminary experimental evaluation of our model using both ar-
tificial and real-world instances, all of which were taken from the Third
International Timetabling Competition 2011 benchmark repository. A com-
parison with the winning algorithm from ITC 2011 is given.

The rest of the paper is organized as follows: in the next section, we give a
more detailed look into the problem description which serves as an introduc-
tion for Section 3, where the detailed presentation of our approach in modeling
HSTT as SMT is given. In Section 4, we provide computational results ob-
tained on artificial and real life problems. Finally, we give concluding remarks
and ideas for future work.

2 Problem Description

In our research we consider the general formulation of the High School Timetabling
problem, as described in [14].

The general High School Timetabling formulation specifies three main enti-
ties: times, resources and events. Times refer to time slots which are available,
such as Monday 9:00-10:00, Monday 10:00-11:00, etc. Resources correspond
to available rooms, teachers, students, etc. The main entities are the events,
which in order to take place require certain times and resources. An event

4 Emir Demirović, Nysret Musliu

could be a Mathematics lecture, which requires a math teacher and a specific
student group (both considered resources) and two time slots.

Constraints impose limits on what kind of assignments are legal. These
may constraint that a teacher can teach no more than five lessons per day, that
younger students should attend more demanding subjects (e.g. Mathematics)
in the morning, etc. We describe the constraints in the next section when we
present the SMT formulations.

Each constraint has a nonnegative cost function associated with it, which
penalizes assignments that violate it. It is important to differentiate between
hard and soft constraints. Hard constraints are constraints that define the
feasibility of the solution and are required for the solution to make sense,
while soft constraints define desirable situations, which define the quality of
the solution. Therefore, the cost function consists of two parts: infeasibility
value and objective value. The goal is to first minimize the infeasibility and
then minimize the objective function value part. The exact way these two are
calculated will be discussed in the next section.

3 Our Approach - Modeling HSTT for SMTs

Modern SMT solvers (e.g. z3 [5], Yices [6]) offer a number of underlying theo-
ries to choose from, which are described in detail in the standardization SMT-
LIB [2]. Modeling of the problem at hand depends heavily on which theory we
have chosen. In our initial phase, we used two different theories: linear integer
arithmetic and bit vector. In the following, we present a bit vector formula-
tion for HSTT, as it was more successful in initial experiments and afterwards
discuss briefly the problems encountered with linear integer arithmetic.

3.1 Bitvector Theory

A bitvector is a vector of bits. The size of the vector is arbitrary, but fixed.
A number of standard operations (e.g. addition, and, or operations on bitvec-
tors) and predicates (e.g. equality) are defined over bitvectors and an instance
consists of a conjunction of predicates. Most SMT solvers accept formulas
written in SMT-LIB file format, but can have their own formats, like Yices.
Since these files use prefix notation, we will do so as well in the description of
the constraints with the addition of brackets and comas in order to ease read-
ing. E.g. In infix notation one would write (a = b), while in prefix notation
the same expression would be written as (= a b), while we choose to write
(= (a, b)).

Most operations are interpreted as usual and all bitvector operands are of
the same length. In the following we present some of the notations we will use
in which bva and bvb are bitvectors and k is a constant integer:

– inv(bva) - inverts bva bits (e.g. inv(1011001) = 0100110).

Solving High School Timetabling with Satisfiability Modulo Theories 5

– add(bva, bvb) - adds two bitvectors in the same way two unsigned integers
would be added (overflow might occur).

– or(bva, bvb) - performs bitwise or on its operands.
– lshift(bva, k) - applies noncyclic left shift by k operation on bva (e.g.

lshift(10011, 2) = 01100).
– rshift(bva, k) - similar to lshift, but uses right shifting.
– extract(bva, k) - returns the k − th bit of bva

An example SMT instance would be the following:

(= (1010, lshift(bva, 1)) ∧ (< (bva, 1000)) (1)

The problem is to determine whether there exists a bitvector bva for which
the above formula holds. It states that bva must be equal to 1010 after it is
shifted to the left by one place (first clause) and bva must be less than (in
the standard way binary numbers are compared) 1000 (second clause). The
formula is satisfiable and bva = 0101 is a model since it satisfied both clauses,
while bva = 1101 is not due to not satisfying the second clause. Note that this
is a decision problem.

In the optimization variant, weights may be assigned to clauses and the
goal is to find a model which will satisfy all clauses without weights and will
minimize the sum of weights of unsatisfied clauses. Optimization is not part
of standard SMT solvers by default, although Yices [6] supports it. E.g. if we
assigned a weight of 10 to the second clause in the previous example, both
bva = 1101 and bva = 0101 would be considered solutions to the problem, but
the latter would be considered a better solution.

3.1.1 Variables and Definitions

For each event e (e.g. a lesson), we create a number of bit vectors all of length
n, where n is the number of time slots available in the instance. The vectors
along with their meanings are as follows:

– Ye - the i− th bit is set (a bit is set if it has value 1) if the event is taking
place at time slot i and is not set otherwise. In xHSTT terminology, Ye

covers all subevents of event e. This implies that two subevents of the same
event can never clash in this representation.

– Se - the i− th bit is set if the i− th time slot is declared as a starting time
for event e and is not set otherwise.

– Ke,d - the i − th bit is set if the i − th time slot is declared as a starting
time of duration d for event e and is not set otherwise.

As an example of the above variables, take the following bitvectors:

7 6 5 4 3 2 1 0 (time slot)
0 1 1 0 0 1 1 0 (Ye)
0 1 1 0 0 0 1 0 (Se)
0 1 1 0 0 0 0 0 (Ke,1)
0 0 0 0 0 0 1 0 (Ke,2)

(2)

6 Emir Demirović, Nysret Musliu

From Ye, we see that event e (e.g. a Math lesson) is taking place at time
slot 1, 2, 5 and 6, because those bits are set within Ye. Similarly, time slots 1,
5 and 6 are labeled as starting times from Se, meaning event e has been split
into three subevents. Time slot 1 is labeled as a double lesson by Ke,2, while
5 and 6 as lessons of duration 1 by Ke,1. Note that time slot 5 could have also
been labeled as a double lesson instead of having two lessons of duration 1.
Reasons for choice one possibility over the other is regulated by constraints.

In the formal specification of HSTT, there are no restrictions on what can
be defined as a starting point. One could regard a starting point as a time t
where a lecture takes place, but has not took place at t − 1. However, while
this is true, this cannot be the only case when a time would be regarded as
a starting time, since e.g. time t = 5 and t = 6 might be interpreted as last
time slot of Monday and first time slot of Tuesday and an event could be
scheduled on both of these times, but clearly we must regard both times as
starting times, since a double lecture does not extend over such long periods
of time. Therefore, any time can in general be regarded as a starting time. It
is of interest to note that the previous assignment, by the general formulation,
could also be treated as a double lesson for the purpose of constraints, even
though it extends over two days. Constraints give more control over these kind
of assignments.

Formalities that are tied to starting times with regard to the specification
are expressed as follows:

If a starting time for event e has been assigned at time t, then the corre-
sponding event must also take place at that time:∧

∀e∈E

(= (or(Se, Ye), Ye)) (3)

The or and = statements are required to ensure that Ye has bits set at
least in the same positions as Se. This type of encoding is used frequently and
one should become accustomed to it.

Event e starts at time t if e is taking place at time t and it is not taking
place at time (t− 1):∧

∀e∈Espec)

= (or(and(Ye, lshift(inv(Ye, 1)), Se), Se) (4)

Note that the ordering of the application of inv and lshift is important.
Let K+

e be the bit vector which i− th bit is set if any of Ke,d vectors have
an i− th bit set. This is obtained by taking the or of all of the Ke,d. If time t
has been set as a starting time, associate a duration with it:∧

∀e∈Espec

(= (K+
e,d, or(Se,t,K

+
e,d)) (5)

Let Sd
e be the vector obtained as rshift(Se, d). If a subevent of duration d

has been assigned and immediately after the event is still taking place, then
assign that time as a starting time:

Solving High School Timetabling with Satisfiability Modulo Theories 7

∧
∀e∈Espec

∀d∈D

(= (or(and(rshift(Ye, d),Ke,d), Sd
e), Sd

e)) (6)

Let K∗e,d be the vector obtained by taking the and of all of Sek for k = 1..d
and Ye. When a bit in Ke,d is set, ensure that the event in question must take
place for d consecutive hours during this specified time:

∧
∀e∈Espec

∀d∈D

(= (or(K∗e,d,Ke,d),K∗e,d)) (7)

Let K
inv(k)
e,d be the vector obtained as rshift(inv(Ke,d), k), K#k

e,d be the

vector obtained by taking and of all Kj
e,d for j = 1..(k − 1) and K&k

e,d be the

vector obtained by taking the and of all K
#i)
e,d for i 6= k. If a duration has been

specified for time t, make sure that no other starting point other appropriate
Ke,t,d variables must be false:

∧
∀e∈Espec atopd∈D

(= (or(Ke,d,K
#d
e,d),Ke,d)) (8)

3.2 Cardinality Encodings

An important constraint that arises often is to determine the number of set
bits in a bit vector, as well as to impose penalties if the appropriate number
of bits are not set. E.g. if an event must take place for two hours, then exactly
two bits in its Ye must be set.

Let us define a unary operation reduceBit(bva) = bva ∧ sub(bva, 1). When
applied to bva, as the name suggests, it produces a new bitvector which has
one less bit set then bva. For example:

∧ 1 1 0 1 0 0 (bva)
1 1 0 0 1 1 (sub(bva, 1))
1 1 0 0 0 0 (reduceBit(bva))

(9)

The original bitvector had three bits set, while the produced one was two
set. The reduceBit operations is an important part for defining cardinality
constraints.

In order to ensure that at least k bits are set in a bitvector, we apply
reduceBit k−1 times and require that the resulting bitvector must be different
from zero. For at most k, we apply reduceBit k times and constrain that the
resulting bitvector must be equal to zero. For exactly k we encode at least k
and at most k. For example, asserting that at least 2 bits are set is done in
the following way:

8 Emir Demirović, Nysret Musliu

∧ 1 1 0 1 0 0 (bva)
1 1 0 0 1 1 (sub(bva, 1))

∧ 1 1 0 0 0 0 (reduceBit(bva))
1 0 1 1 1 1 (sub(reduceBit(bva)), 1)
1 0 0 0 0 0 (reduceBit(reduceBit(bva)))

(10)

∧ 1 1 0 1 0 0 (Ye)
1 1 0 0 1 1 (sub(bva, 1))

∧ 1 1 0 0 0 0 (reduceBit(bva))
1 0 1 1 1 1 (sub(reduceBit(bva)), 1)
1 0 0 0 0 0 (reduceBit(reduceBit(bva)))

(11)

0 0 1 0 0 0 (Pe)
0 0 0 0 1 0 (>> (Pe, 2))
0 0 0 0 0 1 (Te)

t r u e < (Te, >> (Pe, 2))

(12)

Since the final bitvector is different from the zero bitvector, we conclude
that at least 2 bits are set in bva.

For the soft cardinality constraints which penalize the objective value if
a certain number of bits is set rather than forbidding their assignments, a
similar technique. For at least k, it is asserted before each i − th application
of reduceBit that the current bitvector is different from zero and is penalized
by some weight if it is not the case. For example, asserting that at least 2 bits
are set is done in the following way for the soft version:

∧ 0 1 0 0 0 0 (bva 6= 0, no penalty)
0 0 1 1 1 1 (sub(bva, 1))
0 0 0 0 0 0 (reduceBit(bva) = 0, penalize)

(13)

Note that we checked for penalties in two cases (for the initial bitvector
bva and reduceBit(bva)), but only one case was penalized. For at most k, a
similar algorithm is used. First, bitReduce is applied k times as in the regular
cardinality constraint version. Then, bitReduce is applied n− k times to this
bitvector (n is the size of bva) and before each application it is asserted that
the current bitvector is zero and is penalized by some weight if it is not the
case. Note that if we have some hard constraint limiting the maximum number
of bits that may be set in a bitvector to some kmax, we do not perform the
second part of the algorithm n−k times, but rather just kmax−k times. This
was used frequently in the implementation.

3.3 Constraints

Each constraint has its points of application and each point generates a number
of deviations. Cost of the constraint is obtained by applying a cost function on
the set of deviations produced and multiplying it by a weight. A cost function

Solving High School Timetabling with Satisfiability Modulo Theories 9

may simply be the sum of all deviations. Our current implementation sup-
ports cost functions of sums of deviations, while cost function sum of squares
of deviations is supported by the model but not implemented. The HSTT spec-
ification allows for other cost functions as well, such as square of sums, but we
do not have an encoding for them currently. Fortunately, only two instances use
nonsupported cost functions (KosovaInstance1 and StPaulEngland instances).
Some constraints are always encoded as hard (e.g. Avoid Clashes Constraints,
Assign Times Constraints) and because of this we avoid discussing their soft
constraint variants.

We simplify the objective function by not tracking the infeasibility value,
rather regarding it was zero or nonzero. By doing so we simplify the compu-
tation, possibly offering a faster algorithm.

E, T and R are sets of events, times and resources, respectively. Each
constraint is applied to some subset of those three and will be denoted by
Espec, Tspec and Rspec. These subsets are naturally in general different from
constraint to constraint. Note that it is possible to have several constraints of
the same type, but with different subsets defined for them.

We present encodings used in the experimental results, in which we assume
that all resources are already assigned to events. We make this assumption as
this eases the modeling and readability of the constraints. Later on we provide
a description on how this limitation can be overcome.

3.3.1 Assign Time Constraints

Every event must be assigned a given amount of times. For example, if a lecture
lasts for two hours, two time slots must be assigned to it.

Each event’s Ye vector must have exactly d bits set, where d is the duration
of the event: ∧

∀e∈E

(exactly d[Ye,t : t ∈ T]) (14)

3.3.2 Avoid Clashes Constraint

Specified resources can only be used at most by one event at a time. For
example, a student may attend at most one lecture at any given time.

Let E(r) be the set of event which require resource r. For each resource r,
each time slot i and each combination of two Ye vectors of events from E(r)
at most one bit at i− th location may be set.∧

∀r∈R∀e1,e2∈E(r)e1 6=e2

(= (and(Ye1 , Ye2), 0)) (15)

For example, for resource r let E(r) = {Ye1 , Ye2 , Ye3} and let this constraint
be defined for r.

10 Emir Demirović, Nysret Musliu

∧ 0 0 1 1 1 1 (Ye1)
0 1 0 0 0 0 (Ye2)
0 0 0 0 0 0 (= 0)

(16)

The previous check ensures that there are no clashes for Ye1 and Ye2 .

∧ 0 0 1 1 1 1 (Ye1)
0 0 0 0 1 0 (Ye3)
0 0 0 0 1 0 (6= 0, violated)

(17)

However, since a clash exists between Ye1 and Ye3 , the constraint is detected
to be violated and some changes to the Ye1 , Ye2 , Ye3 bitvectors must be made.

3.3.3 Avoid Unavailable Times Constraints

Specified resources are unavailable at certain times. For example, a teacher
might be unable to work on Friday.

For each resource r, each unavailable time slot i and each Ye vector of
events from E(r) we force the i− th bit to be set to zero.∧

∀r∈Rspec∀e∈E(r)∀i∈Tspec

(= (extract(Ye, i), 0)) (18)

If this constraint is used as a soft constraint, all of the above clauses would
be assigned the given weight, as points of application are resources and de-
viations are calculated as the number of times a resource is assigned to an
unavailable time.

For example, if time slots 1 and 4 are unavailable for resource r and event
e requires r:

7 6 5 4 3 2 1 0 (time slot)
0 1 1 0 0 1 1 0 (Ye)

(19)

Ye would violate this constraint, as Ye is taking place on time slot 1, which
is a unavailable one, meaning that a different bitvector needs to be assigned
to Ye.

3.3.4 Split Events Constraints

This constraint has two parts.
The first part limits the number of starting times an event may have within

certain time frames. For example, an event may have at most one starting time
during each day, preventing it from being fragmented within days.

The second part limits the duration of the event for a single subevent.
For example, if four time slot must be assigned to a Mathematics lecture, we
may limit that the minimum and maximum duration of a subevent is equal
to 2, thus ensuring that the lecture will take place as two blocks of two hours,
forbidding having the lecture performed as one block of four hours.

Solving High School Timetabling with Satisfiability Modulo Theories 11

This constraint specifies the minimum Amin and maximum Amax amount
of starting times for the specified events:∧

∀e∈Espec

(atLeast Amin[Se,t] ∧ atMost Amax[Se,t) (20)

In addition, this constraint also imposes the minimum dmin and maximum
dmax duration for each subevent.∧

∀e∈Espec∀d∈ili<dmin∨i>dmax

(atMost 0[Ke,d]) (21)

If the constraint is specified as soft, then the soft cardinality encodings are
used instead. Points of applications are events and deviations are calculated as
the number of times an event has been assigned a duration which is less than
dmin or greater than dmax, plus the amount by which the number of starting
times for the event event falls short of Amin or exceeds Amax.

3.3.5 Spread Events Constraints

Certain events must be spread across the timetable, e.g. in order to avoid
situations in which an event would completely be scheduled only in one day.

An event group eg is a set of events. Let vector Zeg be a bit vector which
has its i − th bit set iff an event e ∈ eg is taking place at time i. This is
obtained by applying or to all of the appropriate Ye vectors.

This constraint specifies event groups to which it applies, as well as a num-
ber of time groups (sets of times) and for each such time group the minimum
and maximum number of starting times an event must have within times of
that time group. Let TGspec denote this set of sets of times and let masktg be
the bit vector which has its i− th bit set iff i is a time slot of time group tg:

There must be at least dmin
i starting times within the given time groups

(min is a subscript, not exponentiation):∧
∀tgi∈TGspec
eg∈EGspec

(atLeast dmin
i [and(Zeg,masktg)]) (22)

A similar encoding to the one above is also used, but with atMost dmax.
If this constraint is used as a soft constraint, the soft cardinality constraint

is used instead. Points of application are event groups (not events) and devi-
ations are calculated as the number by which the events group falls short of
the minimum or exceeds the maximum.

3.3.6 Distribute Split Events Constraint

This constraint specifies the minimal and maximum number of starting times
of a specified duration. For example, if duration(e) = 10, we may impose

12 Emir Demirović, Nysret Musliu

that the lecture should be split so that at least two starting times must have
duration three. Formally:

There must be at least dmin starting times with given duration d:∧
∀e∈Espec

(atLeast dmin[Ke,d] ∧ atMost dmax[Ke,d]) (23)

3.3.7 Limit Busy Times Constraints

This constraints imposes limits on the number of times a resource can become
busy within certain a time group, if the resource is busy at all during that time
group. For example, if a teacher teaches on Monday, he or she must teach at
least for three hours. This is useful in preventing situations in which teachers
or students would need to come to school for only to have a lesson or two.

A resource is busy at a time group tg iff it is busy in at least one of the
time slots of the tg. Let TGspec denote this set of sets of times:

∧
∀r∈Rspec

∀tg∈TGspec

(or(atLeast bmin[and(Ye,masktg)], (= (and(Ye,masktg)), 0)))

(24)
A similar encoding to the one above is also used, but with atMost bmax.

Note that in this case or represents logical or, rather than bitvectoror.
If this constraint is used as a soft constraint, the soft cardinality constraint

is used instead, although special care must be given as this is a conditional
cardinality constraint: if the calculated vector is different from zero then the
cardinality constraints need to be fulfilled. Points of application are resources
and each resource generates multiple deviations (one for each time group)
which calculated as the number by which the events group falls short of the
minimum or exceeds the maximum.

3.3.8 Limit Idle Times Constraints

This constraint specifies the minimal and maximum number of times in which a
resource can be idle during the times in the specified time groups. For example,
a typical constraint is to impose that teachers must not have any idle times.

A time slot t is idle with respect to time group tg (set of times) if it is
not busy at time t, but is busy at an early time and at a later time of the
time group tg. For example, if a teacher teaches classes Wednesdays at Wed2
and Wed5, he or she is idle at Wed3 and Wed4, but is not idle at Wed1
and Wed6. This constraint places limits on the number of idle times for each
resource. Let vector Ge,tg be the vector obtained by taking or of bitvectors
and(and(Ye,masktg), rshift((Ye,masktg), k)) where k = 1..n and n is the
number of times in time group tg. Let vector He,tg be similar, except using
lshift instead of rshift. We then encode the constraint as follows:

Solving High School Timetabling with Satisfiability Modulo Theories 13

There must be at least idlemin idle times during a time group:∧
∀tg∈TGspec

r∈Rspec

(atLeast idlemin[and(inv(Ye), and(He,tg, Ge,tg))]) (25)

A similar encoding to the one above is also used, but with atMost idlemax.
If this constraint is used as a soft constraint, the soft cardinality constraint is
used instead.

3.3.9 Cluster Busy Times Constraints

This constraint specifies the minimal and maximum number of specified time
groups in which a specified resource can be busy. For example, we may specify
that a teacher must fulfill all of his or her duties in at most three days of the
week.

We first define a helper bitvector Br for each resource, in which i− th bit
is set iff the resource is busy at the i− th time group. Therefore, i− th bit in
Br is equal to the or operation on all of the i − th bits of bitvectors in E(r).
With this helper bitvector, we may now encode the constraint as:

There must be at least bmin
tg busy time groups:

∧
∀r∈Rspec

(atLeast bmin
tg [Br]) (26)

A similar encoding to the one above is also used, but with atMost bmax.
If this constraint is used as a soft constraint, the soft cardinality constraint is
used instead.

3.3.10 Prefer Times Constraints

This constraint specified that certain events should be held at certain times. If
an optional parameter d is given, then this constraint only applies to subevents
assigned duration d. For example, a lesson of duration 2 must be scheduled
on Monday, excluding the last time slot on Monday.

Let Pe be the bitvector in which i − th bit is set iff i is a preferred time.
We then encode:

∧
∀e∈Espec

(atMost 0[and(?, inv(Pe))]) (27)

where ? is either Ye or Ke,d, depending on whether the optional parameter d
is given. Note that this constraint is not the same when the optional parameter
is not given and when d = 1.

14 Emir Demirović, Nysret Musliu

3.3.11 Order Events Constraints

This constraint specifies that one event can start only after another one has
finished. In addition to this, parameters Bmin and Bmax are given which define
the minimum and maximal separations between the two events and are by
default set to zero and the number of time slots, respectively. The constraint
specifies a set of pairs of events to which it applies.

If the first event in a pair is taking place at time t, then the second event
cannot take place at time t + Bmin nor at any previous times:∧

∀(e1,e2)∈E2
spec

(< (lshift(ei, Bmin), ej)) (28)

A similar encoding to the one above is also used, but with > and Bmax.
Special care must be taken as overflows may happen during the shift opera-
tions.

3.3.12 Link Events Constraints

Certain events must be held at the same time. For example, physical education
lessons for all classes of the same year must be held together. This constraint
specifies a certain number of event groups and imposes that all events within
an event group must be held simultaneously. Let EGspec denote this set of sets
of events. All events within an event group must be held at the same times:∧

∀eg∈EGspec
ej∈eg

(atMost 0[and(Zeg, inv(Yej))]) (29)

If the constraint is declared a soft one, the soft cardinality constraint is used
instead. Points of application are event groups (not events) and deviations are
calculated as the number of times in which at least one of the events within
the event group is taking place, but not all of them.

3.3.13 Extending the Model

As mentioned in the beginning, we made the assumption that all resources
have been already assigned to events, as it is easier to model, implement and
present the formulation. This is a reasonable assumption, as most instances
are of this form. Still, a significant part of the instances require assignments
of resource to events. Our model is easy to extend with these requirements
by introducing new bitvectors: for each event e and resource r, a bitvector is
created in which i − th bit is set iff resource r has been assigned to event e
at time i. With these bitvectors, the other resource assigning constraints (we
direct interested readers to [14]) can be encoded in a similar fashion as the
ones already presented, along with certain modifications need to be made to
Assign Time and Avoid Clash constraints.

Solving High School Timetabling with Satisfiability Modulo Theories 15

However, special care needs to be given when doing so to concrete in-
stances, as requirements for resource assignments can be diverse. For example,
in instance SpainInstance given in the ITC repository, assignments consist of
assigning one gym room out of two available. For instance EnglashStPaul,
room need to be assigned and many symmetries appear because all rooms are
identical. Hence, it might be a better idea to restrict the number of events
at each time to the number of rooms, rather than assigning rooms directly to
events.

In addition, it may be of interest to simplify the Ke,d and Se encodings
which would simply state that if an event has three consecutive bits set it is
treated as a subevent of duration 3 rather than of the complicated formulation
given or that only the first constraint regarding Se should be used. The reason
the encoding is so complicated is because of the way the general formulation
specifies starting times, but this is not necessary for all instances.

3.3.14 Other Theories

We have done some initial experiments with linear integer arithmetic theo-
ries in two different formulations. One of the formulations had variables which
were restricted to binary values and the encodings were similar to a pure SAT
formulation, except that the cardinality constraints could be encoded more el-
egantly. The second encoding took more advantage of the integer arithmetic in
which for each event we create a number of variables equal to its duration. The
value of the variable determines which time slot the event takes place. This
reduced the number of variables significantly when compared to the binary ver-
sion, but some constraints were harder to encode. However, regardless of that,
both modeling options failed to produce any solutions to problem instances,
even when only Assign Time, Avoid Clashes and Prefer Times constraints were
used. Therefore, we did not continue with these modelings and continued with
the bitvector formulation, which performed better in these initial experiments.

4 Computational Results

In our current experiments we evaluated our approach on some benchmark
instances from HSTT which can be found on the repository of the International
Timetabling Competition 2011 [1]. A subset of instances which were suggested
by the competition as test beds, as well as the ones used in the competition
have been chosen (these two sets intersect). All tests were performed on (Intel
Core i3-2120 CPU @ 3.30GHz with 4 GB RAM) and each instance was given
a single core. We restricted the computational time to 24 hours per instance.

In the instances, the number of time slots ranges from 25 to 142, number of
resources from 8 to 99, number of events from 21 to about 350 (exception is the
Italy4 instance with 748 events) with total event duration from 75 to around
1000. These numbers are approximations and vary heavily from instance to

16 Emir Demirović, Nysret Musliu

instance. We do not provide detailed information, but direct the interested
reader to [12] [1] [14].

In the tables below, we denote the objective function cost by (x, y), where
x is the infeasibility value and y is the objective value. If a dash is used, that
means that the solver failed to produce a solution. If an x is used, that means
that we had not provided an objective value, as in initial solution has been
generate in which only hard constraints had been considered and the resulting
objective value is essentially random.

We experimented with the SMT solver Yices 1.0.40 (released December 4,
2013) [6]. It was chosen because it is the only SMT solver to our knowledge
which directly supports optimization, rather than just checking for satisfiabil-
ity.

4.1 Comparisons of Results

1 We compare results we had obtained with our approach and GOAL (the
winning team of the competition). GOAL’s algorithm first generates an initial
solution using KHE [10] and then performs its heuristic search algorithm.
Note that the initial solution generated can be unfeasible and in some cases
the algorithm fails to improve this solution to a feasible one.

In the table below we present the computational results. To make our com-
parison fair, we ran our approach and GOAL on the same computer platform
and each solver was restricted to 24 hours and was given one core. The source
code of GOAL was provided by their authors [4]. The time to convert an in-
stance from xHSTT to a SMT instance is negligible (a few seconds at most)
when compared to the SMT solution process.

As we see in the table, we provide experimental results for 11 instances.
Other instances were not included because the current implementation does
not support them. The reasons for this are either that we did not yet im-
plement constraints which allow resource assignments (e.g. Assign Resource
Constraints), use the square of sums (we currently do not have a model for
this cost function) or the sum of squares cost function (we have a model for
this cost function but is not yet implemented).

The abbreviations used in the columns are as follows: OA is our approach,
GOAL is the winning team algorithm:

There might be differences in the results obtained by GOAL in the competi-
tion and obtained by our 24 hour runs, because in the competition competitors
in the final phase were given one month to use whatever available resources
to provide the best results. We focus here on the comparison with the winner
of ITC competition, because we think that this gives a good idea how good
our approach performs in a limited amount of time compare to one of best
existing approaches for this problem. For some of the instances, better upper
bounds were obtained after the competition by GOAL and other approaches
without time or resource limitations.

1 THIS IS JUST COPY PASTED FROM PATAT

Solving High School Timetabling with Satisfiability Modulo Theories 17

Name OA GOAL

BrazilianInstance1 (0, 47) (0, 54)

BrazilianInstance2 (0, 60) (1, 42)

BrazilianInstance4 (0, x) (16, 95)

BrazilianInstance5 (0, x) (4, 121)

BrazilianInstance6 (0, x) (4, 195)

BrazilianInstance7 (0, x) (11, 230)

SouthAfricaLewitt2009 (0, x) (0, 18)

SouthAfricaWoodlands (-, -) (2, 13)

GreeceHighSchool (0, 0) (0, 0)

ItalyInstance1 (-, -) (0, 19)

ItalyInstance4 (-, -) (0, 57)

Table 1 Results obtained after 24 hours.

It is interesting to note that Yices found an initial solution for all instance
except three quickly (within 10 minutes for all but SouthAfricaLewitt which
took several hours), but had not managed to perform any optimization for most
instances within the given time limit. Even so, as we can see from Table 1, from
the examples in which our encoding was done successfully, our approach could
find feasible solutions in which GOAL could not in seven instances within the
given time limit. A feasible solution has been found for all except for three
instances. In the case of the Italy4 instance, the program ran out of memory.

Overall, we conclude that the SMT approach can provide feasible solutions
in short time for several instances. Further research is needed to successfully
apply this technique for the optimization variant. In general, it seems that
SMT strengths are in satisfiabiliy rather than optimization, while GOAL could
be used for optimizing solutions which are (near) feasibility.

5 Conclusion

High school timetabling is a wide spread and important problem and because
of this, developing algorithms to solve the problem are of great importance.

In this paper, we have shown that the general HSTT problem [14] can in-
deed be modeled as a SMT problem, despite the generality of the specification,
with the exception of not being able to model the square of sums of deviation
cost function. We presented a complete and detailed encoding using theory
of bitvectors in the general sense as required by the specification under the
assumption that resources had been preassigned to events, but have sketched
how the model can be extended and discussed some important special cases.

We implemented and evaluated our approach on a subset of benchmark
instances suggested and used by the Third International Timetabling Compe-
tition 2011 and compared our results with GOAL, the winning team of the
Third International Timetabling Competition 2011. For some of the tested

18 Emir Demirović, Nysret Musliu

instance, our approach managed to find feasible solutions within a given time
limit and there is space for further improvements. Generated encodings solve
practical problems and as such can be used as benchmarks for the evaluation
of SMT solvers.

Furthermore, we plan on to investigate hybridization of our approach with
heuristic techniques (e.g. develop a large neighborhood search algorithm) that
will utilize SMT.

Acknowledgements The work was supported by the Vienna PhD School of Informatics
and the Austrian Science Fund (FWF): P24814-N23.

References

1. International timetabling competition 2011. http://www.utwente.nl/ctit/hstt/itc2011/welcome/.
Accessed: 2014-1-30

2. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: Version 2.0. In: Proceed-
ings of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh,
England), vol. 13, p. 14 (2010)

3. Bofill, M., Suy, J., Villaret, M.: A system for solving constraint satisfaction problems
with SMT. In: Theory and Applications of Satisfiability Testing–SAT 2010, pp. 300–305.
Springer (2010)

4. Brito, S.S., Fonseca, G.H.G., Toffolo, T.A.M., Santos, H.G., Souza, M.J.F.: A SA-VNS
approach for the high school timetabling problem. Electronic Notes in Discrete Math-
ematics 39, 169–176 (2012)

5. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms for
the Construction and Analysis of Systems, pp. 337–340. Springer (2008)

6. Dutertre, B., De Moura, L.: The Yices SMT solver. Tool paper at http://yices. csl. sri.
com/tool-paper. pdf 2, 2 (2006)

7. Even, S., Itai, A., Shamir, A.: On the complexity of time table and multi-commodity
flow problems. In: Foundations of Computer Science, 1975., 16th Annual Symposium
on, pp. 184–193. IEEE (1975)

8. Fonseca G. H. G., S.H.G.T.T.A.M.B.S.S.S.M.J.F.: A SA-ILS approach for the high
school timetabling problem. In: In Proceedings of the ninth international conference on
the practice and theory of automated timetabling, PATAT (2012)

9. Kheiri, A., Ozcan, E., Parkes, A.J.: HySST: hyper-heuristic search strategies and
timetabling. In: Proceedings of the Ninth International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2012) (2012)

10. Kingston, J.H.: The KHE high school timetabling engine (2010)
11. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.

In: Theory and Applications of Satisfiability Testing-SAT 2006, pp. 156–169. Springer
(2006)

12. Post, G., Ahmadi, S., Daskalaki, S., Kingston, J., Kyngas, J., Nurmi, C., Ranson,
D.: An XML format for benchmarks in high school timetabling. Annals of Op-
erations Research 194(1), 385–397 (2012). DOI 10.1007/s10479-010-0699-9. URL
http://dx.doi.org/10.1007/s10479-010-0699-9

13. Post, G., Di Gaspero, L., Kingston, J.H., McCollum, B., Schaerf, A.: The third inter-
national timetabling competition. Annals of Operations Research pp. 1–7 (2012)

14. Post, G., Kingston, J.H., Ahmadi, S., Daskalaki, S., Gogos, C., Kyngas, J., Nurmi,
C., Musliu, N., Pillay, N., Santos, H., et al.: XHSTT: an XML archive for high school
timetabling problems in different countries. Annals of Operations Research pp. 1–7
(2011)

15. Sørensen, M., Dahms, F.H.: A two-stage decomposition of high school timetabling ap-
plied to cases in Denmark. Computers & Operations Research 43, 36–49 (2014)

Solving High School Timetabling with Satisfiability Modulo Theories 19

16. Sørensen, M., Kristiansen, S., Stidsen, T.R.: International timetabling competition 2011:
An adaptive large neighborhood search algorithm. In: Proceedings of the Ninth Inter-
national Conference on the Practice and Theory of Automated Timetabling (PATAT
2012), p. 489 (2012)

17. Sørensen, M., Stidsen, T.R.: Comparing solution approaches for a complete model of
high school timetabling. Tech. rep., DTU Management Engineering (2013)

