Seminal Paper by Phan Minh Dung:
On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games.
Seminal Paper by Phan Minh Dung:
On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games.

“The purpose of this paper is to study the fundamental mechanism, humans use in argumentation, and to explore ways to implement this mechanism on computers.”
Seminal Paper by Phan Minh Dung:
On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games.

“The purpose of this paper is to study the fundamental mechanism, humans use in argumentation, and to explore ways to implement this mechanism on computers.”

“The idea of argumentational reasoning is that a statement is believable if it can be argued successfully against attacking arguments.”
Seminal Paper by Phan Minh Dung:
On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games.

“The purpose of this paper is to study the fundamental mechanism, humans use in argumentation, and to explore ways to implement this mechanism on computers.”

“The idea of argumentational reasoning is that a statement is believable if it can be argued successfully against attacking arguments.”

“[…] a formal, abstract but simple theory of argumentation is developed to capture the notion of acceptability of arguments.”
Argumentation Frameworks

...thus abstract away from everything but attacks (calculus of opposition)
Argumentation Frameworks

...thus abstract away from everything but attacks (calculus of opposition)

Example

\[stb(F) = \{a, d, e\}, \]
Argumentation Frameworks

...thus abstract away from everything but attacks (calculus of opposition)

Example

\[stb(F) = \{\{a, d, e\}, \{b, c, e\}\} \]
Argumentation Frameworks

...thus abstract away from everything but attacks (calculus of opposition)

Example

$$\text{stb}(F) = \{\{a, d, e\}, \{b, c, e\}\}$$
$$\text{pref}(F) = \{\{a, d, e\}\},$$
Argumentation Frameworks

...thus abstract away from everything but attacks (calculus of opposition)

Example

\[\begin{align*}
stb(F) &= \{\{a, d, e\}, \{b, c, e\}\} \\
pref(F) &= \{\{a, d, e\}, \{b, c, e\}\},
\end{align*}\]
Argumentation Frameworks

...thus abstract away from everything but attacks (calculus of opposition)

Example

\[
\begin{align*}
stb(F) &= \{\{a, d, e\}, \{b, c, e\}\} \\
pref(F) &= \{\{a, d, e\}, \{b, c, e\}, \{a, b\}\}
\end{align*}
\]
Where are We now?

Multitude of semantics
- understanding their capabilities
- and relations between

Faster and better systems
ICCMA
(http://www.dbai.tuwien.ac.at/iccma17/)
so far, best systems reduction-based

Stefan Woltran (TU Wien)
Advanced Systems for Argumentation
Sept 13, 2016 4 / 27
Where are We now?

Multitude of semantics
- understanding their capabilities
- and relations between

Faster and better systems
- ICCMA (http://www.dbai.tuwien.ac.at/iccma17/)
- so far, best systems reduction-based
Outline

- The Role of Conflicts Revisited
- Exploiting the Babylonian Confusion
- Conclusions and Open Questions
Implicit Conflicts

Definition

Given AF $F = (A, R)$, $a, b \in A$, σ a semantics. $\{a, b\}$ is a σ-implicit conflict if $(a, b) \notin R$, $(b, a) \notin R$, and there is no $E \in \sigma(F)$ s.t. $\{a, b\} \subseteq E$.

Example

Recall $\text{pref}(F) = \{\{a, d, e\}, \{b, c, e\}, \{a, b\}\}$ and $\text{stb}(F) = \{\{a, d, e\}, \{b, c, e\}\}$.

Implicit conflicts for pref: $\{a, f\}$, $\{b, f\}$

Implicit conflicts for stb: $\{a, b\}$, $\{a, f\}$, $\{b, f\}$
Implicit Conflicts

Definition

Given AF $F = (A, R)$, $a, b \in A$, σ a semantics. $\{a, b\}$ is a σ-implicit conflict if $(a, b) \not\in R$, $(b, a) \not\in R$, and there is no $E \in \sigma(F)$ s.t. $\{a, b\} \subseteq E$.

Example

Recall $\text{pref}(F) = \{\{a, d, e\}, \{b, c, e\}, \{a, b\}\}$ and $\text{stb}(F) = \{\{a, d, e\}, \{b, c, e\}\}$.

- Implicit conflicts for pref: $\{a, f\}$, $\{b, f\}$
- Implicit conflicts for stb: $\{a, b\}$, $\{a, f\}$, $\{b, f\}$
Implicit Conflicts (ctd.)

Making Implicit Conflicts Explicit

Diagram:
- Nodes: a, c, f, e, b, d
- Edges: a → c, c → f, f → e, b → d, d → f, f → a

Stefan Woltran (TU Wien)
We have $\text{stb}(F) = \text{stb}(F') = \{\{a, d, e\}, \{b, c, e\}\}$.

\[
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c} \\
\text{d} \\
\text{f} \\
\text{e} \\
\end{array}
\]
Conflict-Explicit Conjecture (Stable Case)

For each AF $F = (A, R)$ there exists an AF $F' = (A', R')$ such that $stb(F) = stb(F')$ and F' is free of stb-implicit conflicts.
Implicit Conflicts (ctd.)

Conflict-Explicit Conjecture (Stable Case)

For each AF $F = (A, R)$ there exists an AF $F' = (A', R')$ such that $\text{stb}(F) = \text{stb}(F')$ and F' is free of stb-implicit conflicts.

Why important?
Implicit Conflicts (ctd.)

Conflict-Explicit Conjecture (Stable Case)

For each AF $F = (A, R)$ there exists an AF $F' = (A', R')$ such that $stb(F) = stb(F')$ and F' is free of stb-implicit conflicts.

Why important?

- CDCL huge success story in SAT solving
- Experiments indicate that making conflicts explicit is supportive for argumentation systems
Implicit conflicts on instances from the ICCMA 2015 stable generator. Average of 17 implicit conflicts per (non-rejected) argument.
Implicit Conflicts (ctd.)

Conflict-Explicit Conjecture (Stable Case)

For each AF $F = (A, R)$ there exists an AF $F' = (A', R')$ such that $stb(F) = stb(F')$ and F' is free of stb-implicit conflicts.
Conflict-Explicit Conjecture (Stable Case)

For each AF $F = (A, R)$ there exists an AF $F' = (A', R')$ such that $stb(F) = stb(F')$ and F' is free of stb-implicit conflicts.

We show that the conjecture does not hold for stable semantics (in case $A = A'$).
Implicit Conflicts (ctd.)

Conflict-Explicit Conjecture (Stable Case)

For each AF $F = (A, R)$ there exists an AF $F' = (A', R')$ such that $\text{stb}(F) = \text{stb}(F')$ and F' is free of stb-implicit conflicts.

We show that the conjecture does not hold for stable semantics (in case $A = A'$).

For preferred and semi-stable semantics, it does not hold in general.
Implicit Conflicts (ctd.)

Stable extensions:
\[
\{
\{c\}\cup M_1^i \cup M_2^j \mid i, j \in \{1, 2, 3\}, M_1^i = \{v_i\}, M_2^i = \{u_i\}, M_3^i = \{x_i, y_i\} \\
\} \cup \\
\{
\{a, v_1, v_2\}, \{b, u_1, u_2\}, \{a, v_1, y_2\}, \{a, y_1, v_2\}, \{b, u_1, x_2\}, \{b, x_1, u_2\}\}
\]
Implicit Conflicts (ctd.)

Stable extensions:
\[\{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\} \cup \]
Implicit Conflicts (ctd.)

Stable extensions:
\[\{\{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\}\} \cup \]
Stable extensions:
\[\{\{c\} \cup M_{i1} \cup M_{j2} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\}\} \cup \]
Stable extensions:
\[
\{\{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\}\} \cup
\]
Implicit Conflicts (ctd.)

Stable extensions:
\[
\left\{ \{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, \ M_{i1} = \{v_i\}, \ M_{i2} = \{u_i\}, \ M_{i3} = \{x_i, y_i\}\right\}
\]
Implicit Conflicts (ctd.)

Stable extensions:
\[
\{(c) \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\}\} \cup
\]
Implicit Conflicts (ctd.)

Stable extensions:
\[
\left\{ \{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\} \right\} \cup
\]

Stefan Woltran (TU Wien)
Advanced Systems for Argumentation
Sept 13, 2016
11 / 27
Implicit Conflicts (ctd.)

Stable extensions:
\[
\{ \{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\}\} \cup
\]
Implicit Conflicts (ctd.)

Stable extensions:
\[
\{\{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\}\} \cup
\]
Implicit Conflicts (ctd.)

Stable extensions:
\[
\{ \{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, \ M_{i1} = \{v_i\}, \ M_{i2} = \{u_i\}, \ M_{i3} = \{x_i, y_i\}\} \cup
\{ \{a, v_1, v_2\},
\]

Stefan Woltran (TU Wien)
Advanced Systems for Argumentation
Sept 13, 2016 11 / 27
Implicit Conflicts (ctd.)

Stable extensions:
\[
\{\{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\}\} \cup \\
\{\{a, v_1, v_2\}, \{b, u_1, u_2\}\},
\]
Implicit Conflicts (ctd.)

Stable extensions:
\[
\left\{\{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\}\right\} \cup \\
\left\{\{a, v_1, v_2\}, \{b, u_1, u_2\}, \{a, v_1, y_2\}\right\}
\]
Implicit Conflicts (ctd.)

Stable extensions:
\[
\left\{ \{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\} \right\} \cup \\
\left\{ \{a, v_1, v_2\}, \{b, u_1, u_2\}, \{a, v_1, y_2\}, \{a, y_1, v_2\} \right\},
\]
Implicit Conflicts (ctd.)

Stable extensions:
\[
\{\{c\} \cup M_i \cup M_j \mid i, j \in \{1, 2, 3\}, M_i = \{v_i\}, M_i = \{u_i\}, M_i = \{x_i, y_i\}\} \cup \{
\{a, v_1, v_2\}, \{b, u_1, u_2\}, \{a, v_1, y_2\}, \{a, y_1, v_2\}, \{b, u_1, x_2\}\},
\]
Implicit Conflicts (ctd.)

Stable extensions:
\[
\{ \{ c \} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\} \}, M_{i1} = \{ v_i \}, M_{i2} = \{ u_i \}, M_{i3} = \{ x_i, y_i \} \} \cup
\{ \{ a, v_1, v_2 \}, \{ b, u_1, u_2 \}, \{ a, v_1, y_2 \}, \{ a, y_1, v_2 \}, \{ b, u_1, x_2 \}, \{ b, x_1, u_2 \} \}
\]
Implicit Conflicts (ctd.)

Stable extensions:
\[
\{\{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\}\} \cup \\
\{\{a, v_1, v_2\}, \{b, u_1, u_2\}, \{a, v_1, y_2\}, \{a, y_1, v_2\}, \{b, u_1, x_2\}, \{b, x_1, u_2\}\}
\]
Implicit Conflicts (ctd.)

Stable extensions:
\[
\{\{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\}\} \cup \\
\{\{a, v_1, v_2\}, \{b, u_1, u_2\}, \{a, v_1, y_2\}, \{a, y_1, v_2\}, \{b, u_1, x_2\}, \{b, x_1, u_2\}\}
\]
Implicit Conflicts (ctd.)

Stable extensions:
\[
\{\{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\}\} \cup \{\{a, v_1, v_2\}, \{b, u_1, u_2\}, \{a, v_1, y_2\}, \{a, y_1, v_2\}, \{b, u_1, x_2\}, \{b, x_1, u_2\}\}
\]
Stable extensions:

\[
\{\{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\}\} \cup \\
\{\{a, v_1, v_2\}, \{b, u_1, u_2\}, \{a, v_1, y_2\}, \{a, y_1, v_2\}, \{b, u_1, x_2\}, \{b, x_1, u_2\}\}
\]
Implicit Conflicts (ctd.)

Stable extensions:
\[
\{\{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\}\} \cup
\{\{a, v_1, v_2\}, \{b, u_1, u_2\}, \{a, v_1, y_2\}, \{a, y_1, v_2\}, \{b, u_1, x_2\}, \{b, x_1, u_2\}\}
\]
Implicit Conflicts (ctd.)

Stable extensions:
\[
\{\{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\}\} \cup \\
\{\{a, v_1, v_2\}, \{b, u_1, u_2\}, \{a, v_1, y_2\}, \{a, y_1, v_2\}, \{b, u_1, x_2\}, \{b, x_1, u_2\}\}
\]
Stable extensions:
\[
\{\{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{1i} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\}\} \cup \{\{a, v_1, v_2\}, \{b, u_1, u_2\}, \{a, v_1, y_2\}, \{a, y_1, v_2\}, \{b, u_1, x_2\}, \{b, x_1, u_2\}\}
\]
Implicit Conflicts (ctd.)

Stable extensions:
\[
\{\{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\}\} \cup \\
\{\{a, v_1, v_2\}, \{b, u_1, u_2\}, \{a, v_1, y_2\}, \{a, y_1, v_2\}, \{b, u_1, x_2\}, \{b, x_1, u_2\}\}
\]
Implicit Conflicts (ctd.)

Stable extensions:

\[
\{\{c\}\cup M_{1i}\cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\}\}\cup
\{\{a, v_1, v_2\}, \{b, u_1, u_2\}, \{a, v_1, y_2\}, \{a, y_1, v_2\}, \{b, u_1, x_2\}, \{b, x_1, u_2\}\}
\]

Stefan Woltran (TU Wien)
Implicit Conflicts (ctd.)

Stable extensions:
\[
\{\{c\} \cup M_{1i} \cup M_{2j} \mid i, j \in \{1, 2, 3\}, M_{i1} = \{v_i\}, M_{i2} = \{u_i\}, M_{i3} = \{x_i, y_i\}\} \cup \\
\{\{a, v_1, v_2\}, \{b, u_1, u_2\}, \{a, v_1, y_2\}, \{a, y_1, v_2\}, \{b, u_1, x_2\}, \{b, x_1, u_2\}\}
\]
A general way of adding conflicts (as soon as detected) to the AF thus is not possible. Still,

- for stable semantics results show that it can be done by adding arguments
- it might work in certain situations
- relaxation: extensions need not to be fully retained
Exploiting the Babylonian Confusion

Many things have already been done:

- compute grounded extension first and use reduced AF
- compute preferred extensions via smart maximization of admissible (or complete) sets
Exploiting the Babylonian Confusion

Many things have already been done:

- compute grounded extension first and use reduced AF
- compute preferred extensions via smart maximization of admissible (or complete) sets

Can we do better?
Signatures

Definition

The signature of a semantics σ is defined as

$$\Sigma_\sigma = \{ \sigma(F) \mid F \text{ is an AF} \}.$$

Thus signatures capture all what a semantics can express.

Example

a b

c d e f

$S = \{ \{a, d, e\}, \{b, c, e\}, \{a, b\}\} \in \Sigma_{\text{pref}}$

Questions:

- $S \in \Sigma_{\text{sem}}$?
- $S \in \Sigma_{\text{stb}}$?
Signatures

Definition

The signature of a semantics σ is defined as

$$\Sigma_\sigma = \{ \sigma(F) \mid F \text{ is an AF} \}.$$

Thus signatures capture all what a semantics can express.

Example

- $S = \{\{a, d, e\}, \{b, c, e\}, \{a, b\}\} \in \Sigma_{\text{pref}}$
- Questions: $S \in \Sigma_{\text{sem}}$? $S \in \Sigma_{\text{stb}}$?
Signatures (ctd.)

Definition

Given a collection S of sets of arguments, define

$\text{Confs}_S = \{(a, b) \in \bigcup S \times \bigcup S \mid \nexists S \in S : a, b \in S\}$, and

$bd(S) = \{T \subseteq \bigcup S \mid b \in \bigcup S \setminus T \iff \exists a \in T : (a, b) \in \text{Confs}_S\}$.

Example

For $S = \{\{a, b\}, \{a, c, e\}, \{b, d, e\}\}$, we have

$\text{Confs}_S = \{(a, d), (d, a), (b, c), (c, b), (c, d), (d, c)\}$

$bd(S) = \{\{a, b, e\}, \{a, c, e\}, \{b, d, e\}\}$
Theorem

\[\Sigma_{naive} = \{ S \neq \emptyset \mid S = bd(S) \} \]
\[\Sigma_{stb} = \{ S \mid S \subseteq bd(S) \} \]
\[\Sigma_{pref} = \{ S \neq \emptyset \mid S \text{ incomparable and conflict-sensitive} \} \]
\[\Sigma_{sem} = \{ S \neq \emptyset \mid S \text{ incomparable and conflict-sensitive} \} \]
Signatures (ctd.)

Theorem

\[
\Sigma_{naive} = \{ S \neq \emptyset \mid S = bd(S) \}
\]
\[
\Sigma_{stb} = \{ S \mid S \subseteq bd(S) \}
\]
\[
\Sigma_{pref} = \{ S \neq \emptyset \mid S \text{ incomparable and conflict-sensitive} \}
\]
\[
\Sigma_{sem} = \{ S \neq \emptyset \mid S \text{ incomparable and conflict-sensitive} \}
\]

Example

\[
S = \{\{a, d, e\}, \{b, c, e\}, \{a, b\}\} \in \Sigma_{pref}. \ S \in \Sigma_{sem}? \ \text{Yes.}
\]
\[
S \in \Sigma_{stb}? \ \text{No!} \ (bd(S) = \{\{a, b, e\}, \{a, c, e\}, \{b, d, e\}\})
\]
Theorem

\[\Sigma_{naive} = \{ S \neq \emptyset \mid S = bd(S) \}\]
\[\Sigma_{stb} = \{ S \mid S \subseteq bd(S) \}\]
\[\Sigma_{pref} = \{ S \neq \emptyset \mid S \text{ incomparable and conflict-sensitive} \}\]
\[\Sigma_{sem} = \{ S \neq \emptyset \mid S \text{ incomparable and conflict-sensitive} \}\]

\[\Sigma_{naive} \subset \Sigma_{stb} \setminus \{ \emptyset \} \subset \Sigma_{pref} = \Sigma_{sem}\]
Two-dimensional Signatures

Definition

Given semantics σ, τ, their 2-dimensional signature is defined as

$$\Sigma_{\sigma, \tau} = \{ \langle \sigma(F), \tau(F) \rangle \mid F \text{ is an AF} \}.$$

Clearly, $\langle S, T \rangle \in \Sigma_{\sigma, \tau}$ only if $S \in \Sigma_{\sigma}$ and $T \in \Sigma_{\tau}$.
Definition

Given semantics \(\sigma, \tau \), their **2-dimensional signature** is defined as

\[
\Sigma_{\sigma, \tau} = \{ \langle \sigma(F), \tau(F) \rangle \mid F \text{ is an AF} \}.
\]

- Clearly, \(\langle S, T \rangle \in \Sigma_{\sigma, \tau} \) only if \(S \in \Sigma_{\sigma} \) and \(T \in \Sigma_{\tau} \).
- Well-known semantics relations need to be satisfied
 - \(stb \subseteq sem \subseteq pref \quad stb \subseteq naive \)
Two-dimensional Signatures

Definition

Given semantics σ, τ, their 2-dimensional signature is defined as

$$\Sigma_{\sigma,\tau} = \{ \langle \sigma(F), \tau(F) \rangle \mid F \text{ is an AF} \}.$$

- Clearly, $\langle S, T \rangle \in \Sigma_{\sigma,\tau}$ only if $S \in \Sigma_\sigma$ and $T \in \Sigma_\tau$.
- Well-known semantics relations need to be satisfied
 - $stb \subseteq sem \subseteq pref$
 $stb \subseteq naive$
- Other conditions?
Two-dimensional Signatures

Definition
Given semantics σ, τ, their 2-dimensional signature is defined as

$$\Sigma_{\sigma, \tau} = \{ \langle \sigma(F), \tau(F) \rangle | F \text{ is an AF} \}.$$

- Clearly, $\langle S, T \rangle \in \Sigma_{\sigma, \tau}$ only if $S \in \Sigma_\sigma$ and $T \in \Sigma_\tau$.
- Well-known semantics relations need to be satisfied
 - $stb \subseteq sem \subseteq pref$ $stb \subseteq naive$
- Other conditions?

\Rightarrow Measure of the independence of semantics.

\Rightarrow Useful for the enumeration of multiple sets of extensions.
Two-dimensional Signatures (ctd.)

Theorem

\[\Sigma_{\text{naive}, \text{stb}} = \{ \langle S, T \rangle \mid S \in \Sigma_{\text{naive}}, T \in \Sigma_{\text{stb}}, T \subseteq S \} \]

Example

\[F_{\text{naive}, \text{stb}}(\{\{a, b\}, \{a, d\}, \{b, c\}\}, \{\{a, d\}\}): \]

```
  a  b  d
x 1 x 2
  c
```

Stefan Woltran (TU Wien) Advanced Systems for Argumentation Sept 13, 2016 20 / 27
Theorem

\[\Sigma_{naive, stb} = \{ \langle S, T \rangle \mid S \in \Sigma_{naive}, T \in \Sigma_{stb}, T \subseteq S \} \]

\[F_{naive, stb}(S, T) = (A, R) \] with

- \(A = \bigcup S \cup \{ x_S \mid S \in S \setminus T \} \) and
- \(R = \text{Conf}s_S \cup \{ (x_S, x_S), (a, x_S) \mid S \in S \setminus T, a \in \bigcup S \setminus S \} \)
Two-dimensional Signatures (ctd.)

Theorem

\[\Sigma_{\text{naive, stb}} = \{\langle S, T \rangle \mid S \in \Sigma_{\text{naive}}, T \in \Sigma_{\text{stb}}, T \subseteq S\} \]

\[F_{\text{naive, stb}}(S, T) = (A, R) \text{ with} \]

- \[A = \bigcup S \cup \{x_S \mid S \in S \setminus T\} \]
- \[R = \text{Conf}_{\mathcal{S}} \cup \{(x_S, x_S), (a, x_S) \mid S \in S \setminus T, a \in \bigcup S \setminus S\} \]

Example

\[F_{\text{naive, stb}}(\{\{a, b\}, \{a, d\}, \{b, c\}\}, \{\{a, d\}\}) : \]

Diagram:

```
  a --> c
  |    |
  v    v
  b --> d
```

Stefan Woltran (TU Wien) Advanced Systems for Argumentation Sept 13, 2016 20 / 27
Two-dimensional Signatures (ctd.)

Theorem

\[\Sigma_{\text{naive, stb}} = \{\langle S, T \rangle \mid S \in \Sigma_{\text{naive}}, T \in \Sigma_{\text{stb}}, T \subseteq S\}\]

\[F_{\text{naive, stb}}(S, T) = (A, R) \text{ with}
\]

- \[A = \bigcup S \cup \{x_S \mid S \in S \setminus T\}\] and
- \[R = \text{Conf}_{S} \cup \{(x_S, x_S), (a, x_S) \mid S \in S \setminus T, a \in \bigcup S \setminus S\}\]

Example

\[F_{\text{naive, stb}}(\{\{a, b\}, \{a, d\}, \{b, c\}\}, \{\{a, d\}\}):\]

![Graph diagram]
Two-dimensional Signatures (ctd.)

Theorem

\[\Sigma_{naive, stb} = \{ \langle S, T \rangle \mid S \in \Sigma_{naive}, T \in \Sigma_{stb}, T \subseteq S \} \]

\[F_{naive, stb}(S, T) = (A, R) \text{ with} \]

- \(A = \bigcup S \cup \{ x_S \mid S \in S \setminus T \} \) and
- \(R = \text{Confs}_S \cup \{ (x_S, x_S), (a, x_S) \mid S \in S \setminus T, a \in \bigcup S \setminus S \} \)

Example

\[F_{naive, stb}(\{ \{a, b\}, \{a, d\}, \{b, c\} \}, \{\{a, d\}\}) : \]

![Diagram with nodes and edges representing relationships between the sets {a, b}, {a, d}, {b, c}, and {a, d}.](image_url)
Two-dimensional Signatures (ctd.)

Example – Stable vs. Preferred

- \(S = \{ \{a, b\}, \{a, d, e\} \} \)
- \(T = \{ \{a, b\}, \{a, d, e\}, \{b, c, e\}, \{c, d, e\} \} \)
- \(\langle S, T \rangle \in \Sigma_{\text{stb,pref}} \) ?

However, \(\langle S, T \rangle \not\in \Sigma_{\text{stb,pref}} \)

Theorem

\(\Sigma_{\text{stb,pref}} = \{ \langle S, T \rangle | S \in \Sigma_{\text{stb}}, T \in \Sigma_{\text{pref}}, S \subseteq T \cap \text{bd}(T) \} \)
Example – Stable vs. Preferred

- \(S = \{\{a, b\}, \{a, d, e\}\} \)
- \(T = \{\{a, b\}, \{a, d, e\}, \{b, c, e\}, \{c, d, e\}\} \)
- \(\langle S, T \rangle \in \Sigma_{stb,pref} \) ?
- \(S \in \Sigma_{stb} \) ✔
- \(T \in \Sigma_{pref} \) ✔
Example – Stable vs. Preferred

\[S = \{\{a, b\}, \{a, d, e\}\} \]

\[T = \{\{a, b\}, \{a, d, e\}, \{b, c, e\}, \{c, d, e\}\} \]

\[\langle S, T \rangle \in \Sigma_{stb,pref} \]

\[S \in \Sigma_{stb} \checkmark \]

\[T \in \Sigma_{pref} \checkmark \]

\[S \subseteq T \checkmark \]
Example – Stable vs. Preferred

- $S = \{\{a, b\}, \{a, d, e\}\}$
- $T = \{\{a, b\}, \{a, d, e\}, \{b, c, e\}, \{c, d, e\}\}$
- $\langle S, T \rangle \in \Sigma_{stb,pref} \, ?$
- $S \in \Sigma_{stb} \checkmark$
- $T \in \Sigma_{pref} \checkmark$
- $S \subseteq T \checkmark$
- However, $\langle S, T \rangle \notin \Sigma_{stb,pref} \times$
Two-dimensional Signatures (ctd.)

Example – Stable vs. Preferred

- $S = \{\{a, b\}, \{a, d, e\}\}$
- $T = \{\{a, b\}, \{a, d, e\}, \{b, c, e\}, \{c, d, e\}\}$
- $\langle S, T \rangle \in \Sigma_{stb,pref} \, ?$
- $S \in \Sigma_{stb} \checkmark$
- $T \in \Sigma_{pref} \checkmark$
- $S \subseteq T \checkmark$
- However, $\langle S, T \rangle \notin \Sigma_{stb,pref} \times$

Theorem

$$\Sigma_{stb,pref} = \{\langle S, T \rangle \mid S \in \Sigma_{stb}, T \in \Sigma_{pref}, S \subseteq T \cap bd(T)\}$$
Example – Stable vs. Preferred

- $S = \{\{a, b\}, \{a, d, e\}\}$
- $T = \{\{a, b\}, \{a, d, e\}, \{b, c, e\}, \{c, d, e\}\}$
- $\langle S, T \rangle \in \Sigma_{\text{stb,pref}}$?
Example – Stable vs. Preferred

- $S = \{\{a, b\}, \{a, d, e\}\}$
- $T = \{\{a, b\}, \{a, d, e\}, \{b, c, e\}, \{c, d, e\}\}$
- $\langle S, T \rangle \in \Sigma_{\text{stb}, \text{pref}}$?

Stefan Woltran (TU Wien)
Advanced Systems for Argumentation
Sept 13, 2016 22 / 27
Example – Stable vs. Preferred

- $S = \{\{a, b\}, \{a, d, e\}\}$
- $T = \{\{a, b\}, \{a, d, e\}, \{b, c, e\}, \{c, d, e\}\}$
- $\langle S, T \rangle \in \Sigma_{stb,pref}$?

$bd(T) = \{\{a, b, e\}, \{a, d, e\}, \{b, c, e\}, \{c, d, e\}\}$
Example – Stable vs. Preferred

- $S = \{\{a, b\}, \{a, d, e\}\}$
- $\mathcal{T} = \{\{a, b\}, \{a, d, e\}, \{b, c, e\}, \{c, d, e\}\}$
- $\langle S, \mathcal{T} \rangle \in \Sigma_{stb, pref}$?

$$bd(\mathcal{T}) = \{\{a, b, e\}, \{a, d, e\}, \{b, c, e\}, \{c, d, e\}\}$$

$\Rightarrow \langle S', \mathcal{T} \rangle \in \Sigma_{stb, pref}$ iff

$S' \subseteq \{\{a, d, e\}, \{b, c, e\}, \{c, d, e\}\} = \mathcal{T} \cap bd(\mathcal{T})$.
Two-dimensional Signatures (ctd.)

Example – Stable vs. Preferred

- $S = \{\{a, b\}, \{a, d, e\}\}$
- $T = \{\{a, b\}, \{a, d, e\}, \{b, c, e\}, \{c, d, e\}\}$
- $\langle S, T \rangle \in \Sigma_{\text{stb,pref}}$?

$$bd(T) = \{\{a, b, e\}, \{a, d, e\}, \{b, c, e\}, \{c, d, e\}\}$$

$$\Rightarrow \langle S', T \rangle \in \Sigma_{\text{stb,pref}} \text{ iff } S' \subseteq \{\{a, d, e\}, \{b, c, e\}, \{c, d, e\}\} = T \cap bd(T).$$

$$\Rightarrow \langle S, T \rangle \notin \Sigma_{\text{stb,pref}}.$$
Possible Application in Practice

Consider enumerating preferred extensions:

- start with the less complex stable semantics
- Assume \(\{a, b\} \) and some \(S \cup \{a\} \) is stable
- By inspecting \(\Sigma_{\text{stb,pref}} \) we can exclude any \(S' \cup \{b\} \) with \(S \cap S' \neq \emptyset \) as preferred, even though

\[
\mathcal{T} = \{\{a, b\}, S \cup \{a\}, S' \cup \{b\}\} \in \Sigma_{\text{pref}}.
\]
Possible Application in Practice

Consider enumerating preferred extensions:

- start with the less complex stable semantics
- Assume \(\{a, b\} \) and some \(S \cup \{a\} \) is stable
- By inspecting \(\Sigma_{stb, pref} \) we can exclude any \(S' \cup \{b\} \) with \(S \cap S' \neq \emptyset \) as preferred, even though

\[
T = \{\{a, b\}, S \cup \{a\}, S' \cup \{b\}\} \in \Sigma_{pref}.
\]

Explanation: \(bd(T) = \{(S \cap S') \cup \{a, b\}, S \cup \{a\}, S' \cup \{b\}\} \)

Recall:

\[
\Sigma_{stb, pref} = \{\langle S, T \rangle \mid S \in \Sigma_{stb}, T \in \Sigma_{pref}, S \subseteq T \cap bd(T)\}
\]
Two-dimensional signatures provide a clear picture about the relationship between semantics.

This can be exploited by solvers by first computing extensions of an “easier” semantics and – before searching for the remaining ones – prune the search space accordingly.

Open issues

- how to incorporate the information about the stable extensions into the AF such that they are not encountered twice?
- can we find properties for terminating the search for preferred extensions after having found all stable ones?
- useful in practice?
Conclusion

- ICCMA has stipulated development of abstract argumentation solvers
- So far, competitive systems rely on reductions to SAT, ASP, CSP, etc.
 - recent analysis shows the picture is not that clear

- In this talk:
 - Review of recent advancements from the theory of abstract argumentation
 - Discussion of potential advanced mechanisms to use genuine argumentation properties in solvers
Conclusion

- ICCMA has stipulated development of abstract argumentation solvers
- So far, competitive systems rely on reductions to SAT, ASP, CSP, etc.
 - recent analysis shows the picture is not that clear

- In this talk:
 - Review of recent advancements from the theory of abstract argumentation
 - Discussion of potential advanced mechanisms to use genuine argumentation properties in solvers

- Learn from success stories in other communities:
 - clasp: combination of SAT-techniques and specific ASP features
Future Work

A ToDo-list for our community

- Continue development of native genuine argumentation systems
 - may outperform reduction-based methods on certain instances
- Enhance reduction-based methods by argumentation-specific “short-cuts”
- Preprocessing
- Better and more benchmarks!
- Understanding the shape of such “meaningful” instances and how do the presented concepts behave on such instances
Future Work

A ToDo-list for our community

- Continue development of native genuine argumentation systems
 - may outperform reduction-based methods on certain instances

- Enhance reduction-based methods by argumentation-specific "short-cuts"

- Preprocessing

- Better and more benchmarks!

- Understanding the shape of such "meaningful" instances and how do the presented concepts behave on such instances

"Dung is necessary, but not sufficient"
(H. Prakken)
Some References