
Tractable Database Design through Bounded Treewidth

Georg Gottlob, Reinhard Pichler, and Fang Wei
Database and Artificial Intelligence Group

Technische Universität Wien
A1040 Vienna, Austria

[gottlob | pichler | wei]@dbai.tuwien.ac.at

ABSTRACT
Given that most elementary problems in database design
are NP-hard, the currently used database design algorithms
produce suboptimal results. For example, the current 3NF
decomposition algorithms may continue further decompos-
ing a relation even though it is already in 3NF. In this pa-
per we study database design problems whose sets of func-
tional dependencies have bounded treewidth. For such sets,
which frequently occur in practice, we develop polynomial-
time and highly parallelizable algorithms for a number of
central database design problems such as:

• primality of an attribute

• 3NF-test for a relational schema or subschema

• BCNF-test for a subschema.

For establishing these results, we propose a new characteri-
zation for keys and for the primality of a single attribute.

In order to define the treewidth of a relational schema,
we shall associate a hypergraph with it. Note that there
are two main possibilities of defining the treewidth of a hy-
pergraph H: One is via the primal graph of H and one is
via the incidence graph of H. Our algorithms apply to the
case where the primal graph is considered. However, we
also show that the tractability results still hold when the
incidence graph is considered instead.

Categories and Subject Descriptors: H.2.1 [Logical
Design]: Data models, Normal forms, Schema and sub-
schema; F.1.2 [Modes of Computation]: Alternation
and nondeterminism, Parallelism and concurrency; F.2.2
[Nonnumerical Algorithms and Problems]: Complex-
ity of proof procedures, Computations on discrete structures

General Terms: Algorithms, Design, Theory

Keywords: Normal forms, Database design, Tree decom-
position, Bounded treewidth, Fixed-parameter tractability

1. INTRODUCTION
One of the fundamental problems in relational database

design is to test whether a schema satisfies the desired nor-
mal form. Unfortunately, most problems arising in this area

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’06, June 26–28, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-318-2/06/0003 ...$5.00.

A B C

D

h
1

h
3

h
2

A B C

D

A

B

C

D

h
1

h
2

h
3

(a) hypergraph H (b) primal graph P(H) (c) incidence graph I(H)

Figure 1: (Hyper-)graphs from Example 1.2.

are intractable. For instance, among the following six most
important decision problems:

• PRIMALITY (for a schema or for a subschema)

• 3NFTEST (for a schema or for a subschema)

• BCNFTEST (for a schema or for a subschema)

only BCNFTEST for a schema is tractable [18]. Despite
the intractability of the remaining problems listed above,
there exist efficient algorithms for decomposing a relational
schema into subschemas satisfying 3NF or BCNF (see e.g.,
[18, 5, 19]. However, without the ability of normal form
checking, they are doomed to produce suboptimal results
even in very simple situations. Most unsatisfactorily, these
decomposition algorithms may continue further decompos-
ing a schema or subschema even though the desired normal
form has already been achieved. The following example dis-
plays a simple relational schema, where the well-known 3NF
decomposition algorithm synthesis from [5] keeps decompos-
ing the schema even though it is already in 3NF.

Example 1.1. Consider the schema ABCD with the FDs
AB → C, C → D, D → A. This schema is already in 3NF
since all its attributes are prime. However by using the syn-
thesis algorithm, we obtain a decomposition ABC,CD, DA.

The concept of treewidth and related notions have been
successfully applied to many areas of Computer Science. Re-
cently, several intractable problems in the Database field
and in AI (such as e.g., conjunctive query equivalence and
CSP problems) have been shown to become solvable in poly-
nomial time or even highly parallelizable if the underlying
graph or hypergraph structure has bounded treewidth or
hypertree width (see [16]). Hence, the question naturally
arises as to whether one can also identify such tractable
fragments for the aforementioned decision problems in rela-
tional database design. In this work, we define the treewidth
of a relational schema (R, F ) (where F denotes the set of



functional dependencies holding in R) by considering the
following hypergraph H: the attributes of R are the vertices
of H and every hyperedge of H corresponds to the set of
attributes occurring in a functional dependency f ∈ F . In
order to define the treewidth of H, one can either consider
the primal graph P (H) or the incidence graph I(H). In this
paper, we shall mainly deal with the primal graph.

Example 1.2. Consider the relational schema from Ex-
ample 1.1. The corresponding hypergraph H consists of the
vertices {A, B, C, D} and the hyperedges ABC,CD, AD. The
hypergraph H plus the primal graph P (H) and the incidence
graph I(H) are shown in Figure 1. Note that the treewidth
both of P (H) and of I(H) is 2.

One possibility to prove the fixed-parameter tractability
of the above mentioned decision problems is to show that
these problems can be expressed in terms of MSO formulae
over the primal graph or over the incidence graph, respec-
tively. The fixed-parameter tractability is thus an immedi-
ate consequence of Courcelle’s Theorem [8] (see Section 8).
A concrete algorithm can then be obtained by constructing
a finite tree automaton (FTA) corresponding to the MSO
formula and by checking whether a tree obtained from the
tree decomposition is accepted by the FTA. However, algo-
rithms resulting from such an MSO-to-FTA transformation
often have two serious shortcomings: First, the intuition of
the algorithm is usually lost when looking at the FTA. Sec-
ond (and even more importantly), the FTA resulting from
standard translation methods (see e.g., [13]) often suffers
from a state explosion and tends to be unnecessarily com-
plicated. For these reasons, it is always preferable to have a
dedicated algorithm rather than just an MSO-encoding.

The main contributions of this paper are the following:

• For all of the above mentioned database design prob-
lems (i.e., PRIMALITY, 3NFTEST, and BCNFTEST
– both for a schema and for a subschema), we manage
to identify tractable fragments via bounded treewidth.
In case of bounded treewidth of the primal graph, we
develop new, dedicated algorithms, from which the
fixed-parameter tractability follows immediately. Ac-
tually, even if no tree decomposition is given, all of
these problems are not only tractable but also highly
parallelizable since they are in the class LogCFL for
either notion of bounded treewidth.

• For the case of bounded treewidth of the incidence
graph, we establish the fixed-parameter tractability by
providing an MSO-encoding of these problems.

• The canonical definition of PRIMALITY (i.e, the at-
tribute is contained in some key) turns out to be im-
practical for our new algorithms. Hence, we introduce
the concept of “co-antikeys” which allows for a new
characterization of PRIMALITY. Moreover we present
a new method which allows one to divide the problem
of computing the keys of a relational schema (or, by
the same token, to divide the problem of deciding pri-
mality in a relational schema) into smaller subprob-
lems. Of course, by the intrinsic exponentiality of the
set of keys in a relational schema, we cannot expect to
achieve tractability. Nevertheless our new method con-
stitutes an efficient to implement heuristics (via well-
studied graph problems), which may help to greatly
simplify the problems of computing the keys and of
testing primality in many situations.

The rest of the paper is organized as follows: In Section 2
we recall some basic terminology and results. A character-
ization of primality and a simplification of computing keys
are presented in Sections 3 and 4. In the Sections 5 through
7 we present new algorithms for the above mentioned six de-
cision problems in database design. In Section 8, we prove
the corresponding fixed-parameter tractability results also
for the case of bounded treewidth of the incidence graph via
appropriate MSO-encodings. The application of these re-
sults to normal form decompositions is dealt with in Section
9. We conclude with Section 10.

2. PRELIMINARIES

2.1 Database Design
A relational schema is denoted as (R, F ) where R is the

set of attributes, and F the set of functional dependencies
(FDs, for short) over R. If X and Y are sets of attributes
and A is an attribute, then we may write XY , XA, X − A
to abbreviate the set notation X ∪ Y , X ∪ {A}, X \ {A}.

Unless explicitly stated otherwise, we only consider FDs
in canonical form here, i.e., FDs where there is only a single
attribute on the right-hand side. The set of all FDs over the
attributes in R that can be derived from F via Armstrong’s
Axioms (see [1]) is denoted as F +. We write F |= X → A
in order to denote that an FD X → A is in F +.

Given a relational schema (R,F ) and a subset X ⊆ R, we
write closF (X) for the closure of X with respect to F , i.e.,
A ∈ closF (X), iff F |= X → A. If F |= X → A, then we
also say that “X determines (or decides) A”.

If X determines all attributes A ∈ R, then X is called a
superkey. If X is minimal with this property, then X is a
key. The set of all keys in (R,F ) is denoted as K(R, F ). An
attribute A is called prime in (R, F ), if it is contained in at
least one key in K(R, F ).

In this paper, we often have to refer to the attributes
occurring in an FD f . Let f be of the form f = X →
A. Then we write lhs(f) and rhs(f) to refer to X and A,
respectively.

A “derivation sequence” of A from X in F is a sequence
of the form X → X ∪ {A1} → X ∪ {A1, A2} → . . . →
X ∪ {A1, . . . , An}, s.t. An = A and for every i ∈ {1, . . . , n},
there exists an FD fi ∈ F with lhs(f) ⊆ X ∪{A1, . . . , Ai−1}
and rhs(f) = Ai. Of course, such a derivation sequence
exists, iff A ∈ closF (X).

Definition 2.1. Let (R, F ) be a relational schema and
X ⊆ R. A schema projection of F over X is defined as

F [X] = {Y → Z |F |= Y → Z and Y Z ⊆ X}

Let R′ ⊆ R. Then (R′, F [R′]) is referred to as a subschema
of (R, F ). Note that the size of F [R′] can be exponentially
bigger than (R, F ) (see [18]). Hence, for the complexity of
an algorithm that deals with subschemas, it is important to
distinguish whether F [R′] is explicitly given or whether it is
only implicit in R′. In all our algorithms here, we assume
that it is implicit in R′.

2.2 Tree Decompositions and Treewidth
A hypergraph is a pair H = 〈V, H〉 consisting of a set V

of vertices and a set H of hyperedges. A hyperedge h ∈ H
is a subset of V . The primal graph P (H) (also called the
Gaifman graph) has the same set of vertices as H. Moreover,
two vertices vi, vj are connected in P (H) if they jointly occur
in some hyperedge h ∈ H. On the other hand, the incidence
graph I(H) is a bipartite graph with vertices V ∪H (i.e., the



vertices of I(H) are the vertices vi of H plus the hyperedges
hj of H). Two vertices vi and hj are connected in I(H) if
in H, the vertex vi occurs in the hyperedge hj .

A measure for the “tree-likeness” of a graph G = 〈V, E〉
is the treewidth of G, which we shall define below. A tree
decomposition T of G is a pair 〈T, λ〉, where T is a tree and λ
is a labeling function with λ(N) ⊆V for every node N ∈ T ,
s.t. the following conditions hold:

1. ∀v ∈ V , there exists a node N in T , s.t. v ∈ λ(N).

2. ∀e ∈ E, there exists a node N in T , s.t. e ⊆ λ(N).

3. “connectedness condition”: ∀v ∈ V , the set of nodes
{N | v ∈ λ(N)} induces a connected subtree of T .

The sets λ(N) for the nodes N in T are referred to as bags.
The width of a tree decomposition 〈T, λ〉 is max({|λ(N)|−1 :
N node in T}). Let G = 〈V, E〉 be a graph. The tree-width
tw (G) is the minimum width over all its tree decompositions.
The treewidth tw(H) of a hypergraph H can be either de-
fined as the treewidth of the primal graph P (H) or of the
incidence graph I(H). We thus set twP (H) = tw(P (H))
and tw I(H) = tw (I(H)), respectively.

In order to define the treewidth of a relational schema
(R, F ) or of a finite structure A, we just have to indicate
which hypergraph we are considering.

Definition 2.2. For a relational schema (R, F ), we de-
fine the hypergraph of (R,F ) as H = 〈V, H〉 with V = R
and H = {{A1, . . . , An, B} | (A1 . . . An → B) ∈ F}.

The primal graph and the incidence graph of (R, F ) are
simply defined as the corresponding graph of H. Likewise,
the treewidth of (R, F ) is defined as twP (H) or as tw I(H), re-
spectively. Actually, in this paper, we only consider the tree-
width via the primal graph – the only exception being Sec-
tion 8, which is devoted to the incidence graph. Hence, out-
side Section 8, we shall simply speak about the treewidth (or
a tree decomposition, resp.) of a relational schema (R,F )
in order to refer to the treewidth (or a tree decomposition,
resp.) of the primal graph of H.

Let T be a tree decomposition of the primal graph of H,
N a node in T and f = A1 . . . An → B an FD in F . We say
that f is covered by a node N , if {A1, . . . , An, B} ⊆ λ(N).

Definition 2.3. Let A be a finite structure with uni-
verse A. The hypergraph corresponding to A is defined as
H = 〈V, H〉 with V = A and H = {{a1, . . . , an} |A con-
tains a relational ground atom P (a1 . . . an) for some predi-
cate symbol P}.

The primal graph and the incidence graph of A as well
as the notions of tree decomposition and treewidth of A are
then defined in the obvious way via the hypergraph H.

2.3 Complexity
The class LogCFL consists of all those decision problems

that are log-space reducible to a context-free language. The
relationship between LogCFL and other well-known com-
plexity classes is summarized as follows:

L ⊆ NL ⊆ LogCFL ⊆ AC1 ⊆ NC2 ⊆ P

Since LogCFL ⊆ AC1 ⊆ NC2, the problems in LogCFL
are highly parallelizable.

3. CHARACTERIZATION OF PRIMALITY
We shall provide a new characterization of the primality

of an attribute via the concept of antikeys (also known as
maximal nonkeys) introduced in [9].

Definition 3.1. [9] Given a relational schema (R, F ), X ⊂
R is an antikey, if X is not a key, and for any A ∈ R \ X,
X ∪ {A} is a key.

We write antikeys(R,F ) to denote the set of all the an-
tikeys of a relational schema (R, F ), and co-antikeys(R,F )
for the complements of the antikeys, i.e.

co-antikeys(R, F ) = {R \ W |W ∈ antikeys(R,F )}

K(R,F ) can be considered as a hypergraph (whose hyper-
edges are the keys of (R,F ). Likewise, co-antikeys(R, F ) can
be considered as a hypergraph. The following relationship
between these two hypergraphs was shown in [9]:

K(R,F ) = Tr(co-antikeys(R, F ))

where Tr(H) denotes the set of minimal transversals of H.

Example 3.2. Consider the schema ABCD with the FDs
AB → C, C → D, D → A from Example 1.1. There are two
antikeys B and ACD, and the corresponding co-antikeys are
ACD and B. The keys are AB, BC and BD.

As was mentioned above, all the keys of a given relational
schema (R, F ) can be obtained by generating the minimal
transversals of co-antikeys(R, F ). Hypergraph transversal
and related problems have been intensively studied in re-
cent years [11, 12, 14]. However, it is still an open prob-
lem whether an output-polynomial algorithm exists. For-
tunately, in order to decide whether a given attribute A is
prime, we only need to check whether A is an element of
some co-antikey.

Recall that a hypergraph is simple, if it has no pair of
edges hi, hj such that hi is properly contained in hj . The
following property holds in simple hypergraphs.

Theorem 3.3. Let H be a simple hypergraph with hyper-
edges H = {h1, . . . , hn}. Then each node in h1, . . . , hn exists
in at least one minimal transversal of H.

Proof. For simple hypergraphs, the following property of
transversals holds [4]: Tr(Tr(H)) = H. Assume that there is
one vertex x ∈ H, such that x 6∈ Tr(H), then x 6∈ Tr(Tr(H)),
which means that x /∈ H, which is a contradiction. 2

Lemma 3.4. The hypergraph of the co-antikeys of any re-
lational schema is simple.

Proof. The set of antikeys is a Sperner system (or an
antichain)[9]. It follows from the well-known property of
the Sperner system, stating that no element in a Sperner
system is contained in another. 2

We thus get a new characterization of primality:

Theorem 3.5. Let (R, F ) be a relational schema and A ∈
R. A is a prime attribute, if and only if there is a co-antikey
R′ of (R,F ) which contains A.

Proof. This follows from Theorem 3.3 and Lemma 3.4. 2

We now also provide a new characterization of the co-
antikeys. For this purpose, we introduce the new concept of
a shadow subschema.

Definition 3.6. Let (R, F ) be a relational schema and
X ⊆ R. We define the shadow schema projection of F over
X as follows:

FX = {U → A | (W → A ∈ F ) ∧ (U = W ∩ X)}

The schema (X, FX) is called the corresponding shadow sub-
schema of (R, F ).



In order to simplify the presentation, we sometimes write
(R′, F ′) to denote the shadow subschema (R′, FR′ ). We want
to emphasize that the shadow schema projection FX intro-
duced here is essentially different from the schema projec-
tion F [X] defined in Definition 2.1 in that from each FD
rule, the shadow schema projection FX simply projects out
the attributes which do not exist in X. The size of FX is
thus clearly bounded by the size of F . This is in great con-
trast to F [X], which may be exponentially bigger than F
(see [18]). Another important difference from F [X] is that
FX may in fact contain FDs which are not contained in F .

.......................................................

i
� :
�q

k

B

D

E

G
C

A

Figure 2: FDs of Example 3.7

Example 3.7. Consider the relational schema with at-
tributes ABCDEG and FDs F = {AB → C, C → A,D →
B, EG → D, D → E, D → G} (see Figure 2).

Consider the subset X ⊂ R with X = DEG. Then FX =
{EG → D, D → E, D → G}. In this case – accidentally –
FX is a cover of F [X].

Now consider Y = DE. Then FY = {E → D, D → E}.
Note that the FD E → D is not contained in F .

The co-antikeys can be characterized as follows:

Theorem 3.8. Let (R,F ) be a relational schema and let
(R′, F ′) be a shadow subschema where F ′ = FR′ . Then R′

is a co-antikey if and only if the following conditions hold:

1. For each attribute A ∈ R′, closF ′ (A) = R′ and

2. (∀A ∈ R′) F 6|= (R \ R′) → A.

Proof. The crucial observation is that in some situations,
there is a one-to-one correspondence between derivation se-
quences in a schema (R,F ) and in a shadow subschema
(R′, FR′ ), The following lemma gives a sufficient criterion.

Lemma 3.9. Let (R,F ) be a relational schema and let
(R′, F ′) be a shadow subschema where F ′ = FR′ , s.t. none
of the attributes in R′ is decided by (R \R′), i.e., (∀A ∈ R′)
F 6|= (R \ R′) → A. Moreover, let X ⊆ R′ and A ∈ R′.
Then F ′ |= X → A, iff F |= ((R \ R′) ∪ X) → A. 3

The lemma is shown by induction on the length k of
derivation sequences. With this lemma at our disposal, the
proof of the theorem is straightforward. 2

4. SCC SIMPLIFICATION
In order to test whether some attribute A is prime in

(R, F ) it is sometimes sufficient to test whether A is prime
in some shadow subschema of (R, F ). This section provides
a sufficient criterion for such a simplification. We call it SCC
simplification (SCC stands for Strongly Connected Compo-
nent). For this purpose we first establish the relationship
between relational schemas and digraphs.

Definition 4.1. Let (R, F ) be a relational schema. The
digraph corresponding to (R, F ) is defined as D(R, F ) =
(R, E), where (B, A) ∈ E, iff there is an FD X → A ∈ F ,
such that B ∈ X.

Definition 4.2. Let D(R, F ) be the digraph of the rela-
tional schema (R,F ). The strongly connected components of
(R, F ) are the strongly connected components of D(R, F ).

Definition 4.3. A strongly connected source component
of any digraph G = (V, E) is a strongly connected compo-
nent without any incoming edge.

Obviously, every digraph has at least one strongly con-
nected source component.

The goal of our simplification algorithm will be to reduce
the primality test of an attribute in some schema (R, F )
to the primality test in some “smaller” (in a sense to be
made precise below) schema. To this end, we shall provide
a criterion for splitting R into disjoint subsets R1, . . . , Rl

s.t. the primality only has to be tested in some schema with
attributes in one such subset Ri rather than in R. The kind
of subsets Ri ⊂ R that we are interested in are the key
components defined below:

Definition 4.4. Let (R, F ) be a relational schema and
let (R′, F ′) be a shadow subschema of (R, F ) where R′ ⊆ R.
(R′, F ′) is a key component if for every FD (X → A) ∈ F
the following holds: if A ∈ R′, then X ⊆ R′.

Lemma 4.5. Let (R,F ) be a relational schema and let
(R′, F ′) be a key component of (R, F ). Let further (R′′, F ′′)
be a shadow subschema of (R,F ) with R′′ = R \ closF (R′)
and F ′′ = FR′′ . Then the following relationship holds:

K(R, F ) = K(R′, F ′) ⊕ K(R′′, F ′′)

where ⊕ is defined as follows:

X ⊕ Y = {xy |x ∈ X, y ∈ Y }

Proof. The following property of key components has to be
shown first: Let (R, F ) be a relational schema and (R′, F ′)
be a key component of (R,F ). Assume A ∈ R′ and X ⊆ R′.
Then the following holds: (F ′ |= X → A) ⇒ (F |= X → A).
The proof of Lemma 4.5 is then easy. 2

Lemma 4.5 gives us a hint how to construct an algorithm
(see Figure 3) that decomposes (R,F ) into key components.

Theorem 4.6. Let (R1, F1), . . . , (Rn, Fn) be all the out-
put key components in the Algorithm of Figure 3. Then the
following equality holds:

K(R, F ) = K(R1, F1) ⊕ K(R2, F2) ⊕ . . . ⊕ K(Rn, Fn)

Proof. In the first run of the loop, we obtain from Lemma
4.5 that K(R, F ) = K(R1, F1) ⊕ K(R′

1, F
′
1), where (R′

1, F
′
1)

is the shadow subschema of (R, F ) and (R′
1, F

′
1) is the input

schema of the second run of the loop. The program clearly
terminates. Successive application of Lemma 4.5 yields the
following sequence of equalities:

K(R, F ) = K(R1, F1) ⊕ K(R′
1, F

′
1)

K(R′
1, F

′
1) = K(R2, F2) ⊕ K(R′

2, F
′
2)

. . .
K(R′

l, F
′
l ) = K(Rl+1, Fl+1) ⊕ ∅

The claim of the theorem follows immediately. 2

With the key components output by the algorithm, the
primality test of any attribute can be restricted to a single
key component:

Theorem 4.7. Let (R, F ) be a relation schema and an
attribute A ∈ R. A is prime in (R, F ), iff A is prime in
(R′, F ′), where (R′, F ′) is some output component in the
algorithm Key-Component-Generation. 2



Example 4.8. Recall the relational schema (R, F ) from
Example 3.7 with R = ABCDEG and F = {AB → C,
C → A, D → B, EG → D, D → E, D → G}. We shall check
whether A is prime via the Key-Component-Generation al-
gorithm:

Running the Key-Component-Generation algorithm over
the schema, we obtain the first key component with at-
tributes R1 = DEG. Since closF (R1) = BDEG, we obtain
R′

1 = R \ BDEG = AC. Note that the shadow subschema
(R′

1, FR′

1
) contains the FDs {A → C, C → A}.

In the second iteration of the loop we have R = AC and
F = {A → C, C → A}. It is clear that the attributes AC
constitute the second key component and the program halts.

Now we only need to check whether A is prime in the
schema (AC, {A → C, C → A}), which indeed is the case.

There is a well-known linear time algorithm for finding all
the strongly connected components of a digraph [22]. Like-
wise, the closure generation algorithm takes linear time [18].
Hence, the algorithm Key-Component-Generation can be
executed efficiently. It is therefore clearly worth trying to
apply the SCC simplification in order to reduce the pri-
mality problem to a strictly smaller subproblem. By the
NP-completeness of primality, the worst-case complexity of
testing primality is not affected by the SCC simplification.
Nevertheless, it is an efficient heuristics which may help to
reduce the problem size in many situations.

Algorithm Key-Components-Generation
Input relational schema (R, F )
Output R = {(R1, F1), . . . , (Rn, Fn)} s.t. (∀i) Ri ⊆ R
begin
R := ∅; i := 0
Repeat

Decompose D(R, F ) into its strongly connected
components;

i := i + 1;
Choose an arbitrary strongly connected source

component (Ri, Fi) of D(R, F );
R := R∪ (Ri, Fi)
R′

i := R \ closF (Ri);
(R′

i, F
′
i ) := shadow subschema by R′

i;
(R, F ) := (R′

i, F
′
i );

Until R = ∅;
end.

Figure 3: Key Components Generation Algorithm

5. BOUNDED TREEWIDTH & PRIMALITY
It has already been mentioned that testing whether some

attribute A is prime in a relational schema (R, F ) is NP-
complete (see [17]). In this section we show that if the set
of FDs has bounded tree-width,1 the primality test becomes
tractable. In fact, we even show that this problem falls into
the highly parallelizable complexity class LogCFL.

We start with an informal explanation of the Primality-
Test algorithm in Figure 4. At the heart of this algorithm
is the procedure prime-attribute, which is used to realize a
top-down traversal of the tree decomposition T , where the
root can be any node N with A ∈ λ(N). The goal of the
algorithm is to successively guess all elements of a co-antikey
X with A ∈ X . At each node Ni in T , we thus guess XNi

in step 1 with the intended meaning XNi
= λ(Ni) ∩ X . Of

course, the guess at Ni has to be consistent with the guess at
the parent N of Ni. This is ensured by condition 1.b. Note

1Recall that outside Section 8 we only consider the treewidth
via the primal graph.

Algorithm Primality-Test
Input Relational schema (R, F ), tree decomposition T of the
primal graph of (R, F ) with width k, attribute A ∈ R.

Output “Accept”, if A is prime in (R, F ).

Procedure check-primality (XM : SetOfAttributes,
CovM ,PM : OrderedSetOfFDs, M : Node in T )

begin
Check 1: ∀f ∈ F : If f is covered by λ(M) and
rhs(f) ∈ XM then lhs(f) ∩ XM 6= ∅,

Check 2: ∀g ∈ PM with g = U → B and B 6∈ U :
(i) Either g = fXM

for some f ∈ F covered by λ(M)
(ii) or there exists an FD h = V → B in CovM with

V ⊂ U and h < g
(iii) or there exist FDs h1 = V → C and h2 = WC → B

in CovM with V ∪ W ⊆ U and h1, h2 < g.
if both Checks succeed then Accept
else HALT and Reject;

end;

Procedure prime-attribute (XN : SetOfAttributes,
CovN , PN : OrderedSetOfFDs, Ni: Node in T )
begin
1) Guess XNi

⊆ λ(Ni) s.t.:
1.a) If λ(Ni) ∩ XN = ∅ then XNi

= ∅,
1.b) ∀B ∈ λ(N) ∩ λ(Ni): B ∈ XN ⇔ B ∈ XNi

2) Guess CovNi
ordered set of FDs over XNi

s.t.:
2.a) ∀B, C ∈ XNi

: (B → C) ∈ CovNi
,

2.b) ∀ FDs g over λ(N) ∩ λ(Ni): g ∈ CovN ⇔ g ∈ CovNi

2.c) The orderings on CovN and CovNi
are consistent.

3) PNi
:= PN ∪ (CovNi

− CovN );
3.a) if not PNi

⊆ CovNi
then HALT and Reject;

4) Guess assignment αNi
: PNi

→ {0, . . . , n}, where
n = number of child nodes of Ni.

5) check-primality (XNi
, CovNi

, α−1

Ni
(0), Ni);

6) if the check 5) fails then Reject;
7) if for each ` ∈ {1, . . . , n}

prime-attribute (XNi
, CovNi

, α−1

Ni
(`), M`) = Accept,

where M` is the `-th child of Ni in T
then Accept
else Reject;

end;

begin (* MAIN *)
r0) (* initializations *)

find some node N in T with A ∈ λ(N);
consider T as rooted at N ;

r1) Guess XN ⊆ λ(N) with A ∈ XN ;
r2) Guess CovN ordered set of FDs over XN s.t.:
r2.a) ∀B, C ∈ XN : (B → C) ∈ CovN .

r3) PN := CovN ;
r4) Guess assignment αN : PN → {0, . . . , n}, where

n = number of child nodes of N .
r5) check-primality (XN , CovN , α−1

N
(0), N);

r6) if the check r5) fails then Reject;
r7) if for each i ∈ {1, . . . , n}

prime-attribute (XN , CovN , α−1

N
(i), Ni) = Accept,

where Ni is the i-th child of N in T
then Accept
else Reject;

end.

Figure 4: Primality Test.

that the parameter XN denotes the guess at N . Clearly, X
has to be connected (when considered as a hypergraph with
hyperedges FX ). For this purpose, we have condition 1.a.

In step 2 we want to guess all FDs U → B in F +

X
with at-

tributes XNi
, i.e. the intended meaning of CovNi

is CovNi
=

F+

X
[XNi

]. The idea of the ordering that we impose on the

elements in F+

X
will become clear when we discuss the check-



primality procedure. The ordering which we are aiming at
here is the following:

Definition 5.1. Let X ⊆ R. For g ∈ F +

X
with U → B,

we denote by min →(g) the minimal length of a derivation
sequence of B from U by means of FDs in F +

X
.

We define a partial ordering on F +

X
as follows: Let g, h ∈

F+

X
. If min →(g) < min →(h), then g < h in F +

X
. Moreover,

suppose that g = (U → B) and h = (V → B), s.t. U ⊂ V
and min →(g) = min →(h) hold. Then we also set g < h
in F+

X
.2 This partial ordering can be extended to a total

ordering in an arbitrary way. We shall refer to the resulting
ordering as “FD-ordering”.

Conditions 2.b and 2.c make sure that the guesses at the
node Ni are consistent with the guesses at the parent N of
Ni. Condition 2.a means that B → C has to hold for all
attributes B, C in the co-antikey X .

The set PNi
computed at step 3 consists of all FDs in

CovNi
for which it has to be verified yet that they are indeed

in F+

X
. PNi

inherits the ordering from CovNi
since PNi

⊆
CovNi

must hold by condition 3.a. This condition ensures
for all FDs g ∈ PN , that the property g ∈ F +

X
is verified as

long as all attributes occurring in g are contained in λ(N).
For g ∈ PNi

, the place where the property g ∈ F +

X shall
be verified is guessed in step 4, namely: For each g ∈ PNi

,
we either verify at node Ni that g ∈ F+

X
holds (in this case,

we guess αNi
(g) = 0) or the job to verify this property is

passed on to the `-th child of Ni (i.e., we guess αNi
(g) = `).

The check-primality procedure called at step 5 has two
tasks: First, we check (in Check 1) that no attribute of the
co-antikey X is determined by attributes outside X . Second,
for all FDs g ∈ PNi

with αNi
(g) = 0, we have to check (in

Check 2) that g ∈ F +

X
indeed holds. Condition (i) means

that the FD g is actually represented by λ(N). The con-
ditions (ii) and (iii) mean that g follows from one smaller
FD h or from two smaller FDs h1, h2 in CovNi

. Hence,
given that h ∈ F +

X
or h1, h2 ∈ F+

X
, respectively, is checked

elsewhere, we may assume at this place that g ∈ F +

X
holds.

It is now also clear why we impose some ordering on F +

X
,

namely: We have to make sure that there are no cycles in
the derivation of the functional dependencies in CovNi

.
In step 7, the procedure prime-attribute is called recur-

sively for all child nodes M` of Ni. The first two parameters
XNi

and CovNi
communicate the guesses at Ni to each M`.

The third parameter passes precisely those FDs g ∈ PNi
to

the `-th child for which we have guessed αNi
(g) = `.

Note that the steps r1 through r7 at the root of T have
exactly the same meaning as the steps 1 through 7 in pro-
cedure prime-attribute. Of course, some tasks are slightly
simpler since the root N has no parent. Step r1 makes sure
that A ∈ X indeed holds.

Theorem 5.2. Let (R,F ) be a relational schema and A
an attribute in R. Moreover, let T be a tree decomposition
of (R,F ) with width k ≥ 1. The Primality-Test algorithm
in Figure 4 accepts the input ((R,F ), T , A), if and only if A
is a prime attribute in (R,F ).

2Note that for adding attributes to the left-hand side of
some FD f , this definition has the following effect: If the
additional attributes in lhs(f) allow us to construct a shorter
derivation sequence, then the resulting FD is smaller than
f . On the other hand, adding to lhs(f) “useless” attributes
so to speak produces a greater FD.

Proof. The following equivalence has to be shown: There
exists an accepting computation of the non-deterministic
Primality-Test algorithm ⇔ A is prime.

“⇒” We claim that X :=
S

N∈T
XN is a co-antikey in (R, F )

with A ∈ X . Of course, A ∈ X by condition r1. By Check 1
in procedure check-primality, the following property is guar-
anteed: (∀f ∈ F ) if rhs(f) ∈ X , then lhs(f) ∩ X 6= ∅.
Hence, it only remains to show that (B → C) ∈ F +

X
for all

B, C ∈ X . Actually, by conditions 1.a and 1.b it is guaran-
teed that the hypergraph produced by the hyperedges XN

(with N ∈ T ) is connected. Hence, it suffices to show that
(B → C) ∈ F+

X
for all attributes B and C that occur jointly

in XN for some N ∈ T . By condition 2.a, it is therefore
sufficient to prove the following lemma:

Lemma 5.3. Let Cov :=
S

N∈T
CovN . Then the property

Cov ⊆ F+

X
holds.

Proof Idea for Lemma 5.3. By the conditions 2.b and
2.c and by the connectedness condition in the tree decompo-
sition T , the orderings guessed for the subsets CovN ⊆ Cov
can be consistently extended to a total ordering on all of
Cov . The proof of Lemma 5.3 goes by induction on this
ordering. Note that at this point, we do not assume that
this ordering is indeed the derivation ordering from Defini-
tion 5.1. For Lemma 5.3, any ordering can be used. 3

“⇐” Suppose that A is prime in (R, F ). Hence, there ex-
ists a co-antikey X in (R, F ) with A ∈ X . We construct
a computation tree τ of a successful computation of the
Primality-Test algorithm as follows: Let N be any node in
the tree decomposition T with A ∈ λ(N). Then we consider
T as rooted at N . The tree structure of the computation
tree τ is identical to the tree structure of T . Moreover, our
algorithm guesses the following values at each node N : (1)
XN := X ∩ λ(N) and (2) CovN := F+

X
[XN ], i.e., CovN

consists of all FDs that are contained in F +

X and which are
made up of attributes in λ(N) only. The ordering that we
have to guess for CovN in step 2 is the FD-ordering on F +

X
.

It remains to show that it is possible to guess an appro-
priate assignment αN at each node N , s.t. the checks in
the check-primality procedure always succeed. Actually, the
Check 1 is clearly successful at any node N , i.e., For all at-
tributes B in a co-antikey X , we can be sure that B is not
determined by attributes outside X , i.e., for every FD f ∈ F
with B = rhs(f), at least one attribute from lhs(f) must be
contained in X .

In order to show that also Check 2 always succeeds for
appropriately chosen αN , the following lemma suffices:

Lemma 5.4. Every FD g ∈ F +

X
added to PN at some

node N by the Primality-Test algorithm will be eventually
“eliminated” without producing an error, i.e., f is either
eliminated at N (i.e., αN (g) = 0) or g is passed on to
some descendant M of N where it is finally eliminated (i.e.,
αM (g) = 0).

Proof Idea for Lemma 5.4. The proof is based on an
induction on the derivation-ordering. Here we really need
precisely the ordering defined in Definition 5.1. 3

This concludes the proof of Theorem 5.2. 2

For the complexity of the Prime-Test algorithm, we have
the following upper bound:

Theorem 5.5. Let (R, F ) be a relational schema whose
treewidth is bounded by some constant k ≥ 1 and let A ∈ R



be an attribute. It can be decided in linear time whether A
is prime in (R, F ). Moreover, this decision problem is in
LogCFL.

Proof. Note that we do not require in the theorem that a
tree decomposition T of (R, F ) with width k ≤ 1 has to be
actually given. However, by [6], a tree decomposition T can
be computed in linear time. Likewise, it has been shown

in [15], that the computation of T is feasible in LLogCFL

and that LLogCFL(LogCFL) = LogCFL. Hence, in the
remainder of the proof, we may assume that T is given.

The linear time bound is seen as follows: First of all, the
data structures guessed in the algorithm Primality-Test de-
pend only on the size k of the labels λ(N) and λ(Ni) rather
than on the size of the entire input. Hence, turning the non-
deterministic algorithm into a deterministic one by looping
over all possible values of XNi

, CovNi
, αNi

, etc. increases
the time complexity only by a multiplicative constant.

For each collection of guesses of XNi
, CovNi

, αNi
, etc.

the algorithm works by a single traversal of the tree de-
composition T , whose size is of course linearly bounded.
Moreover, almost all of the steps carried out by the main-
program and by the two procedures depend on the labels
λ(N) and λ(Ni) rather than on the size of the entire input.
The only two places where one has to be careful are step 7 in
the procedure prime-attribute and check 1 in the procedure
check-primality, which seem to require linear time whenever
they are executed. Note however, that the overall complex-
ity of step 7 (in all of the recursive calls of the procedure
prime-attribute) corresponds to the total number of recur-
sive calls of this procedure – which is in fact linear w.r.t. the
size of the input. As far as check 1 in the procedure check-
primality is concerned, the following slight modification is
required: The very purpose of the algorithm of [6] is to con-
struct a tree decomposition T such that every hyperedge of
the hypergraph of (R,F ) (or, equivalently, every FD f ∈ F )
is covered by at least one bag λ(N). This algorithm can be
easily extended such that every node N of T is annotated
with the FDs f ∈ F that N is meant to cover. Moreover,
this annotation is done in such a way that each f ∈ F is used
in the annotation of exactly one node N of T . Then check 1
of the procedure check-primality can be modified in that it
is only applied to those FDs f which occur in the annotation
of the node M of T . The overall complexity of all calls of
the procedure check-primality is thus linearly bounded.

Concerning the LogCFL upper bound, it should be noted
that the algorithm in Figure 4 can be regarded as a high-
level description of an algorithm that is run on an alter-
nating Turing machine (ATM). The existential steps of this
ATM are contained in the non-deterministic guesses of this
algorithm. The universal steps are encoded by the recursive
calls of the prime-attribute procedure.

Recall that ATMs can be characterized in terms of the
tree-size (i.e, the number of nodes) of the computation tree
τ (where each node corresponds to a configuration of M)
and the space required by each configuration. By the char-
acterization of LogCFL in [21], it suffices to show that the
size of τ is polynomially bounded and the data manipulated
at each node fit into log-space. This is easily verified since
the data structures maintained at each node Ni essentially
consist of constantly many pointers to the input. 2

Remark. In Section 8, the analogous fixed-parameter trac-
tability result is shown via an MSO-encoding and by ap-
plying Courcelle’s Theorem – which makes use of the corre-
spondence between MSO-formulae and finite tree automata.
In fact, our Primality-Test algorithm in Figure 4 is closely

related to a (non-deterministic top-down) finite tree automa-
ton whose states correspond to the (constantly many) possi-
ble values of the data structures XNi

, CovNi
, αNi

, etc. But
of course, our dedicated algorithm essentially differs from
an FTA that one would obtain via a standard MSO-to-FTA
transformation (like the one in [13]).

6. BOUNDED TREEWIDTH & BCNF
Testing whether a relational schema (R, F ) is in BCNF is

an easy task. In fact, we just have to check that for all FDs
f ∈ F , the left-hand side lhs(f) is a key (see [20]). This
is clearly feasible in polynomial time. In contrast, when
we have already applied some decomposition and if we then
want to check whether some subschema R′ ⊂ R is in BCNF,
then this problem is NP-complete.

In this section we present an efficient algorithm for the
subschema-BCNF problem in case that the set of FDs has
bounded treewidth (see Figure 5). The algorithm proceeds
by a top-down traversal of the tree decomposition T rooted
at any node. This tree traversal is realized via recursive calls
of the procedure sub-not-bcnf. The goal of the algorithm is
to find a BCNF-violation in R′, i.e., attributes A, B ∈ R′

and a subset Y ⊆ R′, s.t. Y →F A, A 6∈ Y, and Y 6→F

B. The attributes A and B are guessed in step r0. The
attribute set Y ⊆ R′ is guessed during the traversal of the
tree decomposition T as follows: At each node Ni in T ,
we guess YNi

in step 1 with the intended meaning YNi
=

λ(Ni) ∩ Y. Condition 1.a guarantees that the guess YNi
at

Ni is consistent with the guess YN at the parent N of Ni.
Step 2 aims at guessing the closure closF (Y) of Y. The

intended meaning of ZNi
is ZNi

= λ(Ni) ∩ (closF (Y) \ Y).
The conditions 2.a – 2.d are straightforward. In particular,
condition 2.a makes sure that A is indeed determined by Y.
As in Section 5, the purpose of the ordering imposed on ZNi

is to prevent circular derivations (cf. Check 3 in the check-
not-bcnf procedure). The ordering that we have in mind
here is the following:

Definition 6.1. Let Z ⊆ closF (Y) with Z ∩ Y = ∅. We
define the “derivation ordering” on Z by considering an ar-
bitrary derivation sequence ∆ of Z from Y. Suppose that ∆
has the form ∆ ≡ Y → Y ∪ {C1} → Y ∪ {C1, C2} → . . . →
Y ∪ {C1, C2, . . . , Cz}, where Z = {C1, . . . , Cz} and Ci 6= Cj

if i 6= j. Then we set Ci < Cj if i < j.3

The set ONi
computed at step 3 consists of all attributes

in ZNi
for which it has to be verified yet that they are indeed

determined by Y. The ordering on ONi
can be taken over

from ZNi
since, by condition 3.a, ONi

⊆ ZNi
holds. The

purpose of the assignment function βNi
guessed in step 4

is to determine the place where the property Y → C has
to be verified for each C ∈ ONi

: as in the Primality-Test
algorithm, 0 means the node Ni itself and ` ≥ 1 means the
`-th child of Ni.

The check-not-bcnf procedure called at step 5 has the fol-
lowing tasks: Check 1 is clear. Check 2 ultimately guaran-
tees that (Y ∪ Z) ⊇ closF (Y) holds, Check 3 takes care of
the property (Y ∪ Z) ⊆ closF (Y).

The remaining steps are clear by the analogy with the
Primality-Test algorithm discussed in Section 5. Similarly
as Theorem 5.2, the following properties can be shown:

3Obviously the derivation-ordering depends on the choice of
the derivation sequence ∆. In the sequel, we assume ∆ to
be arbitrarily chosen but fixed (for any sets Y and Z).



Algorithm Subschema-Not-BCNF
Input Relational schema (R, F ), tree decomposition T of the
primal graph of (R, F ) with width k, subset R′ ⊆ R.

Output “Accept”, if A is prime in (R, F ).

Procedure check-not-bcnf (YM : SetOfAttributes,
ZM ,OM : OrderedSetOfAttributes, M : Node in T )
begin
Check 1: A 6∈ YM , B 6∈ YM , and B 6∈ ZM .
Check 2: (* YM ∪ ZM closed w.r.t. F *)

∀f ∈ F : If f is covered by λ(M) and
lhs(f) ⊆ YM ∪ ZM then rhs(f) ∈ YM ∪ ZM .

Check 3: ∀C ∈ OM :
∃(D1, . . . ,Dm → C) ∈ F covered by λ(M) s.t.
∀i ≤ m: (Di ∈ YM ) ∨ (Di ∈ ZM ∧ Di < C) holds.

if all Checks succeed then Accept
else HALT and Reject;

end;

Procedure sub-not-bcnf (YN : SetOfAttributes,
ZN ,ON : OrderedSetOfAttributes, Ni: Node in T )
begin
1) Guess YNi

⊆ λ(Ni) ∩ R′ s.t.:
1.a) ∀C ∈ λ(N) ∩ λ(Ni): C ∈ XN ⇔ C ∈ XNi

2) Guess ordered set ZNi
⊆ λ(Ni) s.t.:

2.a) If A ∈ λ(Ni), then A ∈ ZNi
,

2.b) YNi
∩ ZNi

= ∅,
2.c) ∀C ∈ λ(N) ∩ λ(Ni): C ∈ ZN ⇔ C ∈ ZNi

2.d) The orderings on ZN and ZNi
are consistent.

3) ONi
:= ON ∪ (ZNi

− ZN );
3.a) if not ONi

⊆ ZNi
then HALT and Reject;

4) Guess assignment βNi
: ONi

→ {0, . . . , n}, where
n = number of child nodes of Ni.

5) check-not-bcnf (YNi
, ZNi

, β−1

Ni
(0), Ni);

6) if the check 5) fails then Reject;
7) if for each ` ∈ {1, . . . , n}

sub-not-bcnf (YNi
, ZNi

, β−1

Ni
(`), M`) = Accept,

where M` is the `-th child of Ni in T
then Accept
else Reject;

end;

begin (* MAIN *)
r0) (* initializations *)

N := root of T ;
Guess A, B ∈ R′ with A 6= B;

r1) Guess YN ⊆ λ(N) ∩ R′ s.t.:
r2) Guess ordered set ZN ⊆ λ(N) s.t.:
r1.a) If A ∈ λ(N), then A ∈ ZN ,
r2.a) YN ∩ ZN = ∅,

r3) ON := ZN ;
r4) Guess assignment βN : ON → {0, . . . , n}, where

n = number of child nodes of N .
r5) check-not-bcnf (YN , ZN , β−1

N
(0), N);

r6) if the check 5) fails then Reject;
r7) if for each i ∈ {1, . . . , n}

sub-not-bcnf (YN , ZN , β−1

N
(i), Ni) = Accept,

where Ni is the i-th child of N in T
then Accept
else Reject;

end.

Figure 5: Subschema-Not-BCNF Test.

Theorem 6.2. Let (R,F ) be a relational schema and let
R′ ⊆ R be a subschema. Moreover, let T be a tree decom-
position of (R,F ) with width k ≥ 1. The Subschema-Not-
BCNF algorithm in Figure 5 accepts input ( (R, F ), T , R′ )
if and only if R′ is not in BCNF.

Recall from [7] that LogCFL is closed under complement
Hence, in order to establish the LogCFL-membership of

testing whether some subschema R′ is in BCNF, it suffices to
show that testing whether R′ is not in BCNF is in LogCFL.
Analogously to Theorem 5.5, we thus get

Theorem 6.3. Let (R, F ) be a relational schema whose
treewidth is bounded by some constant k ≥ 1 and let R′ ⊆
R be a subschema. Then it can be decided in linear time
whether R′ is in BCNF. Moreover, this decision problem is
in LogCFL.

7. BOUNDED TREEWIDTH & 3NF
In this section we combine the ideas of the algorithms

from the Sections 5 and 6 in order to construct an efficient
algorithm also for the primality-test in a subschema and
ultimately for the 3NF-test of a subschema.

Given a relation (R,F), a subschema R′ ⊆ R, an attribute
A ∈ R′ and a tree decomposition T of (R, F ), s.t. the width
of T is bounded by some constant k ≥ 1, the primality of
A in the subschema (R′, F [R′]) can be tested as follows. It
is convenient to refer to the Primality-Test algorithm as PT
and to the Subschema-Not-BCNF algorithm as SNB:

Initializations. As in PT, we search for some node N in
T with A ∈ λ(N) and consider T as rooted at N .

Data structures. At every node Ni in T , we need exactly
the same data structures as in PT, namely: XNi

, CovNi
,

and αNi
with the analogous meaning as before. In par-

ticular, X :=
S

N∈T
XN will ultimately be a co-antikey in

(R′, F [R′]) with A ∈ X . In addition, we also need the data
structures YNi

, ZNi
, and βNi

from SNB with the same mean-
ing as before. In particular, Y :=

S

N∈T
YN is a subset of

R′ and Z :=
S

N∈T
ZN = closF (Y) \ Y. Only the variables

A and B from SNB are omitted here.

Guesses. The data structures XNi
, CovNi

, and αNi
are

maintained in the same way as described in steps 1 through 7
in PT. For the data structures YNi

, ZNi
, and βNi

from SNB,
we need one significant modification: Rather than guessing
YNi

at each node (see step 1 in SNB), we set YNi
:= (R′ \

XNi
)∩λ(Ni). In other words, Y :=

S

N∈T
YN will ultimately

yield R′ \ X .

Checks. The Check 1 in SNB is dropped (since we are not
dealing with A and B from SNB). But Check 2 from SNB
is taken over unchanged. Likewise, the Checks 2 and 3 from
PT can be left unchanged. But Check 1 from PT has to be
replaced by the condition A 6∈ ZM . In other words, we have
to make sure that A is not determined by the complement
Y of the co-antikey X (via the FDs in F ).

By combining the results from the Sections 5 and 6, we
thus get the following theorem:

Theorem 7.1. Let (R, F ) be a relational schema whose
treewidth is bounded by some constant k ≥ 1 and let R′ ⊆ R
be a subschema, and A ∈ R′ an attribute. Then it can be
decided in linear time whether A is prime in (R′, F [R′]).
Moreover, this decision problem is in LogCFL.

Finally, we describe an algorithm for testing whether some
subschema R′ ⊆ R is not in 3NF. Suppose that we are given
a relational schema (R, F ), a subschema R′ ⊆ R, and a tree
decomposition T of (R,F ), s.t. the width of T is bounded by
some constant k ≥ 1. Our “Subschema-Not-3NF” algorithm
is obtained by the following modification of our Subschema-
Not-BCNF algorithm: When guessing the attribute A in
step r0, we have to check that A is not prime in (R′, F [F ′]).
By Theorem 7.1 and by the fact that LogCFL is closed
under complement (see [7]), this check can be done by a



LogCFL-algorithm. But then, since L LogCFL(LogCFL)
= LogCFL (see [15]), the whole test that R′ ⊆ R is not in
3NF, is in LogCFL. Making once more use of the closure
of LogCFL under complement, we thus get

Theorem 7.2. Let (R, F ) be a relational schema whose
treewidth is bounded by some constant k ≥ 1 and let R′ ⊆ R
be a subschema. It can be decided in linear time whether R′

is in 3NF. Moreover, this decision problem is in LogCFL.

8. INCIDENCE GRAPH
In this section, we first encode the six decision prob-

lems considered so far (i.e., PRIMALITY, 3NFTEST, and
BCNFTEST – both for a schema and for a subschema) with
Monadic Second-Order (MSO) formulae. Then we show
that if the treewidth of the incidence graph of the relational
schema is bounded, the fixed-parameter tractability results
can be established using Courcelle’s Theorem.

Theorem 8.1 ([8]). Let ϕ be a fixed MSO-sentence and
k a fixed constant. Deciding whether ϕ holds for an input
graph G (more generally, for an input structure A) can be
done in linear time if the treewidth of the graphs (resp. of
the structures) under consideration is bounded by k.

Due to the well-known analogy between functional de-
pendencies and propositional Horn clauses, we use a logical
notation to facilitate the presentation. Let (R, F ) be a rela-
tional schema, an interpretation of F is simply a subset X
where X ⊆ R. If X satisfies F , then X is called a model of
F , written as X |= F .

Let (R, F ) be a relational schema, and H be the hy-
pergraph of (R, F ) (see Definition 2.2). We denote the
treewidth of the incidence graph of (R,F ) as tw I(H). More
specifically, we can represent (R, F ) by a relational structure
A(R, F ) based on the relations attr(.), rule(.), Head(., .) and
Tail(., .) with the following intended meaning: rule(h) means
that h is an FD rule in F , and attr(a) means that a is an
attribute in R; Head(x,h) (resp. Tail(x, h)) means that x
occurs at the right-hand side (resp. left-hand side) in the
FD rule h. Let HA be the hypergraph of A(R,F ) (see Defi-
nition 2.3), It is obvious that tw I(H) = tw I(HA).

We first encode the property X |= F .

MSO encoding of X |= F (with relational schema
(R, F ) and X ⊆ R)

(∀h)rule(h) → (∃a)[(Head(a, h)∧a ∈ X)∨(Tail(a, h)∧a 6∈ X)]

Next we introduce the MSO formulae encoding superkey,
key and some auxiliary predicates.

MSO encodings of superkey, key and some auxil-
iary predicates

X ⊆ R ≡ (∀a)a ∈ X → attr(a)

X ⊂ R ≡ X ⊆ R ∧ (∃a)(attr(a) ∧ a 6∈ X)

Clo(X, F, Y ) ≡ X ⊆ Y ∧Y |= F ∧ (∀Y ′)[(X ⊆ Y ′ ∧Y ′ ⊂ Y ) →
¬(Y ′ |= F )]

SK(X,F,R) ≡ Clo(X, F,R)

K(X,F,R) ≡ SK(X,F,R) ∧ ¬(∃X ′)[X′ ⊂ X ∧ SK(X′, F,R)]

Lhs(X,h) ≡ (∀a)a ∈ X → Tail(a, h)

The predicates defined above have the following meaning:
Clo(X, F, Y ): Y is the closure of X w.r.t. F ;
SK(X, F, R): X is a superkey of the schema (R,F );
K(X, F, R): X is a key of the relational schema (R, F );
Lhs(X, h): X is contained in the lhs of the FD rule h.

With the above auxiliary predicates, the following MSO
encoding is straightforward.

MSO encodings of PRIMALITY, BCNF and 3NF

Prime(a, F,R) ≡ (∃X)[K(X, F,R) ∧ a ∈ X]

BCNF (F,R) ≡ (∀h)rule(h) → (∃X)[Lhs(X, h)∧SK(X,F,R)]

3NF (F,R) ≡ (∀h)rule(h) → [(∃X)[Lhs(X,h) ∧ SK(X,F,R)]
∨(∃b)[Head(b, h)∧Prime(b, F,R)]]

Now we consider the problems PRIMALITY, BCNF, and
3NF for a subschema. Let (R,F ) be the relational schema
and (R′, F [R′]) be the subschema of (R, F ), where R′ ⊆ R.
We construct a relational structure A

′(R,F, R′), which con-
tains A(R, F ) and a new relation attr′(.), where attr′(a)
means that a is an attribute in R′. Let HA′ be the hy-
pergraph of A

′(R,F, R′). Because attr′ is a unary relation
and does not affect the treewidth of the incidence graph, we
have tw I(HA′ ) = tw I (HA). Moreover, auxiliary predicates
concerning R′, such as X ⊆ R′, can be easily constructed
by replacing attr with attr′ from the predicates concerning
R.

MSO encodings of PRIMALITY, BCNF and 3NF
with subschema

PrimeS(a,F,R, R′) ≡ ∃X K(X,F,R′) ∧ a ∈ X

BCNFS(F,R, R′) ≡ (∀X, a)[(∃Y )[Clo(X, F,Y ) ∧ a ∈ Y ]∧
X ⊆ R′ ∧ a 6∈ X → SK(X,F,R′)]

3NFS(F,R, R′) ≡ (∀X, a)[(∃Y )[Clo(X, F, Y ) ∧ a ∈ Y ]∧
X ⊆ R′ ∧ a 6∈ X → [SK(X,F,R′) ∨ Prime(a, F,R′)]]

Since all the decision problems considered in this paper
can be expressed by means of MSO sentences, the following
fixed-parameter tractability result is an immediate conse-
quence of Courcelle’s Theorem (Theorem 8.1).

Theorem 8.2. The decision problems PRIMALITY, 3NF-
TEST, and BCNFTEST (both for a schema and for a sub-
schema) can be solved in linear time, if the incidence graph
of (R, F ) has bounded treewidth.

9. NF-DECOMPOSITION REVISITED
The intractability of the decision problems recalled in the

introduction is a severe obstacle to satisfactory normal form
decomposition algorithms for 3NF and BCNF. In partic-
ular, as was illustrated in Example 1.1, without the abil-
ity to recognize the normal form, one inevitably runs the
risk of further decomposing a schema even though the de-
sired normal form has already been reached. However, in
many situations, the relational schema under investigation
has low treewidth. In this case, our algorithms presented
in the previous sections open the grounds for a completely
new approach to normal form decomposition. Rather than
starting from the FDs and defining subschemas bottom-up
so to speak, one can start from the schema itself, check for
normal form violations and define appropriate subschemas
top-down. In this section we present a simple 3NF decom-
position algorithm based on this new approach, see Figure 6.

The 3NF-Decomposition algorithm obviously computes a
lossless join decomposition into 3NF subschemas. Moreover,
by Theorem 7.2, it works in polynomial time (note that our
NF-algorithms from Sections 6 and 7 can be easily extended
so as to output a concrete NF-violation rather than just
answering ”Accept” or ”Reject”). Of course, there is ample
space for improvements and extensions of this algorithm.
We conclude this section by outlining just a few directions
of further refining this algorithm and for extending it to a
BCNF decomposition algorithm:



Algorithm 3NF Decomposition
Input Relational schema (R, F ), tree-decomposition T of the

primal graph of (R, F ) with width k.
Output Set S3NF of subschemas in 3NF.

begin
S3NF := ∅; R′ := R; stop := false;
repeat

if R′ contains a 3NF-violation A1, . . . , Am → B then
S3NF := S3NF ∪ {{A1, . . . , Am, B}};
R′ := R′ \ {B};

else
S3NF := S3NF ∪ {R′};
stop := true;

fi;
until stop;

end;

Figure 6: 3NF-Decomposition Algorithm.

(1) One is normally interested in an FD-preserving de-
composition. Hence, as a post-processing step, one should
check for all FDs in F whether they are embedded in the
resulting set of subschemas. For every FD A1, . . . , Am → B
not embedded in S3NF , we can simply add the subschema
{A1, . . . , Am, B} to S3NF . All this can be done in polyno-
mial time (see [3]).

(2) When a 3NF-violation A1, . . . , Am → B has been de-
tected, one should not only split off the single attribute B
from R′. Instead, one should search for further attributes
B1, . . . , B` which are also determined by A1, . . . , Am and
split off all these attributes together. Actually, the resulting
subschema S = {A1, . . . , Am, B, B1, . . . , B`} is not necessar-
ily in 3NF. But this is no problem. We just have to check
whether the subschema S already is in 3NF and, otherwise,
apply the 3NF decomposition recursively to this subschema.
By Theorem 7.2, also the 3NF-test in a subschema S of
(R, F ) can be done efficiently in case of bounded treewidth.

(3) Similarly, when we use the idea of the 3NF-Decomposi-
tion algorithm for a BCNF decomposition, then the sub-
schemas produced are not necessarily in BCNF. But again,
this can be efficiently detected (see Theorem 6.3) and we
just have to apply the BCNF decomposition recursively to
the subschema. Unfortunately, there is no way to guarantee
that we actually find an FD-preserving decomposition into
BCNF. However, by results shown in [2] (a lossless join, FD-
preserving BCNF decomposition does not necessarily exist
and it is coNP-hard to decide whether one exists), this can
hardly be helped.

10. CONCLUSION
In this paper, we have presented new algorithms for six

fundamental decision problems in database design, namely:
PRIMALITY, 3NFTEST, and BCNFTEST (both for a sche-
ma and for a subschema). These algorithms work in linear
time in case that the input relational schema has bounded
treewidth. Along the way to these new algorithms, we have
provided a new characterization of primality and a heuristics
for dealing with keys.

To the best of our knowledge, these are the first results
on tractable fragments of decision problems in database de-
sign via bounded treewidth. As we have already mentioned
before, we are convinced that most relational schemas en-
countered in practice tend to have low treewidth. Hence,
it is clearly worthwhile to further investigate the potential
benefit of the concept of treewidth in this area.

The algorithms presented in this work are based on the
definition of treewidth via the primal graph of a hyper-
graph H. For the case that the treewidth is defined via the
incidence graph, we have proved the corresponding fixed-
parameter tractability results via appropriate MSO encod-
ings. Dedicated algorithms also in the latter case are left for
future work. Likewise, applying other notions of treewidth
(like directed treewidth) to the problems studied here is an
interesting target for future research.

Problems related to the database design problems stud-
ied here also arise in Artificial Intelligence. In particular,
Abduction (which is an important diagnosis technique) is
strongly related to the PRIMALITY problem. Unfortuna-
tely, as was shown in [10], the major decision and compu-
tation problems of Abduction are NP-hard, even if a sys-
tem is described by propositional Horn clauses only. In a
forthcoming paper, we shall point out how the tractability
results obtained here can be fruitfully applied to Abduction
and other reasoning problems in Artificial Intelligence.

11. REFERENCES
[1] W. Armstrong. ”Dependency Structures of Data Base

Relationships”. In IFIP Congress, pages 580–583, 1974.
[2] C. Beeri and P. A. Bernstein. ”Computational Problems

Related to the Design of Normal Form Relational Schemas”.
ACM Trans. Database Syst., 4(1):30–59, 1979.

[3] C. Beeri and P. Honeyman. ”Preserving Functional
Dependencies”. SIAM J. Comput., 10(3):647–656, 1981.

[4] C. Berge. Hypergraphs. North Holland, Amsterdam, 1989.
[5] P. A. Bernstein. ”Synthesizing Third Normal Form Relations

from Functional Dependencies”. ACM Trans. Database Syst.,
1(4):277–298, 1976.

[6] H. L. Bodlaender. ”A Linear-Time Algorithm for Finding
Tree-Decompositions of Small Treewidth”. SIAM J. Comput.,
25(6):1305–1317, 1996.

[7] A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and
M. Tompa. ”Two Applications of Inductive Counting for
Complementation Problems”. SIAM J. Comput.,
18(3):559–578, 1989.

[8] B. Courcelle. ”Graph Rewriting: An Algebraic and Logic
Approach”. In Handbook of Theoretical Computer Science,
Volume B, pages 193–242, 1990.

[9] J. Demetrovics and V. D. Thi. ”Keys, Antikeys and Prime
Attributes”. Annales Univ. Sci. Budapest, Sect.
Comp.(8):35–52, 1987.

[10] T. Eiter and G. Gottlob. ”The Complexity of Logic-based
Abduction”. J. ACM, 42(1):3–42, 1995.

[11] T. Eiter and G. Gottlob. ”Identifying the Minimal
Transversals of a Hypergraph and Related Problems”. SIAM
J. Comput., 24(6):1278–1304, 1995.

[12] T. Eiter, G. Gottlob, and K. Makino. ”New Results on
Monotone Dualization and Generating Hypergraph
Transversals”. In STOC, pages 14–22, 2002.

[13] J. Flum, M. Frick, and M. Grohe. ”Query Evaluation via
Tree-decompositions”. J. ACM, 49(6):716–752, 2002.

[14] M. L. Fredman and L. Khachiyan. ”On the Complexity of
Dualization of Monotone Disjunctive Normal Forms”. J.
Algorithms, 21(3):618–628, 1996.

[15] G. Gottlob, N. Leone, and F. Scarcello. ”Computing LOGCFL
Certificates”. Theor. Comput. Sci., 270(1-2):761–777, 2002.

[16] G. Gottlob, N. Leone, and F. Scarcello. ”Hypertree
Decompositions and Tractable Queries”. J. Comput. Syst.
Sci., 64(3):579–627, 2002.

[17] C. L. Lucchesi and S. L. Osborn. ”Candidate Keys for
Relations”. J. Comput. Syst. Sci., 17(2):270–279, 1978.

[18] H. Mannila and K.-J. Räihä;. The Design of Relational
Databases. Addison-Wesley, 1992.

[19] K. K. Nambiar, B. Gopinath, T. Nagaraj, and Manjunath.
”Boyce-Codd Normal Form Decomposition”. J. Comp. and
Math. with Appl., 33(4), 1997.

[20] S. L. Osborn. ”Testing for Existence of a Covering Boyce-Codd
Normal Form”. Inf. Process. Lett., 8(1):11–14, 1979.

[21] W. L. Ruzzo. ”Tree-size Bounded Alternation”. J. Comput.
Syst. Sci., 21(2):218–235, 1980.

[22] R. Tarjan. ”Depth-first Search and Linear Graph Algorithms”.
SIAM Journal on Computing, 1(2):146–160, June 1972.


