
Monadic Datalog over Finite Structures
with Bounded Treewidth

Georg Gottlob
Computing Laboratory

Information Systems Institute
Oxford University, Oxford OX1 3QD,UK
georg.gottlob@comlab.ox.ac.uk

Reinhard Pichler, and Fang Wei
Database and Artificial Intelligence Group

Technische Universit -at Wien
A1040 Vienna, Austria

{pichler,wei}@dbai.tuwien.ac.at

ABSTRACT
Bounded treewidth and Monadic Second Order (MSO) logic
have proved to be key concepts in establishing fixed-para-
meter tractability results. Indeed, by Courcelle’s Theorem
we know: Any property of finite structures, which is ex-
pressible by an MSO sentence, can be decided in linear time
(data complexity) if the structures have bounded treewidth.

In principle, Courcelle’s Theorem can be applied di-
rectly to construct concrete algorithms by transforming the
MSO evaluation problem into a tree language recognition
problem. The latter can then be solved via a finite tree au-
tomaton (FTA). However, this approach has turned out to
be problematical, since even relatively simple MSO formulae
may lead to a “state explosion” of the FTA.

In this work we propose monadic datalog (i.e., datalog
where all intentional predicate symbols are unary) as an
alternative method to tackle this class of fixed-parameter
tractable problems. We show that if some property of finite
structures is expressible in MSO then this property can also
be expressed by means of a monadic datalog program over
the structure plus the tree decomposition. Moreover, we
show that the resulting fragment of datalog can be evaluated
in linear time (both w.r.t. the program size and w.r.t. the
data size). This new approach is put to work by devising
a new algorithm for the PRIMALITY problem (i.e., testing
if some attribute in a relational schema is part of a key).
We also report on experimental results with a prototype
implementation.

Categories and Subject Descriptors: F.2.2 [Nonnu-
merical Algorithms and Problems]: Complexity of
proof procedures, Computations on discrete structures; F.4.1
[Mathematical Logic]: Computational Logic

General Terms: Algorithms, Performance, Theory

Keywords: Tree decomposition, Treewidth, Fixed-para-
meter tractability, Monadic Second Order Logic, Datalog

1. INTRODUCTION
Over the past decade, parameterized complexity has evol-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’07, June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-685-1/07/0006 ...$5.00.

ved as an important subdiscipline in the field of computa-
tional complexity, see [8, 14]. In particular, it has been
shown that many hard problems become tractable if some
problem parameter is fixed or bounded by a constant. In
the arena of graphs and, more generally, of finite structures,
the treewidth is one such parameter which has served as
the key to many fixed-parameter tractability (FPT) results.
The most prominent method for establishing the FPT in
case of bounded treewidth is via Courcelle’s Theorem, see
[5]: Any property of finite structures, which is expressible
by a Monadic Second Order (MSO) sentence, can be de-
cided in linear time (data complexity) if the treewidth of
the structures is bounded by a fixed constant.

Recipes as to how one can devise concrete algorithms
based on Courcelle’s Theorem can be found in the literature,
see [2, 13]. The idea is to first translate the MSO evalua-
tion problem over finite structures into an equivalent MSO
evaluation problem over colored binary trees. This problem
can then be solved via the correspondence between MSO
over trees and finite tree automata (FTA), see [25, 6]. In
theory, this generic method of turning an MSO description
into a concrete algorithm looks very appealing. However,
in practice, it has turned out that even relatively simple
MSO formulae may lead to a “state explosion” of the FTA,
see [22]. Consequently, it was already stated in [18] that
the algorithms derived via Courcelle’s Theorem are “useless
for practical applications”. The main benefit of Courcelle’s
Theorem is that it provides “a simple way to recognize a
property as being linear time computable”. In other words,
proving the FPT of some problem by showing that it is MSO
expressible is the starting point (rather than the end point)
of the search for an efficient algorithm.

In this work we propose monadic datalog (i.e., datalog
where all intentional predicate symbols are unary) as a prac-
tical tool for devising efficient algorithms in situations where
the FPT has been shown via Courcelle’s Theorem. Above
all, we prove that if some property of finite structures is ex-
pressible in MSO then this property can also be expressed
by means of a monadic datalog program over the structure
plus the tree decomposition. Hence, in the first place, we
prove an expressivity result rather than a mere complexity
result. However, we also show that the resulting fragment
of datalog can be evaluated in linear time (both w.r.t. the
program size and w.r.t. the data size). We thus get the cor-
responding complexity result (i.e., Courcelle’s Theorem) as
a corollary of this MSO-to-datalog transformation.

Our MSO-to-datalog transformation for finite structures
with bounded treewidth generalizes a result from [15] where
it was shown that MSO on trees has the same expressive

power as monadic datalog on trees. Several obstacles had
to be overcome to prove this generalization:

• First of all, we no longer have to deal with a single
universe, namely the universe of trees whose domain
consists of the tree nodes. Instead, we now have to deal
with – and constantly switch between – two universes,
namely the relational structure (with its own signature
and its own domain) on the one hand, and the tree
decomposition (with appropriate predicates expressing
the tree structure and with the tree nodes as a separate
domain) on the other hand.

• Of course, not only the MSO-to-datalog transforma-
tion itself had to be lifted to the case of two uni-
verses. Also important prerequisites of the results in
[15] (notably several results on MSO-equivalences of
tree structures shown in [24]) had to be extended to
this new situation.

• Apart from switching between the two universes, it is
ultimately necessary to integrate both universes into
the monadic datalog program. For this purpose, both
the signature and the domain of the finite structure
have to be appropriately extended.

• It has turned out that previous notions of standard
or normal forms of tree decompositions (see [8, 13])
are not suitable for our purposes. We therefore have
to introduce a modified version of “normalized tree
decompositions”, which is then further refined as we
present new algorithms based on monadic datalog.

In the second part of this paper, we put monadic dat-
alog to work by presenting a new algorithm for the PRI-
MALITY problem (i.e., testing if some attribute in a rela-
tional schema is part of a key), which is well-known to be
intractable (cf. [21]). In [17], PRIMALITY was shown to be
MSO expressible. Hence, if the (incidence graph of the) re-
lational schema has bounded treewidth, then this problem
becomes tractable. However, two attempts to tackle this
problem via the standard MSO-to-FTA approach turned out
to be very problematical: We experimented with a prototype
implementation using MONA (see [19]) for the MSO model
checking. But we ended up with “memory leak” already for
really small input data (see Section 6). Alternatively, we
made an attempt to directly implement the MSO-to-FTA
mapping proposed in [13]. However, the “state explosion”
of the resulting FTA – which tends to occur already for
comparatively simple formulae (cf. [22]) – led to failure yet
before we were able to feed any input data to the program.

In contrast, the experimental results with our new dat-
alog approach look very promising, see Section 6. By the
experience gained with these experiments, the following ad-
vantages of datalog compared with MSO became apparent:

• Level of declarativity. MSO as a logic has the high-
est level of declarativity which often allows one very
elegant and succinct problem specifications. However,
MSO does not have an operational semantics. In or-
der to turn an MSO specification into an algorithm, the
standard approach is to transform the MSO evaluation
problem into a tree language recognition problem. But
the FTA clearly has a much lower level of declarativ-
ity and the intuition of the original problem is usually
lost when an FTA is constructed. In contrast, the dat-
alog program with its declarative style often reflects
both the intuition of the original problem and of the

algorithmic solution. This intuition can be exploited
for defining heuristics which lead to problem-specific
optimizations.

• General optimizations. A lot of research has been de-
voted to generally applicable (i.e., not problem-speci-
fic) optimization techniques of datalog (see e.g. [4]).
In our implementation (see Section 6), we make heavy
use of these optimization techniques, which are not
available in the MSO-to-FTA approach.

• Flexibility. The generic transformation of MSO formu-
lae to monadic datalog programs (given in Section 4)
inevitably leads to programs of exponential size w.r.t.
the size of the MSO-formula and the treewidth. How-
ever, as our PRIMALITY program demonstrates, ma-
ny relevant properties can be expressed by really short
programs. Moreover, as we will see in Section 5, also
datalog provides us with a certain level of succinct-
ness. In fact, we will be able to express a big monadic
datalog program by a small non-monadic program.

• Required transformations. The problem of a “state ex-
plosion” reported in [22] already refers to the transfor-
mation of (relatively simple) MSO formulae on trees
to an FTA. If we consider MSO on structures with
bounded treewidth the situation gets even worse, since
the original (possibly simple) MSO formula over a fi-
nite structure first has to be transformed into an equiv-
alent MSO formula over trees. This transformation
(e.g., by the algorithm in [13]) leads to a much more
complex formula (in general, even with additional quan-
tifier alternations) than the original formula. In con-
trast, our approach works with monadic datalog pro-
grams on finite structures which need no further trans-
formation. Each program can be executed as it is.

• Extending the programming language. One more as-
pect of the flexibility of datalog is the possibility to
define new built-in predicates if they admit an efficient
implementation by the interpreter. Another example
of a useful language extension is the introduction of
generalized quantifiers. For the theoretical background
of this concept, see [11, 12].

Some applications require a fast execution which cannot al-
ways be guaranteed by an interpreter. Hence, while we pro-
pose a logic programming approach, one can of course go
one step further and implement our algorithms directly in
Java, C++, etc. following the same paradigm.

The paper is organized as follows. After recalling some
basic notions and results in Section 2, we prove several re-
sults on the MSO-equivalence of substructures induced by
subtrees of a tree decomposition in Section 3. In Section 4,
it is shown that any MSO formula with one free individ-
ual variable over structures with bounded treewidth can be
transformed into an equivalent monadic datalog program.
In Section 5, we put monadic datalog to work by presenting
a new FPT algorithm for the PRIMALITY problem in case
that the relational schema has bounded treewidth. In Sec-
tion 6, we report on experimental results with a prototype
implementation. A conclusion is given in Section 7.

2. PRELIMINARIES

2.1 Finite Structures and Treewidth
Let τ = {R1, . . . , RK} be a set of predicate symbols. A

finite structure A over τ (a τ -structure, for short) is given by

a finite domain A = dom(A) and relations RA
i ⊆ Aα, where

α denotes the arity of Ri ∈ τ . A finite structure may also
be given in the form (A, ā) where, in addition to A, we have
distinguished elements ā = (a0, . . . , aw) from dom(A). Such
distinguished elements are required for interpreting formulae
with free variables.

A tree decomposition T of a τ -structure A is defined as
a pair 〈T, (At)t∈T 〉 where T is a tree and each At is a sub-
set of A with the following properties: (1) Every a ∈ A is
contained in some At. (2) For every Ri ∈ τ and every tu-
ple (a1, . . . , aα) ∈ RA

i , there exists some node t ∈ T with
{a1, . . . , aα} ⊆ At. (3) For every a ∈ A, the set {t | a ∈ At}
induces a subtree of T .

The third condition is usually referred to as the connect-
edness condition. The sets At are called the bags (or blocks)
of T . The width of a tree decomposition 〈T, (At)t∈T 〉 is de-
fined as max{|At| | t ∈ T} − 1. The treewidth of A is the
minimal width of all tree decompositions of A. It is de-
noted as tw (A). Note that trees and forests are precisely
the structures with treewidth 1.

For given w ≥ 1, it can be decided in linear time if some
structure has treewidth ≥ w. Moreover, in case of a positive
answer, a tree decomposition of width w can be computed
in linear time, see [3].

In this paper, we consider the following form of normalized
tree decompositions: (1) The bags are considered as tuples of
w+1 pairwise distinct elements (a0, . . . , aw) rather than sets.
(2) Every internal node t ∈ T has either 1 or 2 child nodes.
(3) If a node t with bag (a0, . . . , aw) has one child node, then
the bag of the child is either obtained via a permutation
of (a0, . . . , aw) or by replacing a0 with another element a′

0.
We call such a node t a permutation node or an element
replacement node, respectively. (4) If a node t has two child
nodes then these child nodes have identical bags as t. In
this case, we call t a branch node.

W.l.o.g., we restrict ourselves to the case that the domain
dom(A) has at least w+1 elements. Similarly to the normal
form introduced in Theorem 6.72 of [8], it can be shown that
any tree decomposition can be transformed in linear time
into the above normalized form.

2.2 Monadic Second Order Logic
We assume some familiarity with Monadic Second Order

logic (MSO), see e.g. [9, 20]. MSO extends First Order logic
(FO) by the use of set variables (usually denoted by upper
case letters), which range over sets of domain elements. In
contrast, the individual variables (which are usually denoted
by lower case letters) range over single domain elements. An
MSO-formula ϕ over a τ -structure has as atomic formulae
either atoms with some predicate symbol from τ or equality
atoms. The quantifier depth of an MSO-formula ϕ is defined
as the maximum degree of nesting of quantifiers (both for
individual variables and set variables) in ϕ.

In this work, we will mainly encounter MSO formulae with
free individual variables. A formula ϕ(x) with exactly one
free individual variable is called a unary query . More gen-
erally, let ϕ(x̄) with x̄ = (x0, . . . , xw) for some w ≥ 0 be
an MSO formula with free variables x̄. Furthermore, let A
be a τ -structure and ā = (a0, . . . , aw) be distinguished do-
main elements. We write (A, ā) |= ϕ(x̄) to denote that ϕ(ā)
evaluates to true in A. Usually, we refer to (A, ā) simply
as a “structure” rather than a “structure with distinguished
domain elements”.

We call two structures (A, ā) and (B, b̄) k-equivalent and

write (A, ā) ≡MSO

k (B, b̄), iff for every MSO-formula ϕ of
quantifier depth ≤ k, the equivalence (A, ā) |= ϕ⇔ (B, b̄) |=
ϕ holds. By definition, ≡MSO

k is an equivalence relation.
For any k, the relation ≡MSO

k has only finitely many equiv-
alence classes. These equivalence classes are referred to
as k-types or simply as types. The ≡MSO

k -equivalence be-
tween two structures can be effectively decided. There is a
nice characterization of ≡MSO

k -equivalence by Ehrenfeucht-
Fräıssé games, which are played by two players – the spoiler
and the duplicator: Two structures (A, ā) and (B, b̄) are k-
equivalent iff the duplicator has a winning strategy in the
k-round MSO-game on (A, ā) and (B, b̄), see e.g. [9, 20].

2.3 Datalog
We assume some familiarity with datalog, see e.g. [1, 4,

26]. Syntactically, a datalog program P is a set of function-
free Horn clauses. The (minimal-model) semantics can be
defined as the least fixpoint of applying the immediate con-
sequence operator. Predicates occurring only in the body of
rules in P are called extensional, while predicates occurring
also in the head of some rule are called intentional.

Let A be a τ -structure with domain A and relations RA
1 ,

. . . , RA
K with RA

i ⊆ Aα, where α denotes the arity of Ri ∈
τ . In the context of datalog, it is convenient to think of
the relations RA

i as sets of ground atoms. The set of all
such ground atoms of a structure A is referred to as the
extensional database (EDB) of A, which we shall denote as
E(A) (or simply as A, if no confusion is possible). We have
Ri(ā) ∈ E(A) iff ā ∈ RA

i .
Evaluating a datalog program P over a structure A comes

down to computing the least fixpoint of P ∪A. Concerning
the complexity of datalog, we are mainly interested in the
combined complexity (i.e., the complexity w.r.t. the size of
the program P plus the size of the data A). In general,
the combined complexity of datalog is EXPTIME-complete
(implicit in [27]). However, there are some fragments which
can be evaluated much more efficiently. (1) Propositional
datalog (i.e., all rules are ground) can be evaluated in linear
time (combined complexity), see [7, 23]. (2) The guarded
fragment of datalog (i.e., every rule r contains an exten-
sional atom B in the body, s.t. all variables occurring in r
also occur in B) can be evaluated in time O(|P| ∗ |A|). (3)
Monadic datalog (i.e., all intentional predicates are unary)
is NP-complete (combined complexity), see [15].

3. INDUCED SUBSTRUCTURES
In this section, we study the k-types of substructures in-

duced by certain subtrees of a tree decomposition (see Defi-
nitions 3.1 and 3.2). Moreover, it is convenient to introduce
some additional notation in Definition 3.3 below.

Definition 3.1. Let T be a tree and t a node in T . Then
we denote the subtree rooted at t as Tt. Moreover, analo-
gously to [24], we write T̄t to denote the envelope of Tt. This
envelope is obtained by removing all of Tt from T except for
the node t.

Likewise, let T = 〈T, (As)s∈T 〉 be a tree decomposition of
a finite structure. Then we define Tt = 〈Tt, (As)s∈Tt

〉 and
T̄t = 〈T̄t, (As)s∈T̄t

〉.

Definition 3.2. Let A be a finite structure and let T =
〈T, (At)t∈T 〉 be a tree decomposition of A. Moreover, let s
be a node in T with bag As = ā = (a0, . . . , aw) and let S be
one of the subtrees Ts or T̄s of T .

Then we write I(A,S , s) to denote the structure (A′, ā),
where A′ is the substructure of A induced by the elements
occurring in the bags of S .

Definition 3.3. Let w ≥ 1 be a natural number and let A
and B be finite structures over some signature τ . Moreover,
let (a0, . . . , aw) (resp. (b0, . . . , bw)) be a tuple of pairwise
distinct elements in A (resp. B).

We call (a0, . . . , aw) and (b0, . . . , bw) equivalent and write
(a0, . . . , aw) ≡ (b0, . . . , bw), iff for any predicate symbol R ∈
τ with arity α and for all tuples (i1, . . . , iα) ∈ {0, . . . , w}α,
the equivalence RA(ai1 , . . . , aiα

) ⇔ RB(bi1 , . . . , biα
) holds.

We are now ready to generalize results from [24] (dealing
with trees plus a distinguished node) to the case of finite
structures of bounded treewidth over an arbitrary signature
τ . In the three lemmas below, let k ≥ 0 and w ≥ 1 be arbi-
trary natural numbers and let τ be an arbitrary signature.

Lemma 3.4. Let A and B be τ -structures, let S (resp. T)
be a normalized tree decomposition of A (resp. of B) of width
w, and let s (resp. t) be an internal node in S (resp. in T).

(1) permutation nodes. Let s′ (resp. t′) be the only child of
s in S (resp. of t in T). Moreover, let ā, ā′, b̄, and b̄′ denote
the bags at the nodes s, s′, t, and t′, respectively.

If I(A,Ss′ , s
′) ≡MSO

k I(B, Tt′ , t
′) and there exists a permu-

tation π, s.t. ā = π(ā′) and b̄ = π(b̄′) then I(A,Ss, s) ≡
MSO

k

I(B, Tt, t).

(2) element replacement nodes. Let s′ (resp. t′) be the only
child of s in S (resp. of t in T). Moreover, let ā = (a0, a1,
. . . , aw), ā′ = (a′

0, a1, . . . , aw), b̄ = (b0, b1, . . . , bw), and b̄′ =
(b′0, b1, . . . , bw) denote the bags at the nodes s, s′, t, and t′,
respectively.

If I(A,Ss′ , s
′) ≡MSO

k I(B, Tt′ , t
′) and ā ≡ b̄ then I(A,Ss, s)

≡MSO

k I(B, Tt, t).

(3) branch nodes. Let s1 and s2 (resp. t1 and t2) be the
children of s in S (resp. of t in T).

If I(A,Ss1
, s1) ≡

MSO

k I(B, Tt1 , t1) and I(A,Ss2
, s2) ≡

MSO

k

I(B, Tt2 , t2) then I(A,Ss, s) ≡
MSO

k I(B, Tt, t).

Lemma 3.5. Let A and B be τ -structures, let S (resp. T)
be a normalized tree decomposition of A (resp. of B) of width
w, and let s (resp. t) be an internal node in S (resp. in T).

(1) permutation nodes. Let s′ (resp. t′) be the only child of
s in S (resp. of t in T). Moreover, let ā, ā′, b̄, and b̄′ denote
the bags at the nodes s, s′, t, and t′, respectively.

If I(A, S̄s, s) ≡
MSO

k I(B, T̄t, t) and there exists a permuta-
tion π, s.t. ā = π(ā′) and b̄ = π(b̄′) then I(A, S̄s′ , s

′) ≡MSO

k

I(B, T̄t′ , t
′).

(2) element replacement nodes. Let s′ (resp. t′) be the only
child of s in S (resp. of t in T). Moreover, let ā = (a0, a1,
. . . , aw), ā′ = (a′

0, a1, . . . , aw), b̄ = (b0, b1, . . . , bw), and b̄′ =
(b′0, b1, . . . , bw) denote the bags at the nodes s, s′, t, and t′,
respectively.

If I(A, S̄s, s) ≡
MSO

k I(B, T̄t, t) and ā′ ≡ b̄′ then I(A, S̄s′ , s
′)

≡MSO

k I(B, T̄t′ , t
′).

(3) branch nodes. Let s1 and s2 (resp. t1 and t2) be the
children of s in S (resp. of t in T).

If I(A, S̄s, s) ≡
MSO

k I(B, T̄t, t) and I(A,Ss2
, s2) ≡

MSO

k I(B,
Tt2 , t2) then I(A, S̄s1

, s1) ≡
MSO

k I(B, T̄t1 , t1).

If I(A, S̄s, s) ≡
MSO

k I(B, T̄t, t) and I(A,Ss1
, s1) ≡

MSO

k I(B,
Tt1 , t1) then I(A, S̄s2

, s2) ≡
MSO

k I(B, T̄t2 , t2).

Lemma 3.6. Let A and B be τ -structures, let S (resp. T)
be a normalized tree decomposition of A (resp. of B) of width
w, and let s (resp. t) be an arbitrary node in S (resp. in T),
whose bag is (a0, . . . , aw) (resp. (b0, . . . , bw)).

If I(A,Ss, s) ≡
MSO

k I(B, Tt, t) and I(A, S̄s, s) ≡
MSO

k I(B,
T̄t, t) then (A, ai) ≡

MSO

k (B, bi) for every i ∈ {0, . . . , w}.

Discussion. Lemma 3.4 provides the intuition how to deter-
mine the k-type of the substructure induced by a subtree Ss

via a bottom-up traversal of the tree decomposition S . The
three cases in the lemma refer to the three kinds of nodes
which the root node s of this subtree can have. The essence
of the lemma is that the type of the structure induced by
Ss is fully determined by the type of the structure induced
by the subtree rooted at the child node(s) plus the relations
between elements in the bag at node s. Of course, this is no
big surprise. Analogously, Lemma 3.5 deals with the k-type
of the substructure induced by a subtree S̄s, which can be
obtained via a top-down traversal of S . Finally, Lemma 3.6
shows how the k-type of the substructures induced by Ss

and S̄s fully determines the type of the entire structure A
extended by some domain element from the bag of s.

Proof Idea of the Lemmas. The proof of the three lem-
mas is by Ehrenfeucht-Fräıssé games (see [9, 20]). In all
cases, we extend or combine the winning strategy of the du-
plicator on the original pair(s) of structures to a winning
strategy on the target structures.

4. MONADIC DATALOG
In this section, we introduce two restricted fragments of

datalog, namely monadic datalog over finite structures with
bounded treewidth and the quasi-guarded fragment of Dat-
alog. Let τ = {R1, . . . , RK} be a set of predicate symbols
and let w ≥ 1 denote the treewidth. Then we define the
following extended signature τtd.

τtd = τ ∪ {root , leaf , child1, child2, bag}

where the unary predicates root , and leaf as well as the
binary predicates child1 and child2 are used to represent the
tree T of the normalized tree decomposition in the obvious
way. For instance, we write child1(s1, s) to denote that s1 is
either the first child or the only child of s. Finally, bag has
arity w + 2, where bag(t, a0, . . . , aw) means that the bag at
node t is (a0, . . . , aw).

Definition 4.1. Let τ be a set of predicate symbols and
let w ≥ 1. A monadic datalog program over τ -structures
with treewidth w is a set of datalog rules where all exten-
sional predicates are from τtd and all intentional predicates
are unary.

For any τ -structure A with normalized tree decomposition
T = 〈T, (At)t∈T 〉 of width w, we denote by Atd the τtd-
structure representing A plus T as follows: The domain of
Atd is the union of dom(A) and the nodes of T . In addition
to the relations RA

i with Ri ∈ τ , the structure Atd also con-
tains relations for each predicate root , leaf , child1, child2,
and bag thus representing the tree decomposition T . By [3],
one can compute Atd from A in linear time w.r.t. the size
of A. Hence, the size (of some reasonable encoding, see e.g.
[13]) of Atd is also linearly bounded by the size of A.

As we recalled in Section 2.3, the evaluation of monadic
datalog is NP-complete (combined complexity). However,

the target of our transformation from MSO to datalog will
be a further restricted fragment of datalog, which we refer
to as “quasi-guarded”. The evaluation of this fragment can
be easily shown to be tractable.

Definition 4.2. Let B be an atom and y a variable in
some rule r. We call y “functionally dependent” on B if in
every ground instantiation r′ of r, the value of y is uniquely
determined by the value of B.

We call a datalog program P “quasi-guarded” if every rule
r contains an extensional atom B, s.t. every variable occur-
ring in r either occurs in B or is functionally dependent on
B.

Theorem 4.3. Let P be a quasi-guarded datalog program
and let A be a finite structure. Then P can be evaluated
over A in time O(|P| ∗ |A|), where |P| denotes the size of
the datalog program and |A| denotes the size of the data.

Proof. Let r be a rule in the program P and let B be the
“quasi-guard” of r, i.e., all variables in r either occur in B
or are functionally dependent on B. In order to compute all
possible ground instances r′ of r over A, we first instantiate
B. The maximal number of such instantiations is clearly
bounded by |A|. Since all other variables occurring in r
are functionally dependent on the variables in B, in fact
the number of all possible ground instantiations r′ of r is
bounded by |A|.

Hence, in total, the ground program P ′ consisting of all
possible ground instantiations of the rules in P has size
O(|P| ∗ |A|) and also the computation of these ground rules
fits into the linear time bound. As we recalled in Section 2.3,
the ground program P ′ can be evaluated over A in time
O(|P ′|+ |A|) = O((|P| ∗ |A|) + |A|) = O(|P| ∗ |A|).

Before we state the main result concerning the expres-
sive power of monadic datalog over structures with bounded
treewidth, we introduce the following notation. In order to
simplify the exposition below, we assume that all predicates
Ri ∈ τ have the same arity r. First, this can be easily
achieved by copying columns in relations with smaller arity.
Moreover, it is easily seen that the results also hold without
this restriction.

It is convenient to use the following abbreviations. Let ā =
(a0, . . . , aw) be a tuple of domain elements. Then we write
R(ā) to denote the set of all ground atoms with predicates
in τ = {R1, . . . , RK} and arguments in {a0, . . . , aw}, i.e.,

R(ā) =

K
[

i=1

w
[

j1=0

· · ·
w

[

jr=0

{Ri(aj1 , . . . , ajr
)}

Let A be a structure with tree decomposition T and let s
be a node in T whose bag is ā = (a0, . . . , aw). Then we
write (A, s) as a short-hand for the structure (A, ā) with
distinguished constants ā = (a0, . . . , aw).

Theorem 4.4. Let τ and w ≥ 1 be arbitrary but fixed.
Every MSO-definable unary query over τ -structures of tree-
width w is also definable in the quasi-guarded fragment of
monadic datalog over τtd.

Proof. Let ϕ(x) be an arbitrary MSO formula with free
variable x and quantifier depth k. We have to construct a
monadic datalog program P with distinguished predicate ϕ
which defines the same query.

W.l.o.g., we only consider the case of structures whose
domain has ≥ w + 1 elements. We maintain two disjoint

sets of k-types Θ↑ and Θ↓, representing k-types of structures
(A, ā) of the following form: A has a tree decomposition T
of width w and ā is the bag of some node s in T . Moreover,
for Θ↑, we require that s is the root of S while, for Θ↓, we
require that s is a leaf node of T . We maintain for each type
ϑ a witness W (ϑ) = 〈A, T , s〉. The types in Θ↑ and Θ↓ will
serve as predicate names in the monadic datalog program to
be constructed. Initially, Θ↑ = Θ↓ = P = ∅.

1. “Bottom-up” construction of Θ↑.
Base Case. Let a0, . . . , aw be pairwise distinct elements
and let S be a tree decomposition consisting of a single
node s, whose bag is As = (a0, . . . , aw). Then we con-
sider all possible structures (A, s) with this tree decompo-
sition. In particular, dom(A) = {a0, . . . , aw}. We get all
possible structures with tree decomposition S by letting the
EDB E(A) be any subset of R(ā). For every such struc-
ture (A, s), we check if there exists a type ϑ ∈ Θ↑ with
W (ϑ) = 〈B, T , t〉, s.t. (A, s) ≡MSO

k (B, t). If such a ϑ exists,
we take it. Otherwise we invent a new token ϑ, add it to Θ↑

and set W (ϑ) := 〈A,S , s〉. In any case, we add the following
rule to the program P :

ϑ(v)← bag(v, x0, . . . , xw), leaf (v),
{Ri(xj1 , . . . , xjr

) | R(aj1 , . . . , ajr
) ∈ E(A)},

{¬Ri(xj1 , . . . , xjr
) | R(aj1 , . . . , ajr

) 6∈ E(A)}.

Induction step. We construct new structures by extending
the tree decompositions of existing witnesses in “bottom-up”
direction, i.e., by introducing a new root node. This root
node may be one of three kinds of nodes.

(a) Permutation nodes. For each ϑ′ ∈ Θ↑, let W (ϑ′) =
〈A,S ′, s′〉 with bag As′ = (a0, . . . , aw) at the root s′ in S ′.
Then we consider all possible triples 〈A,S , s〉, where S is
obtained from S ′ by appending s′ to a new root node s, s.t.
s is a permutation node, i.e., there exists some permutation
π, s.t. As = (aπ(0), . . . , aπ(w))

For every such structure (A, s), we check if there exists a
type ϑ ∈ Θ↑ with W (ϑ) = 〈B, T , t〉, s.t. (A, s) ≡MSO

k (B, t).
If such a ϑ exists, we take it. Otherwise we invent a new
token ϑ, add it to Θ↑ and set W (ϑ) := 〈A,S , s〉. In any
case, we add the following rule to the program P :

ϑ(v)← bag(v, xπ(0), . . . , xπ(w)), child1(v
′, v),

ϑ′(v′), bag(v′, x0, . . . , xw).

(b) Element replacement nodes. For each ϑ′ ∈ Θ↑, let
W (ϑ′) = 〈A′,S ′, s′〉 with bag As′ = (a′

0, a1, . . . , aw) at the
root s′ in S ′. Then we consider all possible triples 〈A,S , s〉,
where S is obtained from S ′ by appending s′ to a new
root node s, s.t. s is an element replacement node. For
the tree decomposition S , we thus invent some new ele-
ment a0 and set As = (a0, a1, . . . , aw). For this tree de-
composition S , we consider all possible structures A with
dom(A) = dom(A′)∪{a0} where the EDB E(A′) is extended
to the EDB E(A) by new ground atoms from R(ā), s.t. a0

occurs as argument of all ground atoms in E(A) \ E(A′).
For every such structure (A, s), we check if there exists a

type ϑ ∈ Θ↑ with W (ϑ) = 〈B, T , t〉, s.t. (A, s) ≡MSO

k (B, t).
If such a ϑ exists, we take it. Otherwise we invent a new
token ϑ, add it to Θ↑ and set W (ϑ) := 〈A,S , s〉. In any
case, we add the following rule to the program P :

ϑ(v)← bag(v, x0, x1, . . . , xw),
child1(v

′, v), ϑ′(v′), bag(v′, x′
0, x1, . . . , xw),

{Ri(xj1 , . . . , xjr
) | R(aj1 , . . . , ajr

) ∈ E(A)},
{¬Ri(xj1 , . . . , xjr

) | R(aj1 , . . . , ajr
) 6∈ E(A)}.

(c) Branch nodes. Let ϑ1, ϑ2 be two (not necessarily dis-
tinct) types in Θ↑ with W (ϑ1) = 〈A1,S1, s1〉 and W (ϑ2) =
〈A2,S2, s2〉. Let As1

= (a0, . . . , aw) and As2
= (b0, . . . , bw),

respectively. Moreover, let dom(A1) ∩ dom(A2) = ∅.
Let δ be a renaming function with δ = {a0 ← b0, . . . , aw ←

bw}. By applying δ to 〈A2,S2, s2〉, we obtain a new triple
〈A′

2,S
′
2, s2〉 with A′

2 = A2δ and S ′
2 = S2δ. In particular,

we thus have As2
δ = (a0, . . . , aw). Clearly, (A2, s2) ≡

MSO

k

(A′
2, s2) holds.
For every such pair 〈A1,S1, s1〉 and 〈A′

2,S
′
2, s2〉, we check

if the EDBs are inconsistent, i.e., E(A1) ∩ R(ā) 6= E(A′
2) ∩

R(ā). If this is the case, then we ignore this pair. Otherwise,
we construct a new tree decomposition S with a new root
node s, whose child nodes are s1 and s2. As the bag of s, we
set As = As1

= As′
2
. By construction, S is a normalized tree

decomposition of the structureA with dom(A) = dom(A1)∪
dom(A′

2) and EDB E(A) = E(A1) ∪ E(A
′
2).

As in the cases above, we have to check if there exists a
type ϑ ∈ Θ↑ with W (ϑ) = 〈B, T , t〉, s.t. (A, s) ≡MSO

k (B, t).
If such a ϑ exists, we take it. Otherwise we invent a new
token ϑ, add it to Θ↑ and set W (ϑ) := 〈A,S , s〉. In any
case, we add the following rule to the program P :

ϑ(v)← bag(v, x0, x1, . . . , xw),
child1(v1, v), ϑ1(v1), child2(v2, v), ϑ2(v2),
bag(v1, x0, x1, . . . , xw), bag(v2, x0, x1, . . . , xw).

2. “Top-down” construction of Θ↓.

Analogously to the “bottom-up” construction of Θ↑, we con-
struct the set Θ↓ of types with a “top-down” intuition. The
base case is essentially the same as before since, in every
tree decomposition with only one node s, this single node is
both the root and a leaf. For the induction step, we have
to select the witness W (ϑ′) = 〈A′,S ′, s′〉 of some already
computed type ϑ′ ∈ Θ↓. Now the node s′ in S ′ is a leaf
node and we extend S ′ to a new tree decomposition S by
appending a new leaf node s as a child of s′. For all such
tree decompositions S , we consider all possible structures
A by appropriately extending A′. The rules added to the
program P again reflect the type transitions from the type
of the original structure (A′, s′) to the type of any such new
structure (A, s).

3. Element selection.

We consider all pairs of types ϑ1 ∈ Θ↑ and ϑ2 ∈ Θ↓. Let
W (ϑ1) = 〈A1,S1, s1〉 and W (ϑ2) = 〈A2,S2, s2〉. Moreover,
let As1

= (a0, . . . , aw) and As2
= (b0, . . . , bw), respectively,

and let dom(A1) ∩ dom(A2) = ∅.
Let δ be a renaming function with δ = {a0 ← b0, . . . , aw ←

bw}. By applying δ to 〈A2,S2, s2〉, we obtain a new triple
〈A′

2,S
′
2, s2〉 with A′

2 = A2δ and S ′
2 = S2δ. In particular,

we thus have As2
δ = (a0, . . . , aw). Clearly, (A2, s2) ≡

MSO

k

(A′
2, s2) holds.
For every such pair 〈A1,S1, s1〉 and 〈A′

2,S
′
2, s2〉, we check

if the EDBs are inconsistent, i.e., E(A1) ∩ R(ā) 6= E(A′
2) ∩

R(ā). If this is the case, then we ignore this pair. Otherwise,
we construct a new tree decomposition S by identifying s1

(= the root of S1) with s2 (= a leaf of S2). By construction,
S is a normalized tree decomposition of the structure A with
dom(A) = dom(A1)∪ dom(A′

2) and E(A) = E(A1)∪E(A
′
2).

Now check for each ai in As1
= As2

δ, if A |= ϕ(ai). If
this is the case, then we add the following rule to P .

ϕ(xi)← ϑ1(v), ϑ2(v), bag(v, x0, . . . , xw).

We claim that the program P with distinguished monadic
predicate ϕ is the desired monadic datalog program, i.e., let

A be an arbitrary input τ -structure with tree decomposi-
tion S and let Atd denote the corresponding τtd-structure.
Moreover, let a ∈ dom(A). Then the following equivalence
holds: A |= ϕ(a) iff ϕ(a) is in the fixpoint of P ∪ Atd.

Note that the intentional predicates in Θ↑, Θ↓, and {ϕ}
are layered in that we can first compute the fixpoint of the
predicates in Θ↑, then Θ↓, and finally ϕ.

The bottom-up construction of Θ↑ guarantees that we in-
deed construct all possible types of structures (B, t) with
tree decomposition T and root t. This can be easily shown
by Lemma 3.4 and an induction on the size of the tree de-
composition T . On the other hand, for every subtree Ss of
S , the type of the induced substructure I(A,Ss, s) is ϑ for
some ϑ ∈ Θ↑ if and only if the atom ϑ(s) is in the fixpoint
of P ∪ Atd. Again this can be shown by an easy induction
argument using Lemma 3.4.

Analogously, we may conclude via Lemma 3.5 that Θ↓

contains all possible types of structures (B, t) with tree de-
composition T and some leaf node t. Moreover, for ev-
ery subtree S̄s of S , the type of the induced substructure
I(A, S̄s, s) is ϑ for some ϑ ∈ Θ↓ if and only if the atom ϑ(s)
is in the fixpoint of P ∪Atd. The definition of the predicate
ϕ in part 3 is a direct realization of Lemma 3.6. It thus
follows that A |= ϕ(a) iff ϕ(a) is in the fixpoint of P ∪Atd.

Finally, an inspection of all datalog rules added to P by
this construction shows that these rules are indeed quasi-
guarded, i.e., they all contain an atom B with an exten-
sional predicate, s.t. all other variables in this rule are func-
tionally dependent on the variables in B. For instance, in
the rule added to Θ↑ in case of a branch node, the atom
bag(v, x0, . . . , xw) is the quasi-guard. Indeed, the remaining
variables v1 and v2 in this rule are functionally dependent
on v via the atoms child1(v1, v) and child2(v2, v).

Above all, Theorem 4.4 is an expressivity result. However,
it can of course be used to derive also a complexity result.
Indeed, we can state a slightly extended version of Cour-
celle’s Theorem as a corollary (which is in turn a special
case of Theorem 4.12 in [13]).

Corollary 4.5. There exists an algorithm that solves
the evaluation problem of unary MSO-queries ϕ(x) over τ -
structures A with treewidth w in time O(f(|ϕ(x)|, w) ∗ |A|)
for some function f .

Proof. Suppose that we are given an MSO-query ϕ(x)
and some treewidth w. By Theorem 4.4, we can construct
an equivalent, quasi-guarded datalog program P . The whole
construction is independent of the data. Hence, the time for
this construction and the size of P are both bounded by some
term f(|ϕ(x)|, w). By [3], a tree decomposition T of A and,
therefore, also the extended structure Atd can be computed
in time O(|A|). Finally, by Theorem 4.3, the quasi-guarded
program P can be evaluated over Atd in time O(|P|∗ |Atd|),
from which the desired overall time bound follows.

5. MONADIC DATALOG AT WORK
In this section, we put monadic datalog to work by con-

structing a new algorithm for the PRIMALITY problem
(i.e., testing if some attribute in a relational schema is part
of a key), which is well-known to be intractable (cf. [21]).
By [17], this problem is expressible in MSO over appropri-
ate structures and thus fixed-parameter tractable w.r.t. the
treewidth. Below, we show that this problem admits a suc-
cinct and efficient solution via datalog.

5.1 The Primality Problem
Recall that a relational schema is denoted as (R, F) where

R is the set of attributes, and F the set of functional depen-
dencies (FDs, for short) over R. W.l.o.g., we only consider
FDs whose right-hand side consists of a single attribute. Let
f ∈ F with f : Y → A. We refer to Y ⊆ R and A ∈ R as
lhs(f) and rhs(f), respectively. For any X ⊆ R, we write
X+ to denote the closure of X, i.e., the set of all attributes
determined by X. An attribute A is contained in X+ iff ei-
ther A ∈ X or there exists a “derivation sequence” of A from
X in F of the form X → X∪{A1} → X∪{A1, A2} → . . .→
X ∪ {A1, . . . , An}, s.t. An = A and for every i ∈ {1, . . . , n},
there exists an FD fi ∈ F with lhs(f) ⊆ X ∪{A1, . . . , Ai−1}
and rhs(f) = Ai.

If X+ = R then X is called a superkey. If X is minimal
with this property, then X is a key. An attribute A is called
prime if it is contained in at least one key in (R, F). An
efficient algorithm for testing the primality of an attribute
is crucial in database design since it is an indispensable pre-
requisite for testing if a schema is in third normal form.
However, given a relational schema (R,F) and an attribute
A ∈ R, it is NP-complete to test if A is prime (cf. [21]).

In this paper, we assume that a relational schema (R, f)
is given as a τ -structure with τ = {fd , att , lh, rh}. The
intended meaning of these predicates is as follows: fd(f)
means that f is an FD and att(b) means that b is an at-
tribute. lh(b, f) (resp. rh(b, f)) means that b occurs in lhs(f)
(resp. in rhs(f)). The treewidth of (R, F) is then defined as
the treewidth of this τ -structure.

A relational schema (R, F) defines a hypergraph H(R,F)
whose vertices are the attributes R and whose hyperedges
are the sets of attributes jointly occurring in at least one FD
in F . Recall that the incidence graph of a hypergraph H
contains as nodes the vertices and hyperedges of H . More-
over, two nodes v and h (corresponding to a vertex v and
a hyperedge h in H) are connected in this graph iff (in the
hypergraph H) v occurs in h. It can be easily verified that
the treewidth of the above described τ -structure and of the
incidence graph of the hypergraph H(R, F) coincide.

Before we present our datalog program solving the pri-
mality problem, we slightly modify the notion of normalized
tree decompositions from Section 2.1. Recall that an ele-
ment replacement node replaces exactly one element in the
bag of the child node by a new element. For our algorithm,
it is preferable to split this action into two steps, namely,
an element removal node (which removes one element from
the bag of its child node) and an element introduction node
(which introduces one new element). With our representa-
tion of relational schemas (R, F) as finite structures, the do-
main elements are the attributes and FDs in (R, F). Hence,
in total, the former element replacement nodes give rise to
four kinds of nodes, namely, attribute removal nodes, FD
removal nodes, attribute introduction nodes, and FD intro-
duction nodes. Moreover, it is now preferable to consider
the bags as a pair of sets At (of attributes) and Fd (of FDs)
rather than as tuples. Hence, we may delete permutation
nodes from the tree decomposition. Finally, it will greatly
simplify the presentation of our datalog program if we re-
quire that whenever an FD f ∈ F is contained in a bag of
the tree decomposition, then the attribute rhs(f) is as well.
In the worst-case, this may double the width of the resulting
decomposition.

Suppose that a schema (R,F) together with a tree de-
composition T of width w is given as a τtd-structure with

τtd = {fd , att , lh, rh , root , leaf , child1, child2, bag}. In Fig-
ure 1, we describe a datalog program, where the input is
given as an attribute a ∈ R and a τtd-structure, s.t. a occurs
in the bag at the root of the tree decomposition.

Program PRIMALITY

/* leaf node. */
solve(v, Y, FY, Co,∆C,FC) ← leaf (v), bag(v, At ,Fd),

Y ∪Co = At , Y ∩Co = ∅, outside(FY, Y,At , Fd), FC ⊆ Fd ,
consistent(FC , Co), ∆C = {rhs(f) | f ∈ FC}, ∆C ⊆ Co.

/* internal node. */

/* attribute introduction node. */
solve(v, Y ⊎ {b}, FY, Co,∆C,FC) ← bag(v, At ⊎ {b}, Fd),

child1(v1, v), bag(v1,At ,Fd), solve(v1, Y, FY, Co,∆C,FC).

solve(v, Y, FY, Co ⊎ {b}, ∆C, FC) ← bag(v, At ⊎ {b}, Fd),
child1(v1, v), bag(v1,At , Fd), consistent(FC , Co ⊎ {b}),
solve(v1, Y, FY1, Co,∆C,FC),
outside(FY2, Y,At ,Fd), FY = FY1 ∪ FY2.

/* FD introduction node. */
solve(v, Y, FY, Co,∆C,FC) ← bag(v, At , Fd ⊎ {f}),

child1(v1, v), bag(v1,At , Fd), rh(b, f), b ∈ Y ,
solve(v1, Y, FY,Co,∆C, FC).

solve(v, Y, FY, Co,∆C,FC) ← bag(v, At , Fd ⊎ {f}),
child1(v1, v), bag(v1,At , Fd), rh(b, f), b ∈ Co,
solve(v1, Y, FY1, Co,∆C,FC),
outside(FY2, Y,At , {f}), FY = FY1 ∪ FY2.

solve(v, Y, FY, Co,∆C⊎{b}, FC ⊎{f})← bag(v, At ,Fd ⊎{f}),
child1(v1, v), bag(v1,At , Fd), rh(b, f), b ∈ Co,
solve(v1, Y, FY1, Co,∆C,FC), consistent({f}, Co),
outside(FY2, Y,At , {f}), FY = FY1 ∪ FY2.

/* attribute removal node. */
solve(v, Y, FY, Co,∆C,FC) ← bag(v, At , Fd),

child1(v1, v), bag(v1,At ⊎ {b}, Fd),
solve(v1, Y ⊎ {b}, FY,Co,∆C, FC).

solve(v, Y, FY, Co,∆C,FC) ← bag(v, At , Fd),
child1(v1, v), bag(v1,At ⊎ {b}, Fd),
solve(v1, Y, FY,Co ⊎ {b}, ∆C ⊎ {b}, FC).

/* FD removal node. */
solve(v, Y, FY, Co,∆C,FC) ← bag(v, At , Fd),

child1(v1, v), bag(v1,At ,Fd ⊎ {f}), rh(b, f), b ∈ Y ,
solve(v1, Y, FY, Co,∆C,FC).

solve(v, Y, FY, Co,∆C,FC) ← bag(v, At , Fd),
child1(v1, v), bag(v1,At ,Fd ⊎ {f}), rh(b, f), b ∈ Co,
solve(v1, Y, FY ⊎ {f}, Co,∆C,FC ⊎ {f}).

solve(v, Y, FY, Co,∆C,FC) ← bag(v, At , Fd),
child1(v1, v), bag(v1,At ,Fd ⊎ {f}), rh(b, f), b ∈ Co,
solve(v1, Y, FY ⊎ {f}, Co,∆C,FC), f 6∈ FC .

/* branch node. */
solve(v, Y, FY1 ∪ FY2, Co,∆C1 ∪∆C2,FC) ← bag(v, At , Fd),

child1(v1, v), bag(v1,At ,Fd), child2(v2, v), bag(v2,At , Fd),
solve(v1, Y, FY1, Co,∆C1,FC),
solve(v2, Y, FY2, Co,∆C2,FC).

/* result (at the root node). */
success ← root(v), bag(v, At ,Fd), a ∈ At ,

solve(v, Y, FY,Co,∆C,FC), a 6∈ Y ,
FY = {f ∈ Fd | rhs(f) 6∈ Y }, ∆C = Co \ {a}.

Figure 1: Primality Test.

Some words on the notation used in this program are in
order: We are using lower case letters v, f , and b (possibly
with subscripts) as datalog variables for a single node in T ,
for a single FD, or for a single attribute in R, respectively.
In contrast, upper case letters are used as datalog variables
denoting sets of attributes (in the case of Y,At , Co, ∆C) or
sets of FDs (in the case of Fd , FY,FC). In addition, Co is

considered as an ordered set (indicated by the superscript
o). When we write Co ⊎ {b}, we mean that b is arbitrarily
“inserted” into Co (leaving the order of the remaining ele-
ments unchanged). Note that these (ordered) sets are not
sets in the general sense, since their cardinality is restricted
by the size w+1 of the bags, where w is a fixed constant. In-
deed, we have implemented these “fixed-size” sets by means
of k-tuples with k ≤ (w + 1) over {0, 1}. For the sake of
readability, we are using non-datalog expressions involving
set operators ⊎ (disjoint union), ∪, ∩, ⊆, ∈. For the fixed-
size (ordered) sets under consideration here, one could, of
course, easily replace these operators by “proper” datalog
expressions.

In order to facilitate the discussion of the PRIMALITY-
program, we introduce the following notation. Let (R,F)
be the input schema with tree decomposition T . For any
node v in T , we write as usual Tv to denote the subtree of
T rooted at v. By FD(v) we denote the FDs in the bag of v
while FD(Tv) denotes the FDs that occur in any bag in Tv .
Analogously, we write Att(v) and Att(Tv) as a short-hand
for the attributes occurring in the bag of v respectively in
any bag in Tv.

Our PRIMALITY-program checks the primality of a by
searching for an attribute set Y ⊆ R, s.t. Y is closed w.r.t.
F (i.e., Y+ = Y), a 6∈ Y and (Y ∪ {a})+ = R. In other
words, Y ∪ {a} is a superkey but Y is not. This is clearly a
sufficient and necessary condition for a to be prime.

At the heart of our PRIMALITY-program is the inten-
tional predicate solve(v, Y, FY, Co, ∆C,FC) with the follow-
ing intended meaning: v denotes a node in T . Y (resp. Co) is
the projection of Y (resp. of R\Y) onto Att(v). We consider
R\Y as ordered w.r.t. an appropriate derivation sequence of
R from Y∪{a}, i.e., suppose that Y∪{A0} → Y∪{A0, A1} →
Y ∪{A0, A1, A2} → . . .→ Y ∪{A0, A1, . . . , An}, s.t. A0 = a
and Y ∪ {A0, A1, . . . , An} = R. W.l.o.g., the Ai’s may be
assumed to be pairwise distinct. Then for any two i 6= j, we
simply set Ai < Aj iff i < j. By the connectedness condition
on T , our datalog program ensures that the order on each
subset Co of R \ Y is consistent with the overall ordering.

The intended meaning of the set FC is that it contains
those FDs in FD(v) which are used in the above derivation
sequence. Informally, FY contains those FDs in FD(v) for
which we have already verified that they do not constitute
a contradiction with the closedness of Y. Finally, ∆C con-
tains those attributes from Att(v) for which we have already
shown that they can be derived from Y plus smaller atoms
in Co. More precisely, for all values v, Y, FY, Co, ∆C,FC ,
the ground fact solve(v, Y, FY, Co, ∆C,FC) shall be in the
fixpoint of the program, iff the following condition holds:

Property A. There exist extensions Y of Y and C
o

of Co

to Att(Tv) and an extension FC of FC to FD(Tv), s.t.

1. Y and C
o

form a partition of Att(Tv),

2. ∀f ∈ FD(Tv) \ FD(v), if rhs(f) 6∈ Y , then lhs(f) 6⊆
Y . Moreover, FY = {f ∈ FD(v) | rhs(f) 6∈ Y and
lhs(f) ∩Att(Tv) 6⊆ Y }.

3. ∀f ∈ FC, f is consistent with the order on C
o
, i.e.,

∀f ∈ FC, ∀b ∈ lhs(f) ∩ C
o
: b < rhs(f) holds.

4. ∆C ∪ C
o
\ Att(v) = {rhs(f) | f ∈ FC},

The main task of the program is the computation of all
facts solve(v, Y, FY,Co, ∆C,FC) by means of a bottom-up
traversal of the tree decomposition. The other predicates
have the following meaning:

• outside(FY,Y,At ,Fd) is in the fixpoint iff FY = {f ∈
Fd | rhs(f) 6∈ Y and lhs(f) ∩ At 6⊆ Y }, i.e., for every
f ∈ FY , rhs(f) is outside Y but this will never conflict
with the closedness of Y because lhs(f) contains an
attribute from outside Y .

• consistent(FC , Co) is in the fixpoint iff ∀f ∈ FC we
have rhs(f) ∈ Co and ∀b ∈ lhs(f) ∩ Co: b < rhs(f),
i.e., the FDs in FC are only used to derive greater
attributes from smaller ones (plus attributes from Y).

• The 0-ary predicate success indicates if the fixed at-
tribute a is prime in the schema encoded by the input
structure.

The PRIMALITY-program has the following properties.

Theorem 5.1. The datalog program in Figure 1 decides
the primality problem for a fixed attribute a, i.e., the fact
“success” is in the fixpoint of this program iff the input τtd-
structure encodes a relational schema (R,F), s.t. a is part
of a key.

Moreover, for any relational schema (R,F) with treewidth
w, the computation of the τtd-structure and the evaluation of
the datalog program can be done in time O(f(w) ∗ |(R, F)|)
for some function f .

Proof. Suppose that the predicate solve indeed has the
meaning described above. Then the rule with head success
reads as follows: success is in the fixpoint, iff v denotes
the root of T , a is an attribute in the bag at v, and Y is
the projection of the desired attribute set Y onto Att(v),
i.e., (1) Y is closed (this is ensured by the condition that
{f ∈ Fd | rhs(f) 6∈ Y } = FY), a 6∈ Y and, finally, all
attributes in R\ (Y ∪{a}) are indeed determined by Y ∪{a}
(this is ensured by the condition ∆C = Co\{a}). Moreover,
it is straightforward to prove the correctness of the solve
predicate by structural induction on T .

For the linear time data complexity, the crucial observa-
tion is that our program in Figure 1 is essentially a succinct
representation of a quasi-guarded monadic datalog program.
For instance, in the atom solve(v, Y, FY, Co, ∆C,FC), the
(ordered) sets Y , FY , Co, ∆C, and FC are subsets of the
bag of v. Hence, each combination Y , FY , Co, ∆C, FC
could be represented by 5 subsets resp. tuples r1, . . . , r5 over
{0, . . . , w} referring to indices of elements in the bag of v.
Recall that w is a fixed constant. Hence, solve(v, Y, FY, Co,
∆C,FC), is simply a succinct representation of constantly
many monadic predicates of the form solve〈r1,...,r5〉(v). The
quasi-guard in each rule is bag(v,At ,Fd) (possibly extended
by a disjoint union with {b} or {f}, respectively). Thus, the
linear time bound follows immediately from Theorem 4.3.

5.2 Primality as Monadic Predicate
In order to extend the Primality algorithm from the pre-

vious section to a monadic predicate selecting all prime at-
tributes in a schema, a naive first attempt might look as fol-
lows: one can consider the tree decomposition T as rooted
at various nodes, s.t. each a ∈ R is contained in the bag
of one such root node. Then, for each a and corresponding
tree decomposition T , we run the algorithm from Figure 1.
Obviously, this method has quadratic time complexity w.r.t.
the data size. However, in this section, we describe a lin-
ear time algorithm. For this purpose, we further modify the
notion of normalized tree decompositions from Section 5.1:

(1) We need an additional extensional predicate dist with
the intended meaning that for every a ∈ R, we uniquely

choose one distinguished node v in T with a ∈ Att(v). This
choice is denoted by dist(a, v). W.l.o.g., we assume that
v is a leaf node since, otherwise, we simply select a node
v containing a in its bag, attach a copy of v as new child
of v and re-apply the normalization from Section 2.1 and
5.1. The dist predicate can be computed as part of the
construction of the tree decomposition within the linear time
bound of the computation of T .

(2) For every branch node v in the tree decomposition, we
insert a new node u as new parent of v, s.t. u and v have
identical bags. Hence, together with the two child nodes
of v, each branch node is “surrounded” by three neighbor-
ing nodes with identical bags. It is thus guaranteed that a
branch node always has two child nodes with identical bags
– no matter where T is rooted. Moreover, this insertion of
a new node also implies that the root node of T is not a
branch node.

We propose the following algorithm for computing a mo-
nadic predicate prime(), which selects precisely the prime
attributes in (R,F). In addition to the predicate solve ,
whose meaning was described by Property A in Section 5.1,
we also compute a predicate solve↓, whose meaning is de-
scribed by replacing every occurrence of Tv in Property A
by T̄v. As the notation solve↓ suggests, the computation of
solve↓ can be done via a top-down traversal of T . Note that
solve↓(v, . . .) for a leaf node v of T is exactly the same as if
we computed solve(v, . . .) for the tree rooted at v. Hence,
we can define the predicate prime() as follows.

Program Monadic-Primality

prime(a) ← dist(a, v), bag(v, At ,Fd), a ∈ At ,
solve↓(v, Y, FY, Co, ∆C,FC), a 6∈ Y , ∆C = Co \ {a},
{f ∈ Fd | rhs(f) 6∈ Y } = FY .

By the intended meaning of solve↓ and by the properties
of the Primality algorithm in Section 5.1, we immediately
get the following result.

Theorem 5.2. The monadic predicate prime() as defined
above selects precisely the prime attributes. Moreover, it
can be computed in linear time w.r.t. the size of the input
structure.

6. IMPLEMENTATION AND RESULTS
To test our new datalog programs in terms of their scala-

bility with a large number of attributes and rules, we have
implemented the Primality program from Section 5.1 in C++.
The experiments were conducted on Linux kernel 2.6.17 with
an 1.60GHz Intel Pentium(M) processor and 512 MB of
memory. We measured the processing time of the Primality
program on different input parameters such as the number
of attributes and the number of FDs. The treewidth in all
the test cases was 3.

Test data generation. Due to the lack of available test
data, we generated a balanced normalized tree decomposi-
tion. Test data sets with increasing input parameters are
then generated by expanding the tree in a depth-first style.
We have ensured that all different kinds of nodes occur
evenly in the tree decomposition.

Experimental results. The outcome of the tests is shown
in Table 1, where tw stands for the treewidth; #Att, #FD,
and #tn stand for the number of attributes, FDs, and tree
nodes, respectively. The processing time (in ms) obtained

tw #Att #FD #tn MD MONA
3 3 1 3 0.1 650
3 6 2 12 0.2 9210
3 9 3 21 0.4 17930
3 12 4 34 0.5 –
3 21 7 69 0.8 –
3 33 11 105 1.0 –
3 45 15 141 1.2 –
3 57 19 193 1.6 –
3 69 23 229 1.8 –
3 81 27 265 1.9 –
3 93 31 301 2.2 –

Table 1: Processing Time in ms for PRIMALITY.

with our C++ implementation following the monadic data-
log program in Section 5.1 are displayed in the column la-
belled “MD”. The measurements nicely reflect an essentially
linear increase of the processing time with the size of the in-
put. Moreover, there is obviously no big “hidden” constant
which would render the linearity useless.

In [16], we proved the FPT of several non-monotonic rea-
soning problems via Courcelle’s Theorem. Moreover, we also
carried out some experiments with a prototype implemen-
tation using MONA (see [19]) for the MSO-model checking.
We have now extended these experiments with MONA to
the PRIMALITY problem. The time measurements of these
experiments are shown in the last column of Table 1. Due
to problems discussed in [16], MONA does not ensure linear
data complexity. Hence, all testes below line 3 of the table
failed with “memory leak”. Moreover, also in cases where
the exponential data complexity does not yet “hurt”, our
datalog approach outperforms the MSO-to-FTA approach
by a factor of 1000 or even more.

Optimizations. In our implementation, we have realized
several optimizations, which are highlighted below.

(1) Succinct representation by non-monadic datalog. As
was mentioned in the proof sketch of Theorem 5.1, our dat-
alog program can be regarded as a succinct representation
of a big monadic datalog program. If all possible ground
instances of our datalog rules had to be materialized, then
we would end up with a ground program of the same size
as with the equivalent monadic program. However, it turns
out that the vast majority of possible instantiations is never
computed since they are not “reachable” along the bottom-
up computation.

(2) General optimizations and lazy grounding. In princi-
ple, our implementation follows the general idea of ground-
ing followed by an evaluation of the ground program. This
corresponds to the general technique to ensure linear time
data complexity, cf. Theorem 4.3. A further improvement is
achieved by the natural idea of generating only those ground
instances of rules which actually produce new facts.

(3) Language extensions. As was mentioned in Section 5.1,
we are using language constructs (in particular, for handling
sets of attributes and FDs) which are not part of the dat-
alog language. In principle, they could be realized in data-
log. Nevertheless, we preferred an efficient implementation
of these constructs directly on C++ level. Further language
extensions are conceivable and easy to realize.

(4) Further improvements. We are planning to implement
further improvements. For instance, we are currently apply-

ing a strict bottom-up intuition as we compute new facts
solve(v, . . .). However, some top-down guidance in the style
of magic sets so as not to compute all possible such facts at
each level would be desirable. Note that ultimately, at the
root, only facts fulfilling certain conditions (like a 6∈ Y , etc.)
are needed in case that an attribute a is indeed prime.

7. CONCLUSION
In this work, we have proposed a new approach based

on monadic datalog to tackle a big class of fixed-parameter
tractable problems. Theoretically, we have shown that ev-
ery MSO-definable unary query over finite structures with
bounded treewidth is also definable in monadic datalog. In
fact, the resulting program even lies in a particularly ef-
ficient fragment of monadic datalog. Practically, we have
put this approach to work by applying it to the PRIMAL-
ITY problem of relational schemas with bounded treewidth.
The experimental results thus obtained look very promising.
They underline that datalog with its potential for optimiza-
tions and its flexibility is clearly worth considering for this
class of problems.

Recall that the PRIMALITY problem is closely related to
an important problem in the area of artificial intelligence,
namely the relevance problem of propositional abduction
(i.e., given a system description in form of a propositional
clausal theory and observed symptoms, one has to decide
if some hypothesis is part of a possible explanation of the
symptoms). Indeed, if the clausal theory is restricted to def-
inite Horn clauses and if we are only interested in minimal
explanations, then the relevance problem is basically the
same as the problem of deciding primality in a subschema
R′ ⊆ R. Extending our prime() program (and, in particular,
the solve()-predicate) from Section 5 so as to test primal-
ity in a subschema is rather straightforward. On the other
hand, extending such a program to abduction with arbitrary
clausal theories (which is on the second level of the polyno-
mial hierarchy, see [10]) is much more involved. A monadic
datalog program solving the relevance problem also in this
general case will be presented in a forthcoming paper.

Our datalog program in Section 5 was obtained by an ad
hoc construction rather than via a generic transformation
from MSO. Nevertheless, we are convinced that the idea
of a bottom-up propagation of certain conditions is quite
generally applicable. We are therefore planning to tackle
many more problems, whose FPT was established via Cour-
celle’s Theorem, with this new approach. We have already
incorporated some optimizations into our implementation.
Further improvements are on the way (in particular, further
heuristics to prune irrelevant parts of the search space). Free
access to this tool will be provided on the Web.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

databases. Addison-Wesley, 1995.
[2] S. Arnborg, J. Lagergren, and D. Seese. Easy Problems for

Tree-Decomposable Graphs. J. Algorithms, 12(2):308–340,
1991.

[3] H. L. Bodlaender. A Linear-Time Algorithm for Finding
Tree-Decompositions of Small Treewidth. SIAM J.
Comput., 25(6):1305–1317, 1996.

[4] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and
Databases. Springer, 1990.

[5] B. Courcelle. Graph Rewriting: An Algebraic and Logic
Approach. In Handbook of Theoretical Computer Science,
Volume B, pages 193–242. Elsevier Science Publishers,
1990.

[6] J. Doner. Tree acceptors and some of their applications. J.
Comput. Syst. Sci., 4(5):406–451, 1970.

[7] W. F. Dowling and J. H. Gallier. Linear-Time Algorithms
for Testing the Satisfiability of Propositional Horn
Formulae. J. Log. Program., 1(3):267–284, 1984.

[8] R. G. Downey and M. R. Fellows. Parameterized
Complexity. Springer, New York, 1999.

[9] H.-D. Ebbinghaus and J. Flum. Finite Model Theory, 2nd
edition. Springer Monographs in Mathematics. Springer,
1999.

[10] T. Eiter and G. Gottlob. The Complexity of Logic-Based
Abduction. J. ACM, 42(1):3–42, 1995.

[11] T. Eiter, G. Gottlob, and H. Veith. Generalized quantifiers
in logic programs. In ESSLLI’97 Workshop, volume 1754
of LNCS, pages 72–98. Springer, 1997.

[12] T. Eiter, G. Gottlob, and H. Veith. Modular logic
programming and generalized quantifiers. In Proc.
LPNMR’97, volume 1265 of LNCS, pages 290–309, 1997.

[13] J. Flum, M. Frick, and M. Grohe. Query evaluation via
tree-decompositions. J. ACM, 49(6):716–752, 2002.

[14] J. Flum and M. Grohe. Parameterized Complexity Theory.
Texts in Theoretical Computer Science. Springer, 2006.

[15] G. Gottlob and C. Koch. Monadic datalog and the
expressive power of languages for Web information
extraction. J. ACM, 51(1):74–113, 2004.

[16] G. Gottlob, R. Pichler, and F. Wei. Bounded Treewidth as
a Key to Tractability of Knowledge Representation and
Reasoning. In Proc. AAAI 2006, pages 250–256. AAAI
Press, 2006.

[17] G. Gottlob, R. Pichler, and F. Wei. Tractable database
design through bounded treewidth. In Proceedings of the
Twenty-Fifth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS
2006), pages 124–133. ACM, 2006.

[18] M. Grohe. Descriptive and Parameterized Complexity. In
Proc. CSL’99, volume 1683 of LNCS, pages 14–31.
Springer, 1999.

[19] N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA
Implementation Secrets. International Journal of
Foundations of Computer Science, 13(4):571–586, 2002.
World Scientific Publishing Company. Earlier version in
Proc. CIAA’00, LNCS vol. 2088.

[20] L. Libkin. Elements of Finite Model Theory. Texts in
Theoretical Computer Science. Springer, 2004.

[21] H. Mannila and K.-J. Räihä;. The design of relational
databases. Addison-Wesley, 1992.

[22] H. Maryns. On the Implementation of Tree Automata:
Limitations of the Naive Approach. In Proc. 5th Int.
Treebanks and Linguistic Theories Conference (TLT
2006), pages 235–246, 2006.

[23] M. Minoux. LTUR: A Simplified Linear-Time Unit
Resolution Algorithm for Horn Formulae and Computer
Implementation. Inf. Process. Lett., 29(1):1–12, 1988.

[24] F. Neven and T. Schwentick. Query automata over finite
trees. Theoretical Computer Science, 275(1-2):633–674,
2002.

[25] J. W. Thatcher and J. B. Wright. Generalized Finite
Automata Theory with an Application to a Decision
Problem of Second-Order Logic. Mathematical Systems
Theory, 2(1):57–81, 1968.

[26] J. D. Ullman. Principles of Database and Knowledge-Base
Systems, Vol. 1. Computer Science Press, 1989.

[27] M. Y. Vardi. The complexity of relational query languages
(extended abstract). In Proc. STOC’82, pages 137–146.
ACM, 1982.

