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Abstract. We define the first nontrivial polynomially recognizable sub-
class of P-matrix Generalized Linear Complementarity Problems (GLCPs)
with a subexponential pivot rule. No such classes/rules were previously
known. We show that a subclass of Shapley turn-based stochastic games,
subsuming Condon’s simple stochastic games, is reducible to the new class
of GLCPs. Based on this we suggest the new strongly subexponential com-
binatorial algorithms for these games.

1 Introduction

The Linear Complementarity Problem (LCP: find vectors w, z ≥ 0 satisfying
w = Mz + q and wT z = 0 for given real square matrix M and vector q) is a
powerful framework for combinatorial and continuous optimization, with a rich
theory [21,10] and numerous important applications. The general problem is NP-
hard, but there are many rich polynomially solvable subclasses, such as Z-matrix
and PSD-matrix (positive semidefinite) LCPs [21,10,17]. For a prominent class
of P-matrix LCPs (possessing unique solutions, with positive principal minors
of matrix M) there are no currently known polynomial algorithms, but there
is strong evidence (NP �=coNP) that the P-matrix LCP is not NP-hard [19].
It is an exciting open problem to invent polynomial or at least subexponential
algorithms for nontrivial subclasses of P-matrix LCPs [20].

We consider the Generalized LCP (GLCP) introduced by Cottle and Dantzig
[9], also referred to as the Vertical LCP in the literature. The GLCP subsumes
LCP as a particular case, and it is more flexible and convenient in applications,
like game-theoretic ones aimed at in this paper.1 All definitions of matrix classes
(P-, Z-, etc.) extend straightforwardly to the GLCP.

In this paper we describe the first nontrivial subclass of P-matrix GLCPs,
which we call D-matrix GLCPs or DGLCPs (D- stands for discounted), together
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with a number of randomized subexponential algorithms based on combinatorial
linear programming. The class of D-matrices has a simple syntactic description.
We show that D-matrix GLCP is nontrivial by subsuming Shapley’s turn-based
stochastic games [22] and Condon’s simple stochastic games [8] (both currently
not known to be polynomial). To our knowledge, prior to this paper there were
no nontrivial, polynomially recognizable and subexponentially solvable classes
of P-matrix GLCPs.

Our investigation into the GLCP theory was motivated by applications to solv-
ing certain full-information infinite adversary games. In [5] we investigated the
LCP approach for expressing and solving Mean Payoff Games (MPGs) [13,14],
and developed the first subexponential LCP-based algorithm for MPGs. It was
obvious that reductions to LCPs described in [5] applies to wider classes of
games, including stochastic games and a more general framework of Controlled
Linear Programming Problems (CLPPs) [3,2,4], but prior to this paper the use-
fulness of such reductions was questionable by lack of existing subexponential
algorithms for nontrivial classes of (G)LCPs. Alternative approaches to solving
simple stochastic and mean payoff games are described in [7,6].

Paper Outline. After recalling stochastic games in Section 2, in Section 3 we re-
duce the value problem for these games to the GLCP problem (basic facts about
GLCPs are collected in Appendix A). The structure of the resulting matrices,
called D-matrices, is explored in Section 4. D-matrices happen to be P-matrices
and D-matrix GLCPs possess unique solutions (Section 5). After that we intro-
duce a class of switching/pivoting algorithms for D-matrix GLCPs (Section 6),
analyze the structure of the matrices they produce (Sections 7, 8), prove mono-
tonicity of switching (Section 9) and optimality of stable strategies (Section 10),
crucial for termination and subexponential analysis. A family of subexponential
algorithms is described in Section 11. Algorithms for solving one-player games
at the bottom of recursion are described in Section 12. Missing proofs/details
can be found in [23].

2 Shapley’s Stochastic Games

For m ∈ N denote [m] = {i ∈ N|1 ≤ i ≤ m}. In a stochastic game [22] there
are finitely many N positions, and players Max, Min have finitely many action
choices, [mk], [nk], respectively, in each position k ∈ [N ]. If in position k player
Max selects action i ∈ [mk] and Min simultaneously selects action j ∈ [nk], then
Max gets payment ak

ij from Min, with probability sk
ij > 0 the play stops, while

with probability pkl
ij ≥ 0 the play proceeds to position l. A particular game Γ k is

obtained by specifying the starting position k. Player Max wants to maximize,
whereas player Min to minimize the total payoff, which accumulates during the
play. Assume,

∑N
l=1 pkl

ij = 1 − sk
ij < 1 − s < 1, |ak

ij | < M . Then the probability
that a play does not stop after t steps is at most (1−s)t, and the maximal payoff
does not exceed M = M

∑∞
i=0(1 − s)i = M/s.



Linear Complementarity and P-Matrices for Stochastic Games 411

Turn-Based Stochastic Games. Simultaneous move stochastic games thus defined
are not perfect information. In turn-based stochastic games, for every position
k at least one of mk, nk equals one. For such a game, let k ∈ Max if mk > 1,
k ∈ Min if nk > 1. We call positions k for which both mk = nk = 1 unary and
arbitrarily let k ∈ Max or k ∈ Min. Turn-based stochastic games are perfect
information, solvable in pure positional strategies [22], and the unique value
(optimal payoff) for every vertex is determined by the unique solution of the
system

vk = maxi∈[mk](ak
i1 +

∑
l p

kl
i1 vl), for k ∈ Max,

vk = minj∈[nk](ak
1j +

∑
l pkl

1j vl), for k ∈ Min. (1)

3 Reducing to Generalized LCP

In this section we show that turn-based Shapley stochastic games are reducible
to Generalized LCPs (see Appendix A) of a specific structure.

By introducing, if necessary, auxiliary unary positions between positions of
the same player, and by appropriately modifying stopping and transitional prob-
abilities, we may assume, with no loss of generality, that the game is bipartite,
i.e., pkl

ij > 0 implies k ∈ Max and l ∈ Min or k ∈ Min and l ∈ Max.2 System
(1) can be equivalently presented as:

vk = max{ −M, ak
i1 +

∑

l

pkl
i1 ul | i ∈ [mk]}, for k ∈ Max,

uk = min{ M, ak
1j +

∑

l

pkl
1j vl | j ∈ [nk]}, for k ∈ Min,

(2)

where we reflect bipartiteness by using vi/ui for Max/Min variables.
Let us introduce mk + 1 fresh auxiliary nonnegative variables zk, wk

1 , . . . ,
wk

mk
≥ 0 for each variable vk ∈ Max, nk + 1 auxiliary nonnegative variables

zk, wk
1 , . . . , wk

nk
≥ 0 for each variable vk ∈ Min, and rewrite the system (2) as

vk = zk − M, for k ∈ Max,
vk = wk

i + ak
i1 +

∑

l

pkl
i1 ul, for k ∈ Max, i ∈ [mk],

uk + zk = M, for k ∈ Min,
uk + wk

i = ak
i1 +

∑

l

pkl
i1 vl, for k ∈ Min, i ∈ [nk],

(3)

additionally stipulating complementarity, i.e.,

zk ·
∏

i

wk
i = 0 for each k ∈ [N ]. (4)

2 Although this may blow up quadratically the number of positions, unary positions
introduced do not make worse the resulting complexity.
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Excluding variables vi, ui from (3), we can rewrite it as

wk
i = zk + P k

i (z̄|Min), for k ∈ Max, i ∈ [mk],

wk
i = zk + P k

i (z̄|Max), for k ∈ Min, i ∈ [nk],
(5)

where: 1) polynomials P k
i (z̄|Min) contain only variables zj for j ∈ Min, 2) poly-

nomials P k
i (z̄|Max) contain only variables zj for j ∈ Max, 3) these polynomials

have all variable coefficients nonnegative, summing up to < 1 (call such polyno-
mials discounted). Note that in obtaining this form of system (5) we essentially
use bipartiteness, which guarantees that variables wk

i and zk appear with non-
negative coefficients on different sides of equations.

4 D-Matrices and Discounted GLCPs

Finding nonnegative values zk, wk
i satisfying (5) and (4) is a well known Gen-

eralized (or Vertical) LCP [9]; see Appendix A for a reminder of the main def-
initions. In this paper, motivated by the special structure of the system (5),
we introduce a new class of vertical matrices and corresponding GLCPs called
Discounted, D-matrices and DGLCPs for short. We will demonstrate that D-
matrices are P-matrices, and unique solutions to DGLCPs can be found in ran-
domized subexponential time, which cannot be done (at least not known yet) for
general P-matrices [20]. Here is our main

Definition 1 (Discounted Vertical Matrix, Discounted LCP). A vertical
block matrix A is Discounted, or D-matrix, if A is of the form depicted in Fig-
ure 1 and has the following properties: 1) all elements of A are non-negative; 2)
every representative submatrix of A has a unit main diagonal; 3) the remaining
nonzero entries are located in the gray area; 4) A is strictly row diagonally dom-
inant. A D-matrix GLCP is called Discounted GLCP, or DGLCP for short. ��

1
1
1
1
1
1

1
1

1
1

Max

Min

Fig. 1. The structure of a D-matrix. 1’s denote column vectors of ones.
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Note that the property of being a D-matrix is easily polynomial time recogniz-
able. Assuming the unit main diagonal is just a matter of technical convenience
and may be dropped.

The reduction from the previous section shows that the class of DGLCPs is
nontrivial:

Theorem 1. Turn-based Shapley stochastic games and simple stochastic games
reduce to the DGLCP. ��

Notational Conventions. From now on we assume that the vertical block ma-
trices considered are of dimension m × k with m ≥ k. The upper part of a
D-matrix, consisting of n ≤ k blocks, is associated with the player Max, and
the lower part with the player Min. Thus the range of blocks and columns is
split between Max and Min. We will write i ∈ Max or j ∈ Min meaning that
the corresponding index is in the range of one of the players. By z|Min we will
denote vector z with all components of Max replaced with zeros, and similarly
for z|Max, w|Max

, w|Min
.

By U i
j or Li

j, respectively, depending on whether i ∈ Max or i ∈ Min, we
will denote the j-th row in the i-th block of a D-matrix, with the 1 in the i-
th coordinate (main diagonal) replaced with 0. We will call vectors U i

j and Li
j

discounted, because they have nonnegative coordinates summing up to a number
< 1. Note that by our conventions U i

j z|Min = U i
j z and Li

j z|Max = Li
j z.

5 D-Matrices Are P-Matrices, Uniqueness of Solutions

We start by an important property that D-matrices form a subclass of P-
matrices.

Theorem 2. Every D-matrix is a P-matrix.

Proof. Since every representative submatrix of a D-matrix has positive diagonal
and is strictly diagonally dominant, it is a P-matrix [10, p. 152]. ��

P-matrix GLCPs have unique solutions [24], therefore,

Theorem 3 (Uniqueness). Every D-matrix GLCP has a unique solution. ��

6 Strategies, Attractiveness, Switches, Stability

A strategy prescribes which of the complementary variables are to be zeroed.

Definition 2 (Strategy). A strategy σi for the block i ∈ Max is a selection
of either σi = {zi = 0} or σi = {wi

j = 0}, for some j ∈ {1, . . . , pi}. A full
Max strategy σ consists of selections σi for all blocks i ∈ Max and is denoted
σ = {σ1, . . . , σn}. A partial Max strategy consists of strategy selections for some
Max blocks. ��
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After selecting a strategy σi for block i ∈ Max, we have either zi = 0 or
zi = −qi

j − U i
j · z|Min. Denote by GLCPσi(A, q) the system (A, q) with the i-th

block and i-th column removed and remaining occurrences of zi replaced with
0 (if σi = {zi = 0}) or with −qi

j − U i
j · z|Min (if σi = {wi

j = 0}). Note that
GLCPσi(A, q) is not a DGLCP any longer, in general.

Given a Max strategy σ for all blocks we denote the resulting system, after
removing all blocks of Max and replacing all z|Max, by GLCPσ(A, q). Note that
after finding a solution w|Min

and z|Min for GLCPσ(A, q), the values w|Max
and

z|Max are easily and uniquely calculated by substitution but these values may be
negative. The fact that some values are negative means that we made a mistake
in selecting a strategy and some switches have to be made.

Definition 3 (Attractiveness, Switches, and Stability). For a full Max

strategy σ, let w∗ and z∗ be the complementarity vectors after calculating w|Max

and z|Max from the solution of GLCPσ(A, q), as explained above.

1. Say that a pivot to wi
j or zi is attractive, for i ∈ Max, if w∗i

j < 0 or z∗i < 0.
2. An attractive switch for σ in block i ∈ Max results from making an attractive

pivot, replacing σi with σ′
i = {wi

j = 0} or σ′
i = {zi = 0}.

3. The strategy σ is stable if w∗ and z∗ are nonnegative, i.e., give a solution
to the DGLCP(A,q).

7 GLCPs Resulting from Fixing Partial Strategies

Making a partial (or complete) substitution of a strategy in a DGLCP results in
a GLCP with a unique solution, which is a critical invariant for our algorithms:

Theorem 4. For a DGLCP (A, q) with matrix A of order p× k and n blocks of
Max, the resulting GLCPσ1,...,l

(A, q), for any Max strategy σ1,...,l (l ≤ n), has
a unique solution.

Proof. By induction. The inductive hypothesis (IH) is that the matrix in the
system GLCPσ1,...,l

(A, q) has the following properties. 1) The Max partition is as
in the Definition 1 of the DGLCP. 2) The Min partition is strictly row diagonally
dominant with a positive diagonal ≤ 1 (in every representative matrix).

For the base case l = 0, the original system DGLCP (A, q) satisfies the IH
by definition. For the inductive step, assume, IH is true for l − 1, with l ≤ n.
We want to prove the IH for the GLCPσ1,...,l

(A, q). Let A be the vertical block
matrix for the system GLCPσ1,...,l−1(A, q).

Case 1 (σl = {zl = 0}). Removing the l-th column and block from A and
substituting zl with 0 in the remainder results is a matrix GLCPσ1,...,l

(A, q)
obviously satisfying the IH.

Case 2 (σl = {wl
j = 0}). We remove the l-th block and column and substitute

zl with −U l
j · z − ql

j . The resulting matrix B will be the matrix for the system
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GLCPσ1,...,l
(A, q). It is immediate that the Max partition of B satisfies the

IH. Moreover, every Min row in A can be written as wd
i = Ad

i · z + qd
i =

λ1z1 + . . . λlzl + · · · + λkzk + qd
i .

By positivity of the diagonal and strict row diagonal dominance (IH), we have
λd >

∑
x �=d |λx|. After substituting zl with −U l

j · z − ql
j zl, the same row of B

will be
wd

i = λ1z1 + · · · − λlU
l
j · z|Min + · · · + λkzk + qd

i − λlq
l
j .

Since
∑

y |U l
jy | < 1 implies |λl|

∑
y |U l

jy| < |λl|, it follows that λd >
∑

x �=d |λx| >
∑

x �=d,x �=l |λx| + |λl|
∑

y |U l
jy |. Thus, after the substitution of zl the row remains

strictly diagonally dominant with a positive diagonal. Also, the diagonal entry
is ≤ 1, because at every step one Max variable zi with a positive coefficient is
replaced by either 0 or a nonpositive linear polynomial depending on variables
zj, j ∈ Min. Therefore, λd may only decrease. Consequently, the Min part of
GLCPσ1,...,l

(A, q) also satisfies the IH. We have proved that the IH holds for all
GLCPσ1,...,l

(A, q) for l ≤ n. The uniqueness of their solutions follows from the
IH by the proof of Theorem 2 and by Theorem 3. ��

8 One-Player Case Yields Discounted Z-Matrices

We have a special restricted subclass of block Z-matrices resulting from substi-
tuting full Max strategies in DGLCPs, which deserve a special name.

Definition 4. A vertical block is called a ZD+-matrix if it is:

1. a Z-matrix, i.e., all off-diagonal elements (in the representative matrices)
are ≤ 0;

2. diagonally positive with all diagonal elements in the range (0, 1];
3. strictly row diagonally dominant. ��

Theorem 5. For every full Max strategy σ the matrix in the system GLCPσ

(A, q) is a ZD+-matrix possessing a unique solution.

Proof. Recall that the first n blocks belongs to Max and the remaining m blocks
belongs to Min. Every Min row in DGLCP (A, q) can be written as

wn+d
j = zn+d + λ1z1 + · · · + λnzn + qn+d

j , (6)

with λl ≥ 0. After selecting a strategy σ, either zi = 0 or zi = −U i
jz|Min −

qi
j , for 1 ≤ i ≤ n and some j ∈ {1, . . . , pi}. Substituting the value for every

zi, 1 ≤ i ≤ n, into (6) will result in a nonpositive coefficient in front of zj ,
where n < j ≤ k and j �= n + d, because U is nonnegative. Hence, all off-
diagonal entries of GLCPσ(A, q) will be nonpositive. Consequently, the matrix
of GLCPσ(A, q) is a Z-matrix.3 The remaining conditions 2, 3 of Definition 4 for
3 This part of the proof does not use any row diagonally dominance or discountedness

properties. It only relies on the bipartite structure, shown in Figure 1, and can
therefore be generalized.



416 O. Svensson and S. Vorobyov

the matrix of GLCPσ(A, q) and solution uniqueness follow from the inductive
proof of Theorem 4.4 ��
Corollary 1. Every ZD+-matrix is a K-matrix. ��

9 Monotonicity: Attractiveness Is Profitable

Monotonicity of attractive switches/pivots (to be explained shortly) is the cru-
cial property ensuring termination of our pivoting algorithms and allowing for
subexponential upper bounds. To simplify the proof (to reduce the number of
cases considered), we assume that the algorithms always start from a Max

strategy selecting zi = 0 for all i ∈ Max and proceed by making attractive
switches/pivots.5 A subexponential randomized policy is described in Section 11,
but monotonicity proved here guarantees finite termination of any sequence of
attractive switches/pivots. For our purposes, making just one attractive switch
at a time is enough, but one can consider a generalization when several such
pivots are made simultaneously. To simplify notation we make a convention to
denote solutions to the GLCPs before and after a switch as non-primed w, z
and primed w

′
, z

′
.

Definition 5. The value val(w, z) of a solution (w, z) to a DGLCP equals
∑

i∈Max

zi −
∑

k∈Min

zk. (7)

Monotonicity of attractive switches guarantees that this value strictly monoton-
ically increases, which immediately follows from the more general

Theorem 6 (Monotonicity). For every attractive switch/pivot in any DGLCP
instance from solution (w, z) to solution (w

′
, z

′
) one has:

1. z
′

i − zi ≥ 0 for each i ∈ Max (monotonic non-decrease);
2. at least one inequality above is strict, namely the one in the block where an

attractive switch was made;
3. z

′

k − zk ≤ 0 for each k ∈ Min (monotonic non-increase).

Proof. Suppose, an attractive switch/pivot in block i ∈ Max results in a new
strategy with σ′

i = {w
′i
j = 0}.

Let us start by proving Claim 3 by contradiction.6 Since the switch was attrac-
tive, the following constraints are satisfied (the first line means attractiveness,
the second stipulates that that after a switch we impose w

′i
j = 0): 7

0 > wi
j = qi

j + zi + U i
j z,

0 = w
′i
j = qi

j + z
′

i + U i
j z

′
.

(8)

4 This part of the proof depends on diagonal dominance and discountedness.
5 With this assumption, every switch away from zi = 0, i ∈ Max, will be definitive,

i.e., the algorithm will never switch back to zi = 0. The extension to an arbitrary
initial strategy is pretty straightforward.

6 This is the only part of the proof that relies on discountedness.
7 It is not important here whether before the switch σi was {zi = 0} or {wi

j′ = 0}.
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Suppose, toward a contradiction, that some zk (for k ∈ Min) increases its
value, and select k yielding the largest increase c > 0,

c = z
′

k − zk > 0. (9)

Subtracting the first line in (8) from the second one, we get −(z
′

i − zi) <

U i
j(z

′ − z) ≤ λ · c, where the last inequality holds for some 0 < λ < 1, be-
cause U i

j z is discounted, depends only on variables of Min (U i
jz = U i

jz|Min),
z, z

′
are nonnegative, and by the choice of k. Consequently, for the block

i ∈ Max in which the switch was made, z
′

i − zi > −λ · c. Similarly, in each
block i ∈ Max in which there was no switch, z

′

i − zi ≥ −λ · c. (the only
difference consists in replacing > in the first line of (8) with =, which re-
sults in a non-strict inequality.) Now let us look in the selected block k ∈
Min. For every constraint m in this block, before and after the switch, we
have:

wk
m = qk

j + zk + Lk
j z

w
′k
m = qk

j + z
′

k + Lk
j z

′ (10)

Subtracting the first line of (10) from the second one we get w
′k
m − wk

m = (z
′

k −
zk)+Lk

m(z
′−z) ≥ c−λ·c > 0, because Lk

m z is a discounted polynomial depending
only on variables zi with i ∈ Max, and for all such we proved z

′

i − zi ≥ −λ · c.
The last chain of inequalities leads to a contradiction. Indeed, w

′k
m − wk

m > 0
plus nonnegativity of wk

m imply w
′k
m > 0 for every m in block k. By assumption

z
′

k − zk > 0 and nonnegativity of zk, we also have z
′

k > 0. But this implies that
the complementarity z

′

k

∏nm

m=1 w
′k
m > 0 in block k is violated. This shows that

the increase (9) for zk, k ∈ Min, cannot happen, which proves Claim 3.
Let us now prove Claims 1 and 2, which depend on non-negativity of coeffi-

cients in U i
j , but not on discountedness. Assume the attractive switch happens

in block i and consists in switching from σi = {wi
l = 0} to σ′

i = {w
′i
j = 0}, 8 i.e.:

0 = wi
l = qi

l + zi + U i
l z,

0 > wi
j = qi

j + zi + U i
j z,

0 = w
′i
j = qi

j + z
′

i + U i
j z

′
.

(11)

(This is consistent with (8); the second line in (11) coincides with the first line
in (8). Line 1 expresses the selection before the switch, line 2 attractiveness, and
line 3 the selection after the switch.)

From (11) we derive zi = −qi
l − U i

l z < −qi
j − U i

j z ≤ −qi
j − U i

j z
′
= z

′

i, where
the inequality ≤ holds because U i

j has nonzero (positive) coefficients only for zk,
k ∈ Min (recall that by our notational convention U i

j z = U i
j z|Min), and by the

fact that z
′

k − zk ≤ 0 proved as Claim 3 above. Therefore, if an attractive switch
happened in block i, the corresponding zi component strictly increases z

′

i > zi,
proving Claim 2.
8 The case not covered here, but completely analogous, is when the switch is made

from σi = {zi = 0}, i.e., the first line is replaced with zi = 0.
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A block i ∈ Max in which an attractive switch was not made corresponds to
the system similar to (11):

0 = wi
l = qi

l + zi + U i
l z,

0 = w
′i
l = qi

l + z
′

i + U i
l z

′ (12)

from which we derive, analogously (≤ holds for the same reason) that zi =
−qi

l − U i
l z ≤ −qi

l − U i
l z

′
= z

′

i, which proves Claim 1 z
′

i ≥ zi for i ∈ Max and
finishes the proof. ��

10 Stability Implies Optimality for Discounted GLCPs

The following result is essential for correctness and complexity analysis of our
algorithm. (We do not claim stable strategies are unique, they are generally not.)

Theorem 7. In every DGLCP instance every stable Max strategy determines
the same solution.

Proof. Consider any two stable strategies in a DGLCP instance I. Since both are
stable, they both determine solutions for I, which are equal by Theorem 3. ��

11 Subexponential Algorithms

We now have all the ingredients necessary to describe a class of randomized
subexponential algorithms for the D-matrix GLCP, based on combinatorial lin-
ear programming schemes due to Kalai [15,16] and Matoušek-Sharir-Welzl [18].

Given a DGLCP instance (A, q), define a hyperstructure as a Cartesian prod-
uct P =

∏n
i=1 Si, where n ≤ k is the number of Max blocks, k is the total

number of blocks, Si = {0, . . . , pi}, and pi the size of the i-th block. Intuitively,
P is the space of all Max strategies, with 0 corresponding to σi = {zi = 0}
and j > 0 corresponding to σi = {wi

j = 0}. Define a substructure P ′ of P as a
Cartesian product P ′ =

∏n
i=1 S′

i, where 0 ∈ S′
i ⊆ Si for each i ∈ {1, . . . , n}). It

corresponds to the set of strategies in a DGLCP instance (A, q), in which some
constraints have been deleted (which remains a DGLCP instance).

Define the valuation on the hyperstructure P as follows. For every Max strat-
egy σ ∈ P the GLCPσ(A, q) (obtained by substituting σ considered as an as-
signment of zeros for zi and wi

j , as described in Section 6) is a ZD+-matrix
GLCP, possessing a unique solution (w, z) (Theorems 4, 5). Find this solution
as described in Section 12. Assign to σ the value ν(σ) = val(w, z), as defined by
(7). With this valuation,

1. every two neighbors σ and σ′ on P (at Hamming distance 1) corresponding
to an attractive switch from σ to σ′ have values ν(σ) < ν(σ′);

2. on every substructure P ′ =
∏n

i=1 S′
i with 0 ∈ S′

i ⊆ Si for each i, there is a
unique stable (optimal) solution/value (cf., Theorem 7).
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Now numerous well-known randomized subexponential algorithms [15,16,18]
for finding a (globally) maximal valuation (stable strategy solving the DGLCP
instance (A, q)) on the structure P apply. Roughly (we refer the reader to
[15,16,18] for details), one of the versions of the algorithm is as follows. Given
a structure P , consider the initial strategy σ = {zi = 0}i=1,...,n, correspond-
ing to the point σ̂ = (0, . . . , 0) ∈ P (below, for brevity we identify points of
hyperstructures with corresponding strategies)9, and proceed as follows.

1. if σ̂ = (σ̂1, . . . , σ̂n) and the bottom of recursion is hit, expressed formally as10

P =
n∏

i=1

{0} ∪ {σ̂i}, (13)

then solve an instance of ZD+-matrix GLCPσ(A, q); see Section 12;
2. otherwise, consider a substructure P ′ ⊂ P containing σ, obtained by (tem-

porarily) throwing away a random c ∈ Si, c �= 0, c �= σi for a random i; 11

3. apply the algorithm recursively to find a stable (globally maximal) σ∗ on P ′;
4. return back the last c temporarily thrown away and check whether σ∗ is

stable in P ;
5. if yes, return σ∗ as stable (globally maximal) on P ;
6. if not, make an attractive switch for σ∗, replacing σ∗

i with c; denote the
resulting strategy σ and repeat from step 1.

The analyses of [15,16,18] yield the following

Theorem 8. The above algorithm solves an instance of a DGLCP with n Max

blocks after expected subexponential 2O(
√

n log n) number of switches and invoca-
tions of the subroutine solving ZD+-matrix GLCPσ(A, q) in step 1. ��

In Section 12 we show that ZD+-matrix GLCPσ(A, q) can also be solved in
expected subexponential (or in weakly polynomial) time. This results in the
first nontrivial subclass of P-matrix GLCPs solvable in expected subexponential
time (in the number of variables).

9 For efficiency reasons, it is better to select, in the initial strategy, components σl =
{wl

1 = 0} for each unary position l. This neutralizes the effect of introducing many
unary positions when reducing to the bipartite case. The correctness of this initial
setting is explained by the fact that no switches will ever be made/become attractive
in any run of the algorithm.

10 Technically, we have to keep 0-components in substructures in (13) in order to be able
to associate elements of hyperstructures to strategies in GLCPs, since, in general,
the strategy switch to {zi = 0} is not excluded. However, starting with the strategy
σ̂ = (0, . . . , 0), and making attractive switches only, by Monotonicity Theorem 6,
every switch away from {zi = 0} is definitive, since zi for i ∈ Max can only increase.
Therefore, when (13) holds we immediately know that σ is optimal in P , and it
remains to solve the GLCPσ(A, q) to find values to be used in determining further
attractive switches.

11 In other words, we delete a random facet of P not containing σ.
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Monotonicity of attractive switches (Theorem 6) is essential for acyclicity of
the algorithm. Uniqueness (Theorems 3, 5) is crucial for subexponential anal-
ysis, because after finding an optimum on a substructure P ′ and making the
next attractive switch, P ′ will never be revisited by the algorithm again (by
monotonicity, each attractive switch improves the value), and the subexponen-
tial analysis based on hidden dimensions applies; see [15,16,18] for details.

12 Solving One-Player Z-GLCPs

In the bottom of recursion (when the full Max strategy σ is fixed) the random-
ized algorithm described in the previous section solves GLCPσ(A, q), an instance
of ZD+-matrix GLCP with a unique solution, as explained in Section 8. There
are several possible algorithms for this problem.

1) By using the least element property [12], solving any feasible Z-matrix
GLCP (A, q) amounts to solving a single linear program, minimizing any positive-
coordinate linear target function over the feasible domain {z : z ≥ 0, q+Az ≥ 0}.
There is a multitude of polynomial (but non-strongly) algorithms for that.

2) The above linear programming problem instance can be solved in random-
ized strongly subexponential time by the algorithms [15,16,18]. Note that this
algorithm is subexponential 2O(

√
(k−n) log(k−n)) in the number k − n of Min

blocks (equals the number of z-variables remaining in GLCPσ(A, q)). The ad-
vantage of using options 1 or 2 depends on the size of coefficients in the instance
GLCPσ(A, q). Applying option 2, together with Theorem 8 results in

Theorem 9. A D-matrix GLCP instance with k blocks, n of which belong to
Max, can be solved in expected subexponential time 2O(

√
n log n+

√
(k−n) log(k−n)).

Further improvement will be achieved if a more efficient, strongly polynomial,
algorithm for solving ZD+-matrix GLCP instances is used at the bottom of
recursion. This subject is outside the scope of this paper, deserves a separate
careful treatment, and the progress will be reported elsewhere; see, e.g., [1].

13 Conclusions

We identified the first nontrivial subclass of P-matrix Generalized LCPs, which
is: 1) polynomial time recognizable (in general, the P-matrix property is coNP-
complete); 2) has a very simple syntactical structure; 3) subsumes Shapley’s
turn-based stochastic games and Condon’s simple stochastic games (currently
not known to be polynomial time solvable). We suggested the first subexpo-
nential pivot rule and algorithm for this class of GLCPs; no such rules were
previously known, all were either polynomial or exponential. The resulting al-
gorithm for stochastic games has the same asymptotic behavior as other best
currently available algorithms for the problem [4,6].
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A Appendix: Generalized LCP

Definition 6. A vertical block matrix of type (p1, . . . , pk) is a real block matrix
A of order p × k, where p =

∑k
j=1 pj, partitioned by horizontal cuts in blocks Aj

of order pj × k, for j = 1, . . . , k. ��

Note that in A the number of blocks equals the number of columns.
Here comes the main definition.

Definition 7 (GLCP/VLCP). An instance of the Generalized or Vertical
LCP is specified as follows.

Given: a vertical block matrix A of type (p1, . . . , pk) and a constant vector
q decomposed in conformity with A:

q =

⎡

⎢
⎣

q1

...
qk

⎤

⎥
⎦ , A =

⎡

⎢
⎣

A1

...
Ak

⎤

⎥
⎦ .

Find: a vector w ∈ R
p (decomposed as q) and z ∈ R

k satisfying

w = q + Az,

w ≥ 0, z ≥ 0,

zi

∏pi

j=1 wi
j = 0, for i = 1, . . . , k, (Generalized Complementarity)

(14)

where p =
∑k

i=1 pi. ��

The standard LCP is a special case of the GLCP (14), with all blocks of size 1 and
square matrix A. Many results of the GLCP depend on the matrix structure. The
analysis of the matrix structure of a GLCP, often boils down to the investigation
of representative submatrices.
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Definition 8 (Representative Submatrix). A square submatrix M of a ver-
tical block matrix A is called a representative submatrix if its i-th row is drawn
from Ai, the i-th block of A. ��

The following classes of matrices are well investigated in the literature
[21,10,17]. Every class is first defined for square matrices and then the definition
is extended in a standard way to block matrices by stipulating the property to
hold for all representative submatrices.

Definition 9. A square matrix M is:

1. a P-matrix if all principal minors of M are positive;
2. a Z-matrix if all off-diagonal elements of M are nonpositive; if M also is a

P-matrix it is called a K-matrix;
3. strictly row diagonally dominant if |Mii| >

∑
j �=i |Mij | for each row i;

4. diagonally positive if all diagonal elements of M are positive.

A vertical block matrix is a P-matrix, Z-matrix, etc., if all its representative
submatrices are square P-matrices, Z-matrices, etc, respectively. ��

The property of being a P-matrix is coNP-complete [11].
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