
A Combinatorial Strongly Subexponential
Strategy Improvement Algorithm

for Mean Payoff Games�

Henrik Björklund, Sven Sandberg, and Sergei Vorobyov

Uppsala University, Information Technology Department,
Box 337, 751 05 Uppsala, Sweden

vorobyov@csd.uu.se

Abstract. We suggest the first strongly subexponential and purely com-
binatorial algorithm for mean payoff games. It is based on solving a new
“controlled” version of the shortest paths problem. By selecting exactly
one outgoing edge in each of the controlled vertices we want to maxi-
mize the shortest distances to the unique sink. Mean payoff games easily
reduce to this problem. To compute the longest shortest paths, player
Max selects a strategy (one edge in each controlled vertex) and player
Min responds by evaluating shortest paths to the sink in the remaining
graph. Then Max locally changes choices in controlled vertices, mak-
ing attractive switches that seem to increase shortest paths (under the
current evaluation). We show that this is a monotonic strategy improve-
ment, and every locally optimal strategy is globally optimal. A careful
choice of the next iterate results in a randomized algorithm of complex-
ity min(poly(n) ·W, 2O(

√
n log n)), which is simultaneously pseudopolyno-

mial (W is the maximal absolute edge weight) and subexponential in the
number of vertices n. All previous algorithms for mean payoff games were
either exponential or pseudopolynomial (which is purely exponential for
exponentially large edge weights).

1 Introduction

Infinite games on finite graphs play a fundamental role in model checking, au-
tomata theory, logic, and complexity theory. We consider the problem of solving
mean payoff games (MPGs) [18,8,22], also known as cyclic games [12,19]. In
these games, two players take turns moving a pebble along edges of a directed
edge-weighted graph. Player Max wants to maximize and player Min to mini-
mize (in the limit) the average edge weight of the infinite path thus formed. Mean
payoff games are determined, and every vertex has a value, which each player
can secure by a uniform positional strategy. Determining whether the value is
above (below) a certain threshold belongs to NP∩coNP. The well-known parity
games, also in NP∩coNP, polynomial time equivalent to model-checking for µ-
calculus [10,9], are polynomial time reducible to MPGs. Other well-known games
� Supported by grants from the Swedish Research Council (VR) and the Swedish Fo-

undation for International Cooperation in Research and Higher Education (STINT).

J. Fiala et al. (Eds.): MFCS 2004, LNCS 3153, pp. 673–685, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

674 H. Björklund, S. Sandberg, and S. Vorobyov

with NP∩coNP decision problems, to which MPGs reduce, are simple stochastic
[6] and discounted payoff [20,22] games. At present, despite substantial efforts,
there are no known polynomial time algorithms for the games mentioned.

All previous algorithms for mean payoff games are either pseudopolynomial
or exponential. These include a potential transformation method by Gurvich,
Karzanov, and Khachiyan [12,19], and a dynamic programming algorithm solv-
ing k-step games for big enough k by Zwick and Paterson [22]. Both algorithms
are pseudopolynomial of complexity O(poly(n) · W), where n is the number of
vertices and W is the maximal absolute edge weight. For both algorithms there
are known game instances on which they show a worst-case Ω(poly(n) · W) be-
havior, where W may be exponential in n. Reduction to simple stochastic games
[22] and application of the algorithm from [15] gives subexponential complexity
only if the game graph has bounded outdegree. The subexponential algorithms
we suggested for simple stochastic games of arbitrary outdegree in [3] make
2O(

√
n log n) iterations, but when reducing from mean payoff games, the weights

may not allow each iteration (requiring solving a linear program) to run in
strongly polynomial time, independent of the weights. This drawback is over-
come with the new techniques presented in this paper, which avoid the detour
over simple stochastic games altogether.

We suggest a strongly subexponential strategy improvement algorithm, which
starts with some strategy of the maximizing player and iteratively “improves”
it with respect to a strategy evaluation function based on computing shortest
paths. Iterative strategy improvement algorithms are known for the related sim-
ple stochastic [13,7], discounted payoff [20], and parity games [21,2]. Until the
present paper, a direct combinatorial iterative strategy improvement for mean
payoff games appeared to be elusive. Reductions to discounted payoff games and
simple stochastic games (with known iterative strategy improvement) lead to nu-
merically unstable computations with long rationals and solving linear programs.
The algorithms suggested in this paper are free of these drawbacks. Our method
is discrete and requires only addition and comparison of integers in the same
order of magnitude as occurring in the input. There is also a simple reduction
from parity games to MPGs, and thus our method can be used to solve parity
games. Contrasted to the strategy improvement algorithms of [21,2], the new
method is conceptually much simpler, more efficient, and easier to implement.

We present a simple and discrete randomized subexponential strategy im-
provement scheme for MPGs, and show that for any integer p, the set of vertices
from which Max can secure a value > p can be found in time

min
(
O(n2 · |E| · W), 2O(

√
n log n)

)
.

The first bound matches those from [12,22,19], while the second part is an im-
provement when n log n = o(log2 W).

The new strategy evaluation for MPGs may be used in several other iterative
improvement algorithms, which are also applicable to parity and simple stochas-
tic games [21,13,7]. These include random single switch, all profitable switches,
and random multiple switches [1]. They are simplex-type algorithms, very ef-

A Combinatorial Strongly Subexponential Strategy Improvement Algorithm 675

ficient in practice, but without currently known subexponential upper bounds,
and no nontrivial lower bounds.

Outline. Section 2 defines mean payoff games and introduces the associated
computational problems. Section 3 describes the longest-shortest paths problem
and its relation to mean payoff games. In addition, it gives an intuitive expla-
nation of our algorithm and the particular randomization scheme that achieves
subexponential complexity. Section 4 describes the algorithm in detail and Sec-
tion 5 states the two main theorems guaranteeing correctness. Finally, Section 6
explains how to improve the cost per iteration and provides complexity results,
generalizations, and applications. All proofs and extensions may be found in [4].

2 Mean Payoff Games and Associated Problems

A mean payoff game (MPG) is played by two adversaries, Max and Min, on a
finite, directed, edge-weighted, leafless graph G = (V = VMax�VMin, E, w), where
w : E → Z is the weight function. The players move a pebble along edges of the
graph, starting in some designated initial vertex. If the current vertex belongs
to VMax, Max chooses the next move, otherwise Min does. The duration of the
game is infinite. The resulting infinite sequence of edges is called a play. The
value of a play e1e2e3 . . . is defined as lim infk→∞ 1/k · ∑k

i=1 w(ei). The goal of
Max is to maximize the value of the play, while Min tries to minimize it. In the
decision version, the game also has an integer threshold value p. We say that
Max wins a play if its value is > p, while Min wins otherwise.

A positional strategy for Max is a function σ : VMax → V such that
(v, σ(v)) ∈ E for all v ∈ VMax. Positional strategies for Min are defined
symmetrically. Every MPG is memoryless determined, which means that for
every vertex v there is a value ν(v) and positional strategies of Max and
Min that secure them payoffs ≥ ν(v) and ≤ ν(v), respectively, when a play
starts in v, against any strategy of the adversary [18,8,12,19,5]. Moreover, both
players have uniform positional strategies securing them optimal payoffs in-
dependently of the starting vertex. Accordingly, we consider positional strate-
gies only. Given a positional strategy σ for Max, define Gσ = (V, E′), where
E′ = E \ {(v, u)|v ∈ VMax and σ(v) �= u}, i.e., Gσ results from G by deleting
all edges leaving vertices in VMax, except those selected by σ. Note that if both
players use positional strategies, the play will follow a (possibly empty) path to
a simple loop, where it will stay forever. The value of the play is the average
edge weight on this loop [8,12].

We address the following algorithmic problems for MPGs.

The Decision Problem. Given a distinguished start vertex and a threshold
value p, can Max guarantee a value > p?

p-Mean Partition. Given p, partition the vertices of an MPG G into subsets
G≤p and G>p such that Max (Min, resp.) can secure a value > p (≤ p,
resp.) starting from every vertex in G>p (in G≤p, resp.)

676 H. Björklund, S. Sandberg, and S. Vorobyov

Ergodic Partition. Compute the value of each vertex of the game. This gives
an ergodic [12] partition of the vertices into subsets with the same value.

Our basic algorithm solves the 0-mean partition problem, which subsumes the
p-mean partition. Indeed, subtracting p from the weight of every edge makes
the mean value of all loops (in particular, of optimal ones) smaller by p, and
the problem reduces to 0-mean partition. The complexity remains the same for
integer thresholds p, and changes slightly for rational ones; see Section 6. Clearly,
the p-mean partition subsumes the decision problem. Other problems to which
our algorithm extends are ergodic partition and finding optimal strategies [4].

3 A High-Level Description of the Algorithm

We start by informally describing the key ingredients of our algorithm.

3.1 The Longest-Shortest Paths Problem (LSP)

The essential step in computing 0-mean partitions can be explained by using a
“controlled” version of the well-known single sink (target) shortest paths problem
on directed graphs. Suppose in a given digraph some set of controlled vertices is
distinguished, and we can select exactly one edge leaving each controlled vertex,
deleting all other edges from these vertices. Such a selection is called a positional
strategy. We want to find a positional strategy that maximizes the shortest paths
from all vertices to the distinguished sink (also avoiding negative cycles that
make the sink unreachable and the distances equal −∞). For a strategy σ denote
by Gσ the graph obtained from G by deleting all edges from controlled vertices
except those in σ. Formally, the problem is specified as follows.

The Longest-Shortest Paths Problem (LSP).

Given: (1) a directed weighted graph G with unique sink t,
(2) a set of controlled vertices U of G, with t �∈ U .

Find: a positional strategy σ such that in the graph Gσ the shortest simple path
from every vertex to t is as long as possible (over all positional strategies).

If a negative weight loop is reachable in Gσ, the length of the shortest path is
−∞, which Max does not want. If only positive loops are reachable, and t is not,
then the shortest path distance is +∞. For our purposes it suffices to consider
a version of the problem above with the following additional input data.

Additionally Given: some strategy τ , which guarantees that in the graph Gτ

there are no negative weight cycles.

This strategy τ ensures that the longest shortest distance from every vertex
to the sink t is not −∞; it is not excluded that τ or the optimal strategy will
make some distances equal +∞. We make sure that our algorithm never comes
to a strategy that allows for negative cycles. The simplifying additional input
strategy τ is easy to provide in the reduction from MPGs, as we show below.

A Combinatorial Strongly Subexponential Strategy Improvement Algorithm 677

For DAGs, the LSP problem can be solved in polynomial time using dynamic
programming. Start by topologically sorting the vertices and proceed backwards
from the sink (distance 0), using the known longest-shortest distances for the
preceding vertices.

3.2 Relating the 0-Mean Partition and the LSP Problems

To find a 0-mean partition in an MPG G, add a retreat vertex t to the game graph
with a self-loop edge of weight 0, plus a 0-weight retreat edge from every vertex
in VMax to t. From now on, we assume G has undergone this transformation.
Clearly, we have the following property.

Proposition 1. Adding a retreat vertex t does not change the 0-mean partition
of the game, except that t is added to the G≤0 part. 	

This is because we do not introduce any new loops allowing Max to create
positive cycles, or Min to create new nonpositive cycles. Max will prefer playing
to t only if all other positional strategies lead to negative loops.

The key point is now as follows. Break the self-loop in the retreat t and con-
sider the LSP problem for the resulting graph, with t being the unique sink. Ver-
tices VMax become controlled, and the initial strategy (the “additionally given”
clause on the previous page) selects t in every controlled vertex, guaranteeing
that no vertex has distance −∞.1 We have the following equivalence.

Theorem 1. The partition G>0 in the MPG consists exactly of those vertices
for which the longest-shortest path distance to t is +∞. 	

Our algorithm computes the longest shortest paths by iterative improvement
to be explained below. Surprisingly (to our knowledge), the longest-shortest
path problem was not previously addressed in the literature and its relation to
strategy improvement for the MPG problem was not exploited before.2

The evaluation of the shortest paths for a fixed positional strategy gives
a useful quality measure on strategies that can be used in different iterative
improvement schemes, discussed later.

3.3 The Algorithm

Our algorithm computes longest-shortest paths in the graph resulting from a
mean payoff game (after adding the retreat vertex and edges, as explained
1 Actually, there may exist negative loops consisting only of vertices from VMin. Such

loops are easy to identify and eliminate in a preprocessing step, using the Bellman–
Ford algorithm. In the sequel we assume that this is already done.

2 Leonid Khachiyan (personal communication) considered the similar Blocking Non-
positive Cycles problem, polynomial time equivalent to the decision problem for
MPGs [4]. The question is whether Max can stop Min from reaching a cycle with
nonpositive weight in a graph without sinks. The authors would appreciate any
further references on the LSP problem.

678 H. Björklund, S. Sandberg, and S. Vorobyov

above), by making iterative strategy improvements. Once a strategy is fixed, all
shortest paths are easily computable, using the Bellman-Ford algorithm. Since
there are negative weight edges, the Dijkstra algorithm does not apply. How-
ever, in Section 6 we briefly discuss an improvement over the straightforward
application of the BF-algorithm.

Comparing a current choice made by the strategy with alternative choices, a
possible improvement can be decided locally as follows. If changing the choice in
a controlled vertex to another successor seems to give a longer distance (seems
attractive), we make this change. Such a change is called a switch.

We prove two crucial properties (Theorems 2 and 3, respectively):

1. every attractive switch really increases the shortest distances, i.e., attractive
is improving;

2. once none of the switches is attractive, the longest shortest paths are found,
i.e., stable is optimal.

Although our algorithm proceeds by making just one attractive switch at
a time, other algorithms making many choices simultaneously are also possible
and fit into our framework; see Theorem 2.

Another interpretation of our algorithm is game-theoretic. Max chooses in
the controlled vertices, and the choices in all other vertices belong to Min. For
every strategy of Max, Min responds with an optimal counterstrategy, comput-
ing the shortest paths from every vertex to the sink. After that, the algorithm
improves Max’s strategy by making an attractive switch, etc.

3.4 Randomization Scheme

The order in which attractive switches are made is essential for the subexpo-
nential complexity bound; see [4] for an example of an exponentially long chain
of switches. The space of all positional strategies of Max can be identified with
the Cartesian product of sets of edges leaving the controlled vertices. Fixing any
edge in this set and letting others vary determines a facet in this space. Now
the algorithm for computing the longest-shortest paths in G looks as follows,
starting from some strategy σ assumed to provide for a shortest distance > −∞
from each vertex to the sink.

1. Randomly and uniformly select some facet F of G not containing σ. Throw
this facet away, and recursively find a best strategy σ∗ on what remains.
This corresponds to deleting an edge not selected by σ and finding the best
strategy in the resulting subgame.

2. If σ∗ is optimal in G, stop (this is easily checked by testing whether there
is an attractive switch from σ∗ to F). The resulting strategy is globally
optimal, providing for the longest-shortest distances.

3. Otherwise, switch to F , set G = F , denote the resulting strategy by σ, and
repeat from step 1.

A Combinatorial Strongly Subexponential Strategy Improvement Algorithm 679

This is the well-known randomization scheme for linear programming due to
Matoušek, Sharir, and Welzl [16,17]. When applied to the LSP and MPG prob-
lems, it gives a subexponential 2O(

√
n log n) expected running time bound [16,3].

Another possibility would be to use the slightly more complicated randomization
scheme of Kalai [14], as we did in [2] for parity games, which leads to the same
subexponential complexity bound.

4 Retreats, Admissible Strategies, and Strategy Measure

As explained above, we modify an MPG by allowing Max to “surrender” in
every vertex. Add a retreat vertex t of Min with a self-loop of weight 0 and
a retreat edge of weight 0 from every vertex of Max to t. Clearly, the same
strategy (if any) secures Max a value > 0 from a vertex in the original and
modified games. Assume from now on that the retreat has been added to G.
Intuitively, the “add retreats” transformation is useful because Max can start
by a strategy that selects the retreat edge in every vertex, thus “losing only 0”
and satisfying the “additionally given” clause of the LSP problem in Section 3.

Definition 1. A strategy σ of Max in G is admissible if all loops in Gσ are
positive, except the loop over t. 	

Our algorithm iterates only through admissible strategies of Max. This guar-
antees that the only losing (for Max) loop ever constructible is the one over t.

4.1 Measuring the Quality of Strategies

We now define a measure that evaluates the “quality” of an admissible strategy.
It can be computed in strongly polynomial time; see Section 6 and [4].

Given an admissible strategy σ, the best Min can do is to reach the 0-mean
self-loop over t. Any other reachable loop will be positive, by the definition of an
admissible strategy. The shortest path from every vertex v to t is well-defined,
because there are no negative cycles in Gσ. This is suggestive for defining values.

Definition 2. For an admissible strategy σ of Max, the value valσ(v) of vertex
v is defined as the shortest path distance from v to t in Gσ, or +∞ if t is not
reachable. The value of a strategy is a vector of vertex values. 	

Note that for a fixed admissible strategy of Max there is a positional coun-
terstrategy of Min (defined by the shortest paths forest) that guarantees the
shortest paths from each vertex to the sink. The relative quality of two admis-
sible strategies is defined componentwise in the strategy value.

Definition 3. Let σ and σ′ be two admissible strategies. Say that σ is better
than σ′, formally σ > σ′, if valσ(v) ≥ valσ′(v) for all vertices v ∈ V , with strict
inequality for at least one vertex. Define σ ≥ σ′, if σ > σ′ or they have equal
values. 	

680 H. Björklund, S. Sandberg, and S. Vorobyov

The following notation will be useful for describing switches.

Notation. If σ is a strategy of Max, x ∈ VMax, and (x, y) ∈ E, then the switch
in x to y changes σ to the new strategy σ[x �→ y], defined as

σ[x �→ y](v) def=
{

y, if v = x;
σ(v), otherwise. 	

We distinct between two kinds of switches later shown equivalent.

Definition 4. Given an admissible strategy σ, a switch in vertex v to u is:

1. attractive, if w(v, u) + valσ(u) > valσ(v);
2. profitable, if σ[v �→ u] is admissible and σ[v �→ u] > σ. 	

4.2 Requirements for the Measure

The algorithm relies on the following properties.

1. An admissible strategy that has no better (Definition 3) strategy is winning
from all vertices in Max’s winning set G>0. This follows from definitions.

2. If a strategy has no profitable switches then it is optimal. This is shown in
two steps (the two main theorems of the following section).
a) Every attractive switch is also profitable (Theorem 2).
b) If an admissible strategy has no attractive switches, then there is no

better strategy (Theorem 3).

Properties (2a) and (2b) give another advantage: to find profitable switches,
we only need to test attractivity, which is efficient as soon as the measure has
been computed. Testing profitability would otherwise require recomputing the
measure for every possible switch. In addition, we prove the following property,
allowing an algorithm to change the strategy in more than one vertex at a time.

3. If several switches in an admissible strategy σ are attractive at the same time,
then making any subset of them results in a better strategy (Theorem 2).

5 Correctness of the Measure

In this section we state the two major theorems (proved in [4]), guaranteeing
that every step is improving and that the final strategy is the best, respectively.

Theorem 2. If σ is an admissible strategy then any strategy obtained by one or
more attractive switches is admissible and better. Formally, if the switches in si

to ti are attractive for 1 ≤ i ≤ r and σ′ def
= σ[s1 �→ t1][s2 �→ t2] · · · [sr �→ tr], then

σ′ is admissible and σ′ > σ. 	

We also show that every strategy without attractive switches is optimal. This

guarantees that the strategy computed by the algorithm is indeed optimal.

A Combinatorial Strongly Subexponential Strategy Improvement Algorithm 681

Theorem 3. If σ is an admissible strategy with no attractive switches, then
σ ≥ σ′ for all admissible strategies σ′. 	

The following corollary equates attractiveness and profitability.

Corollary 1. If σ is an admissible strategy and an admissible strategy σ′ is ob-
tained from σ by one or more non-attractive switches, then σ′ ≤ σ. In particular,
a single switch is attractive iff it is profitable. 	

6 Complexity

6.1 Efficient Computation of the Measure

The measure can be straightforwardly computed in time O(n · |E|) by using the
Bellman–Ford algorithm for single-sink shortest paths in graphs with possibly
negative weights. Since every vertex can have its shortest path length improved
at most O(n ·W) times, and there are n vertices, the number of switches cannot
exceed O(n2 ·W). Together with the O(n · |E|) cost per iteration this gives total
time O(n3 · |E| · W). In [4] we show how to reuse the measure computed in a
previous iteration to improve this upper bound to O(n2 · |E| · W). The idea is
to first compute which vertices will change their value, by an efficient backward
reachability algorithm, and then run the Bellman–Ford algorithm only on the
induced subgraph. Single iteration steps may still need O(n · |E|) time but the
amortized time over all iterations is improved. There are no known examples for
which the algorithm makes many improvement steps, and therefore the time per
iteration becomes a practically significant part of the complexity.

6.2 Worst-Case Analysis

Without changing the asymptotic running time, the basic algorithm of Section 3
solving the 0-mean partition problem can be extended [4] to solve the p-mean
partition, for integer p, as well as a slightly more general problem of splitting
into three sets [22] around an integer threshold p, with vertices of value < p,
= p, and > p, respectively. By using the randomization scheme of Matoušek,
Sharir, and Welzl from Section 3.4 we obtain the simultaneous bound 2O(

√
n log n),

independent of W [4].

Theorem 4. The decision, p-mean partition, and splitting into three sets prob-
lems for mean payoff games can be solved in time

min
(
O(n2 · |E| · W), 2O(

√
n log n)

)
,

and space linear in the size of the input. 	

682 H. Björklund, S. Sandberg, and S. Vorobyov

6.3 Computing the Ergodic Partitions

By using the standard dichotomy and approximation techniques [12,22] together
with the p-mean partitioning algorithm above (extended to deal with rational
thresholds; see [4]), we construct an algorithm for finding ergodic partitions
in mean payoff games. First, we proceed by dichotomy until the value of each
vertex is contained within a unit interval. After that, the threshold in calls
to the basic algorithm will be non-integral. The minimal difference between
two possible vertex values is 1/n(n − 1) [12,22]. Thus the dichotomy process
can stop as soon as every vertex value is contained in an interval of this size.
The thresholds considered will never have denominators larger than n2, and no
vertex can improve its value more than n2 ·W times during one call to the basic
algorithm [4]. We thus obtain

Theorem 5. The ergodic partition problem for MPGs can be solved in time

min
(
O(n3 · |E| · W · log(n · W)), (log W) · 2O(

√
n log n)

)
. 	

Zwick’s and Paterson’s algorithm for this problem has complexity O(n3 · |E| ·W)
[22, Theorem 2.3], which is slightly better for small W , but worse for large W .

6.4 NP∩coNP-Membership

The decision version of the LSP problem is restricted to determine whether the
longest shortest path from a distinguished vertex s to the sink is bigger than a
given bound. Together with MPGs and related games, this is another example
of a problem in NP∩coNP [4].

Proposition 2. The decision version of the LSP problem is in NP∩coNP. 	

6.5 Exponential Sequences of Attractive Switches

Since it is not so easy to come up with “hard” LSP examples, one might conjec-
ture that any sequence of attractive switches converges fast on any LSP problem
instance, and consequently MPGs are quickly solvable by polynomially many
iterative improvements. However, in [4] we present a family of instances of the
LSP and MPG problems, which together with one specific improvement policy
(method for selecting an attractive switch in every step), leads to exponentially
long sequences of strategy improvements. This shows that the problems are non-
trivial, and the choice of the next attractive switch is crucial for the efficiency.

6.6 Variants of the Algorithm

Theorem 2 shows that any combination of attractive switches improves the strat-
egy value, and thus any policy for selecting switches in each iteration will eventu-
ally find an optimal strategy. In particular, all policies that have been suggested
for parity and simple stochastic games apply. These include the all profitable,
random single, and random multiple switch algorithms [1]. In [4] we suggest two
alternative ways of combining policies.

A Combinatorial Strongly Subexponential Strategy Improvement Algorithm 683

6.7 Application to Parity Games

The algorithm described in this paper immediately applies to parity games, af-
ter the usual translation [20]. Parity games are similar to MPGs, but instead of
weighted edges they have vertices colored in nonnegative integer colors. Player
Even (Max) wants to ensure that in every infinite play the largest color appear-
ing infinitely often is even, and player Odd (Min) tries to make it odd. Parity
games are determined in positional strategies [11,5]. Our previous algorithm from
[2] has complexity

min
(
O(n4 · |E| · k · (n/k + 1)k), 2O(

√
n log n)

)
,

where n is the number of vertices, |E| is the number of edges, and k is the number
of colors. A direct analysis of the reduction from parity games to MPGs shows
that our new algorithm improves on this bound by a factor n. An additional
improvement is achieved by assigning smaller, compared to (n/k +1)k, maximal
weight translating a parity game to the MPG.

7 Conclusions

We defined the longest shortest paths (LSP) problem and applied it to create a
discrete strategy measure and iterative improvement algorithms for mean pay-
off games. Similar measures were already known for parity [21,2], discounted
payoff [20], and simple stochastic games [15], although not discrete for the last
two classes of games. We showed that with our discrete measure any strategy
iteration policy may be applied to solve mean payoff games, thus avoiding the dif-
ficulties of high precision rational arithmetic involved in reductions to discounted
payoff and simple stochastic games, and solving associated linear programs.

Combining our strategy evaluation with the algorithm for combinatorial lin-
ear programming suggested by Matoušek, Sharir, and Welzl, yields a 2O(

√
n log n)

algorithm for the mean payoff game decision problem.
An interesting open question is whether the LSP problem is more general

than mean payoff games, and if it has other applications. We showed that it
belongs to NP∩coNP, and is solvable in expected subexponential randomized
time.

The strategy measure presented does not apply to all strategies, only to
admissible ones, which do not allow negative weight loops. This is enough for
the algorithm, but it would be interesting to know if the measure can be modified
or extended to the whole strategy space, and in this case if it would be completely
local-global, like the measures for parity and simple stochastic games [3].

The major open problem is still whether there is a polynomial time strategy
improvement scheme for the games discussed.

Acknowledgments. We thank DIMACS for providing a creative working en-
vironment. We are grateful to Leonid Khachiyan, Vladimir Gurvich, and Endre
Boros for inspiring discussions and illuminating ideas. This paper is based on [4].

684 H. Björklund, S. Sandberg, and S. Vorobyov

References

1. H. Björklund, S. Sandberg, and S. Vorobyov. Complexity of model checking by it-
erative improvement: the pseudo-Boolean framework. In M. Broy and A. Zamulin,
editors, Andrei Ershov Fifth International Conference “Perspectives of System In-
formatics”, volume 2890 of Lecture Notes in Computer Science, pages 381–394,
2003.

2. H. Björklund, S. Sandberg, and S. Vorobyov. A discrete subexponential algorithm
for parity games. In H. Alt and M. Habib, editors, 20th International Symposium
on Theoretical Aspects of Computer Science, STACS’2003, volume 2607 of Lecture
Notes in Computer Science, pages 663–674, Berlin, 2003. Springer-Verlag.

3. H. Björklund, S. Sandberg, and S. Vorobyov. Randomized subexponential algo-
rithms for parity games. Technical Report 2003-019, Department of Information
Technology, Uppsala University, April 2003.
http://www.it.uu.se/research/reports/.

4. H. Bjorklund, S. Sandberg, and S. Vorobyov. A combinatorial strongly subex-
ponential strategy improvement algorithm for mean payoff games. Technical Re-
port DIMACS-2004-05, DIMACS: Center for Discrete Mathematics and Theoreti-
cal Computer Science, Rutgers University, NJ, March 2004.
http://dimacs.rutgers.edu/TechnicalReports/.

5. H. Björklund, S. Sandberg, and S. Vorobyov. Memoryless determinacy of parity
and mean payoff games: A simple proof. Theoretical Computer Science, 310(1-
3):365–378, January 2004.

6. A. Condon. The complexity of stochastic games. Information and Computation,
96:203–224, 1992.

7. A. Condon. On algorithms for simple stochastic games. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 13:51–71, 1993.

8. A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games.
International Journ. of Game Theory, 8:109–113, 1979.

9. E. A. Emerson. Model checking and the Mu-calculus. In N. Immerman and Ph. G.
Kolaitis, editors, DIMACS Series in Discrete Mathematics, volume 31, pages 185–
214, 1997.

10. E. A. Emerson, C. Jutla, and A. P. Sistla. On model-checking for fragments of
µ-calculus. In C. Courcoubetis, editor, Computer Aided Verification, Proc. 5th Int.
Conference, volume 697, pages 385–396. Lect. Notes Comput. Sci., 1993.

11. E. A. Emerson and C. S. Jutla. Tree automata, µ-calculus and determinacy. In
Annual IEEE Symp. on Foundations of Computer Science, pages 368–377, 1991.

12. V. A. Gurvich, A. V. Karzanov, and L. G. Khachiyan. Cyclic games and an
algorithm to find minimax cycle means in directed graphs. U.S.S.R. Computational
Mathematics and Mathematical Physics, 28(5):85–91, 1988.

13. A. J. Hoffman and R. M. Karp. On nonterminating stochastic games. Management
Science, 12(5):359–370, 1966.

14. G. Kalai. A subexponential randomized simplex algorithm. In 24th ACM STOC,
pages 475–482, 1992.

15. W. Ludwig. A subexponential randomized algorithm for the simple stochastic
game problem. Information and Computation, 117:151–155, 1995.

16. J. Matoušek, M. Sharir, and M. Welzl. A subexponential bound for linear pro-
gramming. In 8th ACM Symp. on Computational Geometry, pages 1–8, 1992.

17. J. Matoušek, M. Sharir, and M. Welzl. A subexponential bound for linear pro-
gramming. Algorithmica, 16:498–516, 1996.

A Combinatorial Strongly Subexponential Strategy Improvement Algorithm 685

18. H. Moulin. Extensions of two person zero sum games. J. Math. Analysis and
Applic., 55:490–508, 1976.

19. N. Pisaruk. Mean cost cyclical games. Mathematics of Operations Research,
24(4):817–828, 1999.

20. A. Puri. Theory of hybrid systems and discrete events systems. PhD thesis, EECS
Univ. Berkeley, 1995.

21. J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm for solving
parity games. In E. A. Emerson and A. P. Sistla, editors, CAV’00: Computer-Aided
Verification, volume 1855 of Lect. Notes Comput. Sci., pages 202–215. Springer-
Verlag, 2000.

22. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theor.
Comput. Sci., 158:343–359, 1996.

	Introduction
	Mean Payoff Games and Associated Problems
	A High-Level Description of the Algorithm
	The Longest-Shortest Paths Problem (LSP)
	Relating the 0-Mean Partition and the LSP Problems
	The Algorithm
	Randomization Scheme

	Retreats, Admissible Strategies, and Strategy Measure
	Measuring the Quality of Strategies
	Requirements for the Measure

	Correctness of the Measure
	Complexity
	Efficient Computation of the Measure
	Worst-Case Analysis
	Computing the Ergodic Partitions
	{{textsc {NP}}{}$cap ${textsc {coNP}}}{}-Membership
	Exponential Sequences of Attractive Switches
	Variants of the Algorithm
	Application to Parity Games

	Conclusions

