
Linear Programming Polytope and
Algorithm for Mean Payoff Games�

Ola Svensson1,�� and Sergei Vorobyov2

1 IDSIA, Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, Lugano,
Switzerland

2 Information Technology Department, Uppsala University, Sweden
Sergei.Vorobyov@it.uu.se

Abstract. We investigate LP-polytopes generated by mean payoff
games and their properties, including the existence of tight feasible solu-
tions of bounded size. We suggest a new associated algorithm solving a
linear program and transforming its solution into a solution of the game.

1 Introduction

The goal of this paper is to investigate linear programming formulations for
mean payoff games (MPGs) [8, 9], a well-known problem in NP∩coNP, with an
open P-membership status. Recently combinatorial randomized subexponential
algorithms for linear programming were successfully applied for solving several
kinds of games [5, 6, 2, 1, 3]. However, to our knowledge, there are no previous
attempts at investigating LP-formulations for MPGs and associated polyhedra,
except recent work [2, 1, 3] representing some infinite games as instances of the
new so-called controlled linear programming problem (CLPP). In contrast, LP-
formulations and relaxations are well studied and understood for the overwhelm-
ing majority of combinatorial optimization problems [13].

Several naturally arising questions we address and solve are as follows.

1. Is it possible to describe/approximate solutions to an MPG by linear con-
straints, i.e., as a polyhedron or a polytope?

2. Do “real” solutions to MPGs lie inside this polytope, how can they be char-
acterized, are they vertices of this polytope?

We present several surprisingly interesting and simple properties, classify-
ing feasible solutions of the MPG-polytopes and giving new insights into the
combinatorial structure of the problem. Based on these, we describe a new
MPG-solving algorithm, which solves a linear program and then transforms (if
necessary) an optimal solution into a solution of the game by “tightening”.

� Research supported by the grants from the Swedish Scientific Council and the Foun-
dation for International Cooperation in Research and Higher Education.

�� Partially supported by the Swiss National Science Foundation Project 200020-
109854.

S.-W. Cheng and C.K. Poon (Eds.): AAIM 2006, LNCS 4041, pp. 64–78, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Linear Programming Polytope and Algorithm for Mean Payoff Games 65

More specifically, we represent an MPG by a linear system with a totally
unimodular matrix, defining a nonempty integral MPG-polytope. Some vertices
of this polytope represent the so-called “tight” feasible solutions, which solve
the corresponding MPG. We suggest a new algorithm for finding tight solutions
based on minimizing a simple linear function and “tightening” an optimal so-
lution. In contrast to the TSP-polytope, for which no LP-description is to be
expected, MPG-polytopes are easily characterized, and any game can be solved
by optimizing a single (but unknown) linear function over such polytope. This
provides for a certain reduction in the size of the search space and is suggestive
for a new class of algorithms.

Combinatorial optimization and linear programming seem to be very produc-
tive tools for solving games. In [6] we generalized the shortest paths problem
to the controlled or longest shortest paths problem, and used it together with
combinatorial linear programming for solving MPGs. Combinatorial structures
underlying iterative improvement for games are explored in [5]. A related line of
research concerns applications of the Linear Complementarity Problem (LCP)
[10, 7], a nonlinear optimization theory we recently successfully applied to solving
several classes of infinite games and P-matrix Generalized LCPs [4, 14].

2 Preliminaries

2.1 Mean Payoff Games

We start by recalling basic definitions about mean payoff games (MPGs) and
then introduce the 0-mean partition problem, to which all other problems for
MPGs are polynomially reducible. The 0-mean partition problem is convenient
for the linear programming formulations and simplifies descriptions of different
algorithms. We further show that simplifying restrictions to ergodic MPGs (all
vertices have the same value), ergodic bipartite MPGs (players strictly alter-
nate moves), and ergodic complete bipartite MPGs (the game graph is complete
bipartite) can be done without loss of generality.

A mean payoff game (MPG) is a two-player game, played on a finite directed
edge-weighted graph G = (V, E, w), where the set of vertices V is partitioned
into two nonempty sets Vmax, Vmin, every vertex has at least one outgoing edge
(no sinks or leaves), and the weight function w is integer-valued.

We assume throughout the paper that n = |V | is the number of vertices of the
game graph G, nmax = |Vmax|, nmin = |Vmin|, and W is the maximal absolute
edge weight; thus w : E → {−W, . . . , W}.

Given an MPG, a play develops in the following way. Initially, a pebble is
placed in some vertex v0 and players Max and Min start constructing an infinite
sequence of edges {(vi, vi+1)}+∞

i=0 . If the pebble is in a vertex vi ∈ Vmax then Max

selects an outgoing edge from vi and moves the pebble to its destination vertex
vi+1, otherwise Min makes the analogous choice and move.

Players Max and Min are adversaries, the first one wants to maximize,
whereas the second one wants to minimize, respectively, the values

66 O. Svensson and S. Vorobyov

lim inf
k→∞

1
k

k−1∑

i=0

w(vi, vi+1), and lim sup
k→∞

1
k

k−1∑

i=0

w(vi, vi+1). (1)

It turns out that MPGs are solvable in pure positional strategies for both
players, and every vertex has a value ν(v) [8, 9]. This value is equal to both limits
in (1), and both players can secure it by applying these strategies. Moreover,
when one player fixes his pure positional strategy, an optimal counterstrategy of
his adversary is polynomial time computable. Consequently the problem whether
the value of a vertex is above/below a certain threshold is in NP∩coNP.

An MPG is called bipartite if E ⊆ (Vmax × Vmin) ∪ (Vmin × Vmax), i.e., players
strictly alternate moves. A bipartite MPG is complete if E = (Vmax × Vmin) ∪
(Vmin × Vmax), and incomplete otherwise. As usual, the weight of a cycle is the
sum of edge weights along the cycle.

2.2 0-Mean Partition Problem for MPGs

In this paper we concentrate on the following restricted problem, which poly-
nomially subsumes the problem of computing values of MPGs (as well as other
problems, as ergodic partitioning, finding optimal strategies). It also simplifies
the the algorithms, structure and properties of LP-representations.

0-Mean Partition Problem for MPGs.

Given: a bipartite MPG G without 0-weight cycles.
Find: a partition of vertices of G into sets G>0 and G≤0 of vertices with positive

and nonpositive values. ��

Restricting to this problem, with the additional constraints as stated, is no loss
of generality. We summarize it in the following two propositions.

Proposition 1. Finding values of MPGs is polynomial time reducible to the
0-mean partitioning problem.

Proof. For an arbitrary MPG, adding a constant k to every edge weight adds k
to every vertex value; multiplying every edge weight by a constant k multiplies
every vertex value by k. This is because values are defined by mean values of
optimal cycles wrt positional strategies, and because every cycle mean changes
by additive or multiplicative constant, respectively. Therefore, partitioning with
a rational mean threshold reduces to 0-mean partitioning.

Values of an MPG vertices are rationals with numerators and denominators up
to nW and n, respectively. If a value is known to belong to an interval of length ≤
1/n2, then it is uniquely determined (the smallest difference between two values
is 1

n−1 − 1
n). Bisecting the range [−W, W] with rational thresholds, polynomially

many in n and log W times, each time invoking the partition algorithm, we may
uniquely determine the value of a vertex [9, 15, 6]. ��

Proposition 2. In the 0-mean partition problem the following assumptions can
be done without loss of generality:

Linear Programming Polytope and Algorithm for Mean Payoff Games 67

1. the game graph has no 0-weight cycles,
2. the game graph is bipartite,
3. the values of all vertices are of the same sign;
4. the game graph is complete bipartite (with |Vmax| = |Vmin|).

Every reduction from general MPGs to a restricted case is polynomial.

Proof. Given an arbitrary MPG, consider the following chain of reductions.
1. Multiplying every edge weight by n+1 and subtracting one does not change

signs of positive- and negative-weight cycles, but 0-weight cycles (if any) become
negative-weight. The 0-mean partition remains the same.

2. The straightforward solution is to introduce a vertex of the opposite player
between two vertices of the same player. This, however, may increase the number
of vertices quadratically. A more economic solution, leading to just a linear
increase in the number of vertices is depicted in the figure below (the outgoing
edge from the new vertex gets weight 0). Note that this transformation may
actually change means of cycles, but not 0-means partitions, which is enough for
our purpose of computing values.

⇒

3. Let v be an arbitrary vertex of a bipartite MPG G without 0-weight cycles.
Construct G′ by adding a new backward edge from every vertex u
= v of G to
v of weight −M for an edge from a Max vertex and of weight +M for a Min

vertex, where M = (n − 1)W + 1. Suppose, a play in G′ starts from v. If Max

can secure a positive value of v in G, he can use the same strategy as in G never
using new edges. If Min never uses his new edges, then the value is the same
as in G. But if Min is the first to use his heavy edge back to v, the cycle thus
formed has a mean ≥ [(n − 1)W + 1 − (n − 1)W]/n > 0 (and we refer to the
equivalence of finite and infinite MPGs [8]). The case when v has negative value
in G is symmetric. Now suppose a play starts in any other vertex v′
= v. Then
each player can reach v and then follow the same strategy as he uses from v.
The signs of means in infinite plays thus formed, one starting from v′, the other
from v, are the same (the initial finite path does not matter (this argument also
depends on the equivalence between finite and infinite MPGs [8]). Hence, in G′

values of all vertices are of the same sign.
4. Let M = (n − 1)W + 1. Add all missing edges between Vmax and Vmin of

weight −M or +M depending on whether an edge leaves a Max or a Min vertex.
This makes the graph complete bipartite and preserves the signs of all values.
We can also assume both partitions have the same number of vertices. ��

Remark 1. In the above chain of reductions the numbers of vertices and edges
grow just linearly in the number of vertices n. In contrast, maximum absolute

68 O. Svensson and S. Vorobyov

weights in each of 1, 3, and 4 are multiplied by n, resulting in the overall weight
multiplication by n3. Our algorithm operates on bipartite MPGs without 0-
weight cycles. Thus, assumptions 1, 2 cost us a factor of n in the weight increase.

2.3 Longest Shortest Paths (LSP)

The Longest Shortest Paths problem has previously been successfully applied to
solve MPGs in randomized subexponential time [6, 5]. Here we will use it to prove
the existence of small tight feasible solutions of the MPG-generated systems of
linear constraints (Section 4).

The Longest Shortest Path Problem.

Given: a weighted digraph (without 0-weight cycles) with a sink and a set of
controlled vertices.

Find: a selection of exactly one edge from each controlled vertex maximizing
the lengths of the shortest paths from each vertex to the sink. ��

3 LP Formulations for MPGs

The definition below does not assume that an MPG is bipartite nor complete.

Definition 1 (Linear Slack Constraints). For an MPG G let SG, called
slack constraints, be the following system of linear constraints:

1. for every edge x
w→ v with x ∈ Vmax write constraints

x = v + wxv + sxv, (2)
sxv ≥ 0, (3)

where sxv is a Max slack variable for the edge;
2. similarly, for every edge y

w→ v with y ∈ Vmin write constraints

y + s′yv = v + w′
yv, (4)

s′yv ≥ 0, (5)

where s′yv is a Min slack variable for the edge. ��

We adopt the convention that primed s′ and w′ denote Min slacks and weights
of edges outgoing from Min vertices. In the sequel we will freely identify edges
with their corresponding equality constraints.

The simple LP-formulation above allows one to derive many interesting MPG
properties to be discussed below. We start with the simplest, but useful

Proposition 3. For a cycle in an MPG G let wi, si, s′i (for i ∈ I) be weights
of all edges, all Max slacks, and all Min slacks on the cycle. Then SG implies

∑

i∈I

wi +
∑

i∈I

si −
∑

i∈I

s′i = 0. (6)

Linear Programming Polytope and Algorithm for Mean Payoff Games 69

Proof. Just sum up left- and right-hand sides of the equalities corresponding to
edges on the cycle. ��

This proposition partially explains why the bipartite requirement is useful. In-
deed, whenever a positive weight cycle traverses only Max vertices in G, or a
negative weight cycle traverses only Min vertices, the system SG is infeasible,
because (6) cannot be satisfied.

With the introductory purpose of explaining the usefulness of linear slack
constraints, let us temporarily assume complete bipartiteness. Say that a solution
to a linear slack system is tight for Max (for Min, resp.), if for every Max vertex
(Min vertex, resp.) at least one outgoing edge has slack zero (we call such edges
tight). The following proposition shows that tight solutions determine the winner.

Proposition 4. If the system of slack constraints has a tight solution for

1. Max, then Max can enforce a nonnegative cycle in the corresponding MPG
from every vertex;

2. Min, then Min can enforce a nonpositive cycle in the corresponding MPG
from every vertex.

Proof. Let Max use any tight edges with zero slacks as his strategy. Then, by
(6), for every cycle that Min can create the sum of edge weights on the cycle is
nonnegative. The proof of the second claim is analogous. ��

The next section addresses the existence of (tight) solutions for the MPG linear
slack constraints and their relation to determining the winner. Now we introduce
MPG-polyhedra.

Definition 2 (MPG Polyhedron). An MPG-polyhedron is the feasible set of
the linear slack constraints corresponding to an MPG; see Definition 1. ��

We have seen above that some MPGs may induce empty polyhedra. The next
section shows that bipartite MPGs always have nonempty polyhedra. Here we
state simple properties of MPG-polyhedra.

Proposition 5. An MPG-polyhedron has no vertices.

Proof. Suppose (x, y, s) is a vertex. Then (x + α1, y + α1, s) (1 is a vector of
ones, α ∈ R) is also a feasible solution to slack constraints. Thus, any MPG-
polyhedron, with each point contains a line, hence has no vertices. ��

In Section 4 we introduce additional bounding constraints and an MPG-poly-
hedron becomes an MPG-polytope (bounded polyhedron), with vertices.

Another useful property of MPG-polyhedra is their integrality.

Proposition 6. For any MPG-polyhedron P one has conv(P) = conv(PI).

Proof. Any MPG-generated linear slack system can be written as [A I](x, y, s)T

= b, where the entries in A correspond to x and y variables, and the identity

70 O. Svensson and S. Vorobyov

matrix corresponds to the slacks. Every row of A has exactly one +1 and one
−1 entry and is thus totally unimodular. Totally unimodularity for [A I] follows
directly, since it is preserved when adding a column with at most one nonzero,
being ±1 [12, p. 280]. By [12, Theorem 19.1, p. 266], the polyhedron {v| [A I] v ≤
b} is integral whenever b is integral. Duplicating a row and multiplying a row by
−1 preserve total unimodularity and the polyhedron {v| [A I] v = b} is integral.

��

As a consequence, any linear function over an MPG-polyhedron with finite op-
timum, has an integral optimum. Moreover, optimizing any linear function over
an MPG-polyhedron can be done in strongly polynomial time, because the con-
straint matrix consists of 0 and ±1 entries.

4 Existence of Tight Solutions

In this section we consider linear slack systems corresponding to bipartite (not
necessarily complete) MPGs and show that they possess tight feasible solutions
of bounded size. We first generalize the notion of tightness, introduced (for the
case of complete bipartite MPGs) in the previous section.

Definition 3 (Tight Solution). Given a linear slack system SG obtained from
a bipartite MPG G without 0-weight cycles, say that a solution to SG is tight if
there is a partition of vertices of G into sets X and N such that:

1. every Min vertex in X has a tight edge to X;
2. every Max edge from X leads to X;
3. every Max vertex in N has a tight edge to N ;
4. every Min edge from N leads to N . ��

(Note that in the case of an ergodic MPG, e.g., a complete bipartite MPG, either
X or N should be necessarily empty.)

A tight solution to a slack system gives the 0-mean partitioning for the asso-
ciated MPG as shows the following

Proposition 7. G>0 = N and G≤0 = X.

Proof. If a play starts in N , then Max may just use his tight edges to stay in
N . When a cycle is eventually formed, by (6), the sum of weights on the cycle
is positive (there are no 0-weight cycles); hence, the mean is also positive.

Symmetrically, if a play starts in X , then Min just uses his tight edges to
stay in X . When a cycle is eventually formed, by (6), the sum of weights on the
cycle is nonpositive; hence, the mean is also nonpositive. ��

Here comes the main result of this section. Although there are well-known general
bounds on some feasible solution to a system of linear constraints (if it exists)
[12, Ch. 10], our bounds for MPG-generated constraints are stronger. We also
show that tight solutions of bounded size always exist. In Section 5 we prove
related results for complete bipartite MPGs.

Linear Programming Polytope and Algorithm for Mean Payoff Games 71

Theorem 1 (Tight Solution Existence). A linear slack system of every bi-
partite MPG without 0-weight cycles always has a tight solution with integral
components of absolute value O(nW), where n is the number of vertices and W
is the maximal absolute edge weight.

Proof. Add retreat edges, of weight 0, from all Max vertices to the sink (new
vertex), and of weight M = (2n − 1)W + 1 from all Min vertices to the sink.
The resulting graph determines an instance of the Longest Shortest Paths (LSP)
problem [6]. In this instance optimal positional strategies of both players create
no cycles, because each cycle is either positive or negative, which one of the
players always wants to avoid (and can due to bipartiteness). Thus all optimal
plays end up in the sink, through a 0- or M -weight retreat edge. The unique
[6] solution (with all components finite, because every cycle is broken by one
of the players selecting to retreat) determines a feasible solution to the linear
slack system. Optimal edges for both players have associated slacks equal zero.
Moreover, by the properties of the shortest paths [6] and optimality for both
players, the following conditions are satisfied for every edge (v, u) of the game
graph, because d(v), d(u) are shortest path distances:

d(v) ≤ w(v, u) + d(u), if v ∈ Vmin, (7)
d(v) ≥ w(v, u) + d(u), if v ∈ Vmax. (8)

These conditions ensure that all slacks are nonnegative. Moreover, at least one
slack per vertex is zero, since d(v) are defined by shortest paths.

Let the required sets X and N be as follows:

1. N is the set of vertices starting from which Max can force a play into a
Min vertex from which Min retreats through the retreat edge with weight
M , when both players can use tight edges only;

2. X is the set of vertices starting from which Min can force a play into a
Max vertex from which Max retreats through the retreat edge with weight
0, when both players can use tight edges only.

The graph on tight edges is acyclic, bipartite, spanning all vertices of the
game graph, with leaves being vertices selecting retreat edges. Therefore, N and
X form a partition, which can be easily computed, after topological sorting,
by dynamic programming. We have to show that Max has no edges (including
non-tight) from X to N and Min has no edges (including non-tight) from N to
X (see Definition 3).

Since X and N do not intersect and shortest distances inside them are defined
by tight edges, the choice of the weights for the retreat edges implies the bounds
on the values of Max and Min vertices in X and N summarized in the table.

X N

Max [0, (n − 1)W] [nW + 1, 2nW + 1]
Min [−W, (n − 1)W] [nW + 1, (2n − 1)W + 1]

In the left column, the common upper bound is explained by the fact that the
longest path in X may traverse at most n − 1 edges of weight at most W . The

72 O. Svensson and S. Vorobyov

lower bounds 0 and −W in the left column are due to the Max retreat and to
bipartiteness: the best Min can do is to go to the 0-value vertex via a −W edge.
In the right column, the common lower bound is because the shortest path in
N is through the M -weighted retreat and at most n − 1 edges of weight −W .
The upper bound for a Min variable is due to the retreat weight, and for a Max

variable it is just W larger.
To show that Max has no edges from X to N , assume, toward a contradiction,

that Max has an edge from v ∈ X to u ∈ N . The bound from the table above
together with (8) imply w(v, u) < −W , a contradiction, since W is the maximal
absolute edge weight. A similar argument shows that Min cannot have edges
from N to X .

Now delete the sink and retreat edges to return to the original game. All
equalities in the associated linear slack system are satisfied. This solution is
tight as shown above. Note that some 0 slacks for some variables can disappear
(in the vertices where a retreat was taken).

Since a slack s is always equal s = x−y±w, from the table above we conclude
that all slacks are at most O(nW). ��

Remark 2. We can thus impose additional bounding constraints for all variables
in the linear slack systems from Definition 1. The feasible set becomes a polytope
with vertices, which we call an MPG-polytope.

Proposition 8. An MPG-polytope of a bipartite game always has at least one
vertex, which is a tight solution.

Proof. Consider a tight solution, which exists by Theorem 7. Minimize the sum
of slacks, which are zero in the tight solution, over the MPG-polytope. Obviously,
the value of the optimum will be zero. Furthermore, the optimal solution can be
attained in a vertex of the polytope. ��

Proposition 11 shows a simple form of a linear target function for a complete
bipartite MPG with an optimum attained in a tight solution.

Corollary 1. Vertices of an MPG-polytope of a bipartite game are integral. ��

5 MPGs on Complete Bipartite Graphs

In this section we assume that MPGs are played on complete bipartite graphs
Kp,p. Thus the number of vertices n = 2p. We use a convention that xi, yi denote
variables associated to the i-th vertex of Max and Min respectively, sij and s′ij
denote slacks for Max and Min edges, and wij , w′

ij denote edge weights of Max

and Min. Slack equality constraints (2) and (4) in this case are (for 1 ≤ i, j ≤ p):

xi = yj + wij + sij , (9)
yi + s′ij = xj + w′

ij . (10)

Linear Programming Polytope and Algorithm for Mean Payoff Games 73

5.1 Invariant Properties

Proposition 9. Every solution to a linear slack constraint system SG obtained
from a complete bipartite MPG G satisfies the invariant

∑

ij

sij −
∑

ij

s′ij = −
∑

ij

(wij + w′
ij).

Proof. Sum up all equalities (9) and (10). This gives
∑

s′ij =
∑

sij +
∑

(wij +
w′

ij), since each variable xi, yi appears in the left- and right-hand sides of (9),
(10) the same number of times. ��

The following proposition shows that one can optimize any of the several linear
functions over the MPG-polytope. They happen to possess the same optimal
solutions, i.e., are equivalent.

Proposition 10. For any complete MPG-generated SG the following functions
are similar up to scaling and a constant additive term:

1)
∑

i,j

sij , 2)
∑

i,j

s′ij , 3)
∑

i,j

sij +
∑

i,j

s′ij , 4)
∑

i

xi −
∑

i

yi.

Proof. Equivalence of 1-3 follows from Proposition 9. To prove equivalence of 1
and 4, we use the fact that sij = xi − yj + wij . Thus

∑
ij sij = (x1 − y1 + w11) + (x1 − y2 + w12) + . . . + (x1 − yn + w1n)+

(x2 − y1 + w21) + (x2 − y2 + w22) + . . . + (x2 − yn + w2n)+
...
(xn − y1 + wn1) + (xn − y2 + wn2) + . . . + (xn − yn + wnn)

= n(
∑

i xi −
∑

i yi) + c, where c is a constant. ��

5.2 Complete Bipartite MPGs as Linear Programs

The next proposition asserts that there is always a simple linear target function
over the feasible polytope of a complete bipartite MPG with the optimum, which
solves the game.

Proposition 11. Let SG be a linear slack system obtained from a complete bi-
partite MPG. Then there exist vectors a, b ∈ N

p such that
∑

i ai =
∑

i bi = p and
the optimal solution to SG with the objective function min

∑
i aixi −

∑
i biyi has

either a tight solution for Max or for Min and thus solves the corresponding
MPG. Moreover, one of the vectors a, b consists of ones only.

Proof. Suppose Max has a winning strategy, hence a tight solution. Then the
sum of the slacks corresponding to his optimal edges (tight), taken one per vertex,∑

(i,j)∈I sij has minimal solution 0. But this sum is equal
∑

(i,j)∈I(xi−yj−wij) =∑n
i−1 xi −

∑n
j=1 bjyj + C, where bj counts how many times yj is selected as a

destination of some Max optimal edge. The proof, when Min has a winning
strategy is symmetric. ��

74 O. Svensson and S. Vorobyov

As a consequence, for a complete bipartite MPG, the corresponding slack poly-
tope has a vertex solving the game (which also follows by Proposition 8). We
state two other simple corollaries.

Corollary 2. The problem of deciding the winner for a complete MPG reduces
to the problem of determining:

1. the number of Max vertices that play, in a winning positional strategy, to
the Min vertex yi, for each i, if Max has a winning strategy, or

2. the number of Min vertices that play, in a winning positional strategy, to
the Max vertex xi, for each i, if Min has a winning strategy. ��

Corollary 3. If Max has a winning strategy where every Max vertex selects an
unique Min vertex. The game is solvable with the objective function min

∑
i xi −∑

i yi. The case for Min is symmetric. ��

5.3 Search Space

Proposition 11 allows one to somewhat reduce the search space of all positional
strategies in a complete bipartite MPG.

Proposition 12. The problem of finding vectors a, b such that it is possible
to recover the winning player from the optimal solution to SG with objective
function min

∑
i aixi −

∑
i biyi has strictly smaller search space than deciding

the optimal strategy of one player.

Proof. In a complete MPG G played on the graph Kp,p both players have pp

number of strategies.
Consider the problem of finding vectors a, b recovering the winning player

from an optimal solution to SG with objective function min
∑

i aixi −
∑

i biyi

(as explained in the proof of Proposition 11).
If Max has a winning strategy, we can assume a = 1. It remains to find the

correct bi’s. Any vector b with p nonnegative integer components summing up
to p can be represented by a word of p − 1 zeros (bucket separators) and p ones,
i.e., p buckets and p items. The number of possible ways to distribute the items
are (2p − 1)!/(p!(p − 1)!) =

(2p−1
p

)
= O(22p).

Similarly, if Min is winning the number of ways to select the vector a is O(22p).
Thus, the number of different meaningful objective functions are bounded by
O(22p), which is o(pp) = o(2p log p). ��

6 0-In-Out Property

In this section we only assume that MPGs are bipartite, but not necessarily
complete. Consider the following interesting

Definition 4 (0-in-out property). Say that a solution to an MPG-generated
system of slack constraints satisfies the 0-in-out property if

∀i ∈ Vmax ∃j ∈ Vmin(sij = 0 ∨ s′ji = 0) ∧ ∀i ∈ Vmin ∃k ∈ Vmax(s′ik = 0 ∨ ski = 0).

Linear Programming Polytope and Algorithm for Mean Payoff Games 75

Informally, it stipulates that every vertex has at least one incoming or outgoing
0-slack (tight) edge. Two propositions below summarize interesting relations
between tight solutions to systems of slack constraints, solutions minimizing∑

xi −
∑

yi,1 and solutions with the 0-in-out-property.

Proposition 13. Every solution to an MPG-generated system of slack con-
straints, which minimizes

∑
xi −

∑
yi, possesses the 0-in-out property.

Proof. An xi with nonzero slacks on all outgoing and incoming edges can be
decreased thus diminishing the target value. Similarly, a yi with nonzero slacks
on all outgoing and incoming edges can be increased thus diminishing the target
value. ��

Proposition 14. For every Max- or Min-tight solution to an MPG-generated
system of slack constraints there corresponds a tight solution satisfying the 0-in-
out property with a smaller or equal target value

∑
xi −

∑
yi.

Proof. A Max-tight solution has 0-in-out property satisfied for all Max vertices.
If the property is not satisfied for a vertex yi, then its value can be increased,
keeping the tightness, and decreasing the target value. The proof for the Min-
tight solutions is completely similar. ��

6.1 Minimizing Slacks Does Not Give Tight Solutions

Thus, both: 1) tight solutions (modified, if necessary as explained in the proof
of Proposition 14) and 2) solutions minimizing

∑
xi −

∑
yi, satisfy the 0-in-out

property. A natural challenging question is: whether tight solutions can always
be found among minimizing

∑
xi −

∑
yi? This plausible conjecture, if true,

would allow us to limit the search for tight solutions among those minimizing∑
xi −

∑
yi. Unfortunately, this promising conjecture fails, as demonstrated by

the counterexample in Figure 1.

u1

u2

u3

v1

v2

v3

1

2

2

Fig. 1. A complete bipartite MPG where the dotted edges have weight −2 and the
edges that are not in the figure have weight 0

1 Recall that xi, yi are variables associated with the i-th vertex of Max and Min.

76 O. Svensson and S. Vorobyov

By Proposition 10, for any systems of linear slack constraints corresponding
to complete bipartite MPGs, minimizing the objective function

∑
i xi −

∑
i yi is

equivalent tominimizing the objective functions
∑

{Max slacks},
∑

{Min slacks},
and

∑
{All slacks}.

It is easy to see that the value of min
∑

i xi −
∑

i yi, when Max uses his
winning strategy (always plays to v3) is 7, because u1 = v3 + 1, u2 = v3 + 2,
u3 = v3 + 2, v2 = u1 − 2, v1 = u1 − 2. Letting all Max variables equal 2 and all
Min variables equal 0 is also feasible, but then u1 has no tight outgoing edges.
Thus, a Max- or Min-tight solution can have a larger value than the minimal
value of the objective function

∑
i xi −

∑
i yi.

7 Slacks Update “Tightening” Algorithm

Despite the fact (described by the previous counterexample) that there may be
no tight solutions (solving MPGs) among those minimizing

∑
xi −

∑
yi, the

idea to start from such a solution and transform it into a tight one seems quite
tempting. We now develop this idea and describe an algorithm for finding tight
solutions for MPG-generated systems of slack constraints, and thus solves MPGs
by Proposition 7. The algorithm applies to systems obtained from bipartite (not
necessarily complete) MPGs without 0-weight cycles. The proof of correctness
and the intuitions underlying the algorithm go in parallel with its description.

The Algorithm starts by finding a solution to slack constraints minimizing∑
xi −

∑
yi (in strongly polynomial time). By Proposition 13, every vertex has

at least one (incoming or outgoing) tight edge.

Main Loop. Let X0 and N0 be the sets of Max and Min vertices without
tight outgoing edges. If one of these sets is empty, the 0-mean partition is found
(Proposition 7). Temporarily delete all non-tight edges. Let X be the set of
vertices starting from which Min can force a play into X0, and N be the set
of vertices from which Max can force a play into N0. (Both sets may be easily
computed in polynomial time, as shown below.)

We claim that X and N form a partition of the game vertices. Indeed, every
vertex is an endpoint (source or destination) of at least one tight edge. Note also
that the graph induced by tight edges is acyclic (this follows from Proposition 3,
because a cycle with all slacks 0 should be 0-weight, absent by assumption).
Topologically sort it, and proceed from leaves (which are either in X0 ⊆ X or
in N0 ⊆ N) backwards in the topological order as follows. For a Max vertex
v with all successors already decided to be in X or N , put v to N if it has a
tight edge to N , and to X otherwise, and symmetrically for a Min vertex. This
classifies all vertices as members of either X or N . At this stage:

– there are no tight Max edges from X to N , by definition of X ; equivalently,
all Max edges from X to N , denote them Emax(X, N), are non-tight;

– there are no tight Min edges from N to X , by definition of N ; equivalently,
all Min edges from N to X , denote them Emin(N, X), are non-tight;

– note that there may exists tight Max edges from N to X , as well as tight
Min edges from X to N .

Linear Programming Polytope and Algorithm for Mean Payoff Games 77

Terminate? If the set of edges Emax(X, N)∪ Emin(N, X) is empty, the 0-mean
partition is found: G≤0 = X and G>0 = N (see Proposition 7), and the algorithm
terminates. (Both X , N may be nonempty if the graph is not complete bipartite.)

Update. Let δ > 0 be the minimal slack assigned to edges in Emax(X, N) ∪
Emin(N, X) (all such edges are non-tight; see above). Now, either 1) increase
the values of all vertices in N by δ, or 2) decrease the values of all vertices
in X by δ. This does not violate any constraints, and preserves the property
that every vertex has at least one in- or outgoing tight constraint/edge. Indeed,
all constraints corresponding to edges from X to X and from N to N remain
satisfied (since we increase or decrease the values of variables in both sides of
constraints by the same δ). Proceed to the Main Loop. ��

Note that in the Update step: a) at least one non-tight edge in Emax(X, N) ∪
Emin(N, X) becomes tight, but b) all tight edges in Emax(N, X) ∪ Emin(X, N),
if any, become non-tight. Therefore, we unfortunately do not have monotonic
increase of the set of tight edges. However, once a vertex obtains a tight outgoing
edge, it keeps at least one such edge forever. Thus, the set of vertices possessing
tight edges monotonically increases. Consequently, the sets X0 and N0 may only
decrease (monotonicity). Every increase, in the Update step, of values of vertices
in N decreases the positive slacks of all edges leaving vertices in N0 and going
to X , and the positive slacks of all edges leaving vertices in X0 and going to
N (there is always at least one such edge; otherwise the algorithm terminates.
(The decrease case 2) is analogous.) Therefore, after pseudopolynomially many
steps at least one vertex in X0 ∪ N0 will obtain a tight edge and will leave the
set X0 ∪ N0 forever. We summarize the above argument in the following

Theorem 2. The described algorithm is pseudopolynomial, O(|G| ·n ·W), where
G is the size of the game graph, n the number of its vertices, and W is the largest
absolute edge weight. ��

Note, retrospectively, that this algorithm is similar in spirit to the iterated poten-
tial transformation algorithm of [9] (proved exponential in [9] and pseudopolyno-
mial in [11]). Our algorithm is based on completely different principles. Moreover,
our proof and the algorithm description are considerably simpler.

8 Conclusions

The idea to describe MPGs by linear constraints and investigate the associ-
ated polytopes using linear programming methods appears natural and useful.
It reveals simple algebraic properties of MPG-polytopes and allows for a new
transparent LP-based algorithm for solving MPGs. In a forthcoming paper we
will present further properties of MPG-polytopes and a dual algorithm, which
allow for a faster convergence to a tight solution.

78 O. Svensson and S. Vorobyov

References

1. H. Björklund, O. Nilsson, O. Svensson, and S. Vorobyov. Controlled linear program-
ming: Boundedness and duality. Technical Report DIMACS-2004-56, DIMACS:
Center for Discrete Mathematics and Theoretical Computer Science, Rutgers Uni-
versity, NJ, December 2004. http://dimacs.rutgers.edu/TechnicalReports/.

2. H. Björklund, O. Nilsson, O. Svensson, and S. Vorobyov. The controlled linear
programming problem. Technical Report DIMACS-2004-41, DIMACS: Center for
Discrete Mathematics and Theoretical Computer Science, Rutgers University, NJ,
September 2004.

3. H. Björklund, O. Svensson, and S. Vorobyov. Controlled linear programming for
infinite games. Technical Report DIMACS-2005-13, DIMACS: Center for Discrete
Mathematics and Theoretical Computer Science, Rutgers University, NJ, April
2005.

4. H. Björklund, O. Svensson, and S. Vorobyov. Linear complementarity algorithms
for mean payoff games. Technical Report DIMACS-2005-05, DIMACS: Center for
Discrete Mathematics and Theoretical Computer Science, Rutgers University, NJ,
February 2005.

5. H. Björklund and S. Vorobyov. Combinatorial structure and randomized subexpo-
nential algorithms for infinite games. Theoretical Computer Science, 349(3):347–
360, 2005.

6. H. Björklund and S. Vorobyov. A combinatorial strongly subexponential strategy
improvement algorithm for mean payoff games. Discrete Applied Mathematics,
2006. Accepted, to appear. Preliminary version in MFCS’04, Springer Lecture
Notes in Computer Science, vol. 3153, pp. 673-685, and DIMACS TR 2004-05.

7. R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Complementarity Problem.
Academic Press, 1992.

8. A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games.
International Journ. of Game Theory, 8:109–113, 1979.

9. V. A. Gurvich, A. V. Karzanov, and L. G. Khachiyan. Cyclic games and an
algorithm to find minimax cycle means in directed graphs. U.S.S.R. Computational
Mathematics and Mathematical Physics, 28(5):85–91, 1988.

10. K. G. Murty and F.-T. Yu. Linear Complementarity, Linear and Nonlinear Pro-
gramming. Heldermann Verlag, Berlin, 1988.

11. N. Pisaruk. Mean cost cyclical games. Mathematics of Operations Research,
24(4):817–828, 1999.

12. A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons,
1986.

13. A. Schrijver. Combinatorial Optimization, volume 1-3. Springer, 2003.
14. O. Svensson and S. Vorobyov. A subexponential algorithm for a subclass of P-

matrix generalized linear complementarity problems. Technical Report DIMACS-
2005-20, DIMACS: Center for Discrete Mathematics and Theoretical Computer
Science, Rutgers University, NJ, June 2005.

15. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theor.
Comput. Sci., 158:343–359, 1996.

	Introduction
	Preliminaries
	Mean Payoff Games
	0-Mean Partition Problem for MPGs
	Longest Shortest Paths (LSP)

	LP Formulations for MPGs
	Existence of Tight Solutions
	MPGs on Complete Bipartite Graphs
	Invariant Properties
	Complete Bipartite MPGs as Linear Programs
	Search Space

	0-In-Out Property
	Minimizing Slacks Does Not Give Tight Solutions

	Slacks Update ``Tightening'' Algorithm
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

