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Subtyping Functional+Nonempty Record Types 281types is introduced. The primary importance of the problem stems from the factthat satis�ability of systems of subtype inequalities is known to be polynomialtime equivalent to the type reconstruction problem for lambda and object terms(Kozen et al. 1994, Hoang & Mitchell 1995, Palsberg 1995).The Satis�ability of Subtype Constraints Problem (further, the SSCP forshort) is de�ned as follows (J. Tiuryn calls it SSI, Satis�ability of Subtype In-equalities, (Tiuryn 1992, Tiuryn 1997)).SSCP: Given a �nite set of subtype inequalities n�i � �ioni=1 between type ex-pressions �i, �i containing free type variables, does there exist a substitutionof type expressions for these variables making all inequalities true? utThe SSCP is obviously parameterized by:{ the choice of type constructors involved in type expressions,{ the choice of subtyping rules,{ presence/absence of atomic types with a subtype relation on them.The most common features involved in type construction considered in the lit-erature are as follows:1. the functional type constructor � ! � ,2. the record type constructor [l1: �1 : : : ; ln: � ],3. atomic types with a subtype relation on them, e.g., int � real ,4. the largest type > (also denoted 
 1), and the least type ?.In Section 2 we survey known cases of SSCP for di�erent types built by combi-nations of the type constructors above, well investigated in the literature. Theseinclude partial types, object types, functional types with atomic subtyping anddi�erent assumptions on atomic type orderings.In this paper we consider the SSCP for types built by using simultaneouslythe functional and the nonempty record type constructors, but withoutatomic types and atomic subtyping.Remark 1. We explicitly exclude the empty record (playing the role of the > typefor record types) from consideration for the following reasons.Di�erent combinations of type constructors and solvability of correspondingsystems of subtype inequalities are investigated in the literature (Aiken, Wim-mers & Lakshman 1994, Palsberg & O'Keefe 1995, Palsberg & Smith 1996, Tri-fonov & Smith 1996, Brandt & Henglein 1997). However, usually the > (largest,or 
) and ? (least) types are introduced in the system from the very beginning.This immediately transforms the type structure into a lattice and makes it toocoarse by introducing too many undesired, non-informative, or even `senseless'solutions, like ? ! >. On the positive side of introducing >, ? is the e�ciency1 We keep both notations > and 
 to be consistent with cited papers.



282 Sergei Vorobyovof the typechecking algorithms (usually polynomial2). But once we are satis�edwith e�ciency, the next step is to consider a more re�ned question: \we knowthis term is typable by some type, but is it typable by some `meaningful ' type?"At this stage one might wish to get rid of >, ? types and all the types theygenerate. Another consequence of introducing >, ? is that they make the sys-tem quite insensitive to combinations of di�erent type constructors and makeit quite impossible to analyze the relative costs of di�erent features. Note thatthe introduction of >, ? (turning types into lattices) is orthogonal to the wholeline of research on non-lattice base types subtyping (Tiuryn 1992, Lincoln &Mitchell 1992, Hoang & Mitchell 1995, Pratt & Tiuryn 96, Tiuryn 1997). ut2 Related Work and Contribution of the PaperWe briey survey the known results on complexity of the SSCP for di�erent typesystems in more detail.Partial Types. (Kozen et al. 1994) consider the so-called partial types intro-duced by (Thatte 1988), built from a single top type 
 by using the singlefunctional type constructor !, i.e., de�ned by the grammar� ::= 
 j �1 ! �2and the subtype relation � de�ned by the rules� � 
 for any type � ,� ! � � �0 ! � 0 i� �0 � � and � � � 0. (1)(The latter is the standard subtyping rule for functional types.)By using a nice automata-theoretic technique (Kozen et al. 1994) prove thatthe SSCP for these partial types is solvable in deterministic time O(n3). (O'Keefe& Wand 1992) were the �rst to show decidability of the problem by giving anexponential algorithm.Object Types. (Palsberg 1995) considers the so-called object types built byusing the single record type constructor, i.e., de�ned by the grammar� ::= [l1: �1; : : : ; ln: �n] (for n � 0);where the �eld labels li's are drawn from an in�nite set. (Note that in case n = 0we get the empty record type [ ]. Obviously, � � [ ] for each type � . Thus theempty record [ ] plays the role of the largest type 
 or >).The subtype relation on these object types is de�ned by� � � i� �� has �eld l: � ) � has �eld l: ��: (2)2 (Tiuryn 1992, Benke 1993, Pratt & Tiuryn 96, Tiuryn 1997) show that the latticestructure is helpful in getting polynomial algorithms.



Subtyping Functional+Nonempty Record Types 283Note that this subtyping rule is di�erent from a better known rule� � � i� �� has �eld l: � 0 ) � has �eld l:�0 such that �0 � � 0�: (3)(Palsberg 1995) shows, also by using the automata-theoretic techniques simi-lar to (Kozen et al. 1994), that the SSCP for the object types is decidable indeterministic time O(n3), and proves that the problem is PTIME-complete3.Functional Types with Atomic Subtyping. The SSCP for functional typesde�ned starting from a set of atomic types with a given subtype relation onthem extended to the set of all functional types by the standard subtypingrule (1) attracted most attention in the literature (Lincoln & Mitchell 1992,Tiuryn 1992, Pratt & Tiuryn 96, Benke 1993, Hoang & Mitchell 1995, Tiuryn1997, Frey 1997). When the subtyping relation on atomic types is identity, thewhole subtype relation is also identity, and the SSCP becomes the uni�cationproblem for simple types, known to be PTIME-complete (Dwork, Kanellakis &Mitchell 1984). (Lincoln & Mitchell 1992), improving (Wand & O'Keefe 1989),demonstrated that for some �xed ordering of atomic types the SSCP is NP-hard.(Tiuryn 1992, Pratt & Tiuryn 96) improved it further to PSPACE-hardness forsome simple �xed orderings of atomic types called crowns. (Lincoln & Mitchell1992, Tiuryn 1992) gave the NEXPTIME upper bound for the problem. Recently(Frey 1997) improved it to PSPACE. Thus the SSCP for functional types withatomic types is PSPACE-complete, in general. When the subtype relation onatomic types is a disjoint union of lattices (Tiuryn 1992) or a tree-like partialorder (Benke 1993), then the SSCP is in PTIME, i.e., becomes tractable (Tiuryn1992, Pratt & Tiuryn 96).It is interesting to note that the partial types subtyping of (Kozen et al.1994) and the object types subtyping of (Palsberg 1995) form lattices4. Butthe precise relation between the PTIME results of (Tiuryn 1992, Benke 1993,Pratt & Tiuryn 96, Tiuryn 1997) on the one hand, and the results of (Kozenet al. 1994, Palsberg 1995) on the other, seemingly, remains unexplored (do they`imply' each other?).Contribution of This Paper. The complexity of the SSCP for types built byusing simultaneously the functional and the nonempty record type constructors(both in presence or absence of atomic types) remained unknown, although typesystems combining functions and records are quite natural in object-orientedprogramming. The papers cited above concentrate either solely on functional oronly on record types, and/or immediately introduce the > and ? type. The mainresult of this paper is thatEven without any atomic types the SSCP for functional+nonempty recordtypes is NP-hard. The same holds for the types formed by the nonemptyrecord type constructor+a single atomic type constant (or any other typeconstructor). ut3 Reportedly, F. Henglein improved it to O(n2) by exploiting non-contravariance ofrecord subtyping (J. Palsberg, private communication).4 With glb(�1 ! �2; �1 ! �2) = lub(�1; �1)! glb(�2; �2), etc.



284 Sergei VorobyovThus, the absence of subtyping on atomic types does not lead to tractability, ascontrasted to PSPACE/PTIME complexity for functional types with/withoutatomic subtyping, recall (Tiuryn 1992, Lincoln & Mitchell 1992, Tiuryn 1997).Moreover, functions+records without atomic types, seemingly, do not allowto model the crown structures of (Tiuryn 1992, Pratt & Tiuryn 96), proved tobe a useful uniform tool in showing NP and PSPACE lower bounds. Our proofsare not done by reduction from results of (Tiuryn 1992, Pratt & Tiuryn 96), weuse a di�erent method.Our result shows that the automata-based deterministic polynomial timealgorithms of (Kozen et al. 1994, Palsberg 1995) for subtyping partial types andobject types (separately) cannot be combined to yield a polynomial deterministicalgorithm for functional+nonempty record types. The intrinsic interplay betweenthe nonempty record and the functional (or another) constructor adds to thecomputational complexity of the SSCP (even without atomic subtyping).The remainder of the paper is organized as follows. In Section 3 we formallyintroduce the type system, the problem, and state the results. In Sections 4 {7 we prove the Main Theorem and give some generalizations. Section 8{9 aredevoted to discussion, related results, conclusions.3 Functional and Record TypesLet V = f�; �; ; : : :g be an in�nite set of type variables and L = fl1; : : : ; ln; : : :gbe a �nite or in�nite set of �eld labels.In this paper we consider the following types.De�nition 1 ((Types)). De�ne:{ Functional+Nonempty Record Types by the grammar:� ::= V j � 0 ! � 00 j [l1: �1; : : : ; ln: �n]; (4)where n > 0 and li's are di�erent labels from L.{ Pure Nonempty Record Types by the grammar:� ::= V j [l1: �1; : : : ; ln: �n]; (5)where n > 0 and li's are di�erent labels from L. utThat is, types are constructed inductively, starting from type variables, by usingthe functional ! and the nonempty record [: : :] type constructors. The subex-pressions li: �i in the record construction are called record �elds. Note that inthe record construction the set of �elds is always nonempty, i.e., we explicitlyexclude the empty record.Notation. Types will be denoted by Greek letters � , �, �, etc. To stress theoutermost type constructor of a type we will sometimes superscript a type bythe corresponding outermost constructor, like �! or � [ ]. A substitution � oftypes for variables is de�ned as usual and denoted by �(�).



Subtyping Functional+Nonempty Record Types 285De�nition 2. Subtype relation � is de�ned by the following standard rules:Reexivity: � � � ,Transitivity: � � � and � � � imply � � �,Functional: � ! � � �0 ! � 0 i� �0 � � and � � � 0,Record: �[ ] � � [ ] i� for every �eld l: � 0 in � [ ] there is a �eld l:�0 in�[ ] such that �0 � � 0.A subtype judgment � � � is true i� it is derivable by these rules. utRemark 1 Note that a functional type is never a subtype of a record type, norvice versa. All provable subtyping judgments are either � � � for a type variable�, or of the form �! � �!, or of the form �[ ] � � [ ], i.e., the subtyping relationis strictly structural.In fact, our lower complexity bound results are independent of the functionalsubtyping rule, which we adopt only as a standard one. The two essential things,our results really depend on, are: nonemptiness of the record type constructorand the strict structuredness of the subtyping relation mentioned above. utHere is the problem we are interested in, both for functional+nonemptyrecord, pure nonempty record types, nonempty object types.Satis�ability of Subtype Constraints Problem (SSCP).Given a �nite system of subtype inequalities n �i � �i oni=1; does thereexist a substitution of types for variables occurring in �i's, �i's makingall inequalities simultaneously true? utOur main result is as follows.Main Theorem. The SSCP is NP-hard for the following types:1. nonempty record types with subtyping rule (3) and at least some other typeconstructor,2. nonempty record types with subtyping rule (2) and possibly other type con-structors,provided that:{ record types are comparable with record types only,{ non-record types are comparable with non-record types only,{ there are � 2 �eld labels.In particular, the SSCP is NP-hard for the following types:1. functional + nonempty record types,2. nonempty record constructor + a single type constant,3. nonempty record constructor + another type constructor,4. Palsberg's system of object types with subtyping rule (2) without empty record.



286 Sergei Vorobyov4 Proof of the Main TheoremWe �rst prove the claim for functional+nonempty record types, then in Section 5sketch the modi�cations necessary for the case of pure nonempty record typeswith a constant and subtyping rule (2), and in Section 6 give the general patternof the proof (due to an anonymous referee).The proof is by reduction from the well-known NP-complete problem:SATISFIABILITY. Given a Boolean formula in Conjunctive Normal Form(CNF), does there exist an assignment of truth values to variables makingthe formula true? utWe therefore proceed to representing truth values, clauses, and satis�ability interms of types and subtyping.4.1 Truth ValuesFix a type variable . De�ne the truth values t (true) and f (false) as typest �df [1: ]; f �df  ! ; (6)where 1 is an arbitrary label from L.Clearly, neither f � t, nor t � f, because one is functional and the other isrecord (recall that the subtyping is strictly structural; see Remark 1). Note alsothat t, f do not have common supertypes. This is because the empty record [ ]is excluded from consideration by De�nition 1. It seems tempting to get rid ofthe functional types altogether by de�ning f �df [2: ], which seems as good asf �df  ! , however, in Section 6 we show that that this does not work.4.2 Representing ClausesA clause is a disjunction of literals. A literal is either a propositional variable, ora negation of a propositional variable. Without loss of generality we assume thata clause never contains complementary pairs of literals. Propositional variablesA1; : : : ; Ak are represented by labels 1; : : : ; k. A clauseC � Ai1 _ : : : _ Aim _ :Aj1 _ : : : _ :Ajn ;where fi1; : : : ; img\fj1; : : : ; jng = ; and fi1; : : : ; img[fj1; : : : ; jng � f1; : : : ; kg,is represented as a type (it is essential here that a clause does not contain com-plementary literals)C� �df [ i1: t; : : : ; im: t; j1: f; : : : ; jn: f ]:The following proposition relates satis�ability of clauses and subtype judg-ments.



Subtyping Functional+Nonempty Record Types 287Proposition 1. A truth assignment � : fA1; : : : ; Akg �! ft; fg satis�es aclause C if and only if i: �(Ai) occurs in C� for some i 2 f1; : : : ; kg.Proof. � satis�es C i� for some propositional variable Ai one has:{ either �(Ai) = t and C = : : :_Ai_ : : :; by de�nition of C�, C = : : :_Ai_ : : :i� i: t occurs in C�,{ or �(Ai) = f and C = : : :_:Ai _ : : :; by de�nition of C�, C = : : :_:Ai _ : : :i� i: f occurs in C�. ut4.3 Satis�ability of a Propositional FormulaDe�nition 3. The translation of a propositional formula in CNF, i.e., a con-junction of clauses (containing no complementary pairs of literals)� � l̂i=1Ciis de�ned as a set of subtyping judgments�� �df n C�i � �i; � � �i oli=1; (7)where �, �i are fresh pairwise distinct type variables.A solution to �� is a substitution of types for free type variables making allsubtyping judgments in �� true. utThe main technical result we need to prove the Main Theorem is as follows.Lemma 1. � is satis�able if and only if �� has a solution.Proof of ()). Let an assignment �(Aj) = vj of truth values vj 2 ft; fg (1 �j � k) satisfy �. Then, by record subtyping rule (3), the substitution� [1: v1; : : : ; j: vj ; : : : ; k: vk];�i  [j: vj j �(Aj) = vj and j: vj 2 C�i ]is a solution to ��. Note that �i's are substituted by nonempty records. utProof of ((). Suppose, a type substitution � is a solution to ��. Construct thetruth assignment � by de�ning for every j = 1; : : : ; k{ �(Aj) = t if j: occurs in �(�) for some record type  , and{ �(Aj) = f otherwise.We claim that this � satis�es � � ^li=1Ci, i.e., � satis�es the clause Ci for everyi = 1; : : : ; l. Since � is a solution to ��, we have �(C�i ) � �(�i) � �(�).By de�nition, C�i is a record type, hence �(C�i ) and �(�i) are also recordtypes. Let �(�i) = [: : : ; j: �; : : :] (nonempty!), where the type � is:



288 Sergei Vorobyov1. either a record type (this happens when C�i = [: : : ; j: t; : : :], consequently,when Ci = : : : _ Aj _ : : :),2. or a functional type (this happens when C�i = [: : : ; j: f; : : :], consequently,when Ci = : : : _ :Aj _ : : :).Since �(�i) � �(�), we have �(�) = [: : : ; j:� : : :], where the type � is, respectively(corresponding to the two cases above):1. a record type; in this case, by de�nition, �(Aj) = t, consequently, Ci =: : : _ Aj _ : : : is true in the truth assignment �, or2. a functional type; in this case, by de�nition, �(Aj) = f, consequently, Ci =: : : _ :Aj _ : : : is true in the truth assignment �.Thus, the assignment � satis�es Ci for all 1 � i � l, and the proof is �nished. utSince the solvability of a system of subtyping judgments is equivalent to thesolvability of a single judgment (by using records), and the translation � of propo-sitional formulas into systems of subtype constraints (7) is obviously polynomialtime computable, we thus proved the �rst claim of the Main Theorem.Remark 2. The presented proof makes transparent the following distinction be-tween solving subtype inequalities with and without the empty record. If it isallowed, we may always guess this empty record as a supertype of any recordtype (leads to PTIME). If it is forbidden, we should make a nondeterministicchoice between all possible nonempty subrecords (leads to NP).Remark 3 ((Just Two Labels Su�ce)). The proof above uses the number ofrecord �eld labels equal to the number of propositions in an input propositionalformula. In fact, just two labels, say 0 and 1, su�ce. Instead of at records[1:v1; : : : ; k:vk] used in the proof we could have used nested records like[0: [0: [0:u000; 1:u001]; 1: [0:u010; 1:u011]]; 1: [0: [0:u100; 1:u101]; 1: [0:u110; 1:u111]]];[0: [0: [0: v000; 1: v001]; 1: [0: v010; 1: v011]]; 1: [0: [0: v100; 1: v101]; 1: [0: v110; 1: v111]]]:It is clear that two these record types are in the subtype relation i� for alli; j; k 2 f0; 1g one has uijk � vijk .Thus the NP-hardness result holds already in the case of a two-label set. Incontrast, for just one label the SSCP is deterministic polynomial (even linear)time decidable. This follows from the linearity of typability of an untyped termby simple types. utRemark 4 ((Narrow Records Su�ce)). Another generalization comes from thewell-known fact that the particular case of SATISFIABILITY, 3-SATISFIABILITY,restricted to formulas with at most three literals per clause is also NP-complete.It follows that the SSCP remains NP-hard for systems of constraints containingat most three �elds per record. utRemark 5 ((On Functional Constructor)). Our proof uses no assumptions aboutthe ! constructor, except for its di�erence from the record constructor; seeRemark 1. Consequently, the functional subtyping rule (1) may be changed,e.g., made domain-covariant. This should be contrasted to the results of (Tiuryn1992), which exploit the domain-contravariance of !.



Subtyping Functional+Nonempty Record Types 2895 Satis�ability for Palsberg's Object Types withoutEmpty Record is NP-HardIf the empty record type [ ] is excluded from the type system of (Palsberg1995) (by adding either a type constant or type variables to make the set oftypes nonempty), there is a jump in complexity (as compared with deterministicO(n3)):Lemma 2. The SSCP for the pure nonempty record types (5) with the recordsubtyping rule (2) is NP-hard.Proof Sketch. The proof is similar to the proof of Lemma 1. It su�ces torepresent the truth values without functional type constructor ast �df [1: [1: ]] and f �df [1: [2: ]]: (8)Without the empty record type and with the subtyping rule (2), one has:1. For every substitution �, every supertype of �([: : : ; j: t; : : :]) (respectively, of�([: : : ; j: f; : : :])) is of the form [: : : ; j: [1: [1: � ]]; : : :] (resp., [: : : ; j: [1: [2: � ]]; : : :]).2. The types of the form [: : : ; j: [1: [1:�]]; : : :], [: : : ; j: [1: [2: � ]]; : : :] cannot havecommon subtypes.Now modify the proof of (() in Lemma 1 by de�ning for every j = 1; : : : ; k:{ �(Aj) = t if some �(�i) has a �eld j: [1: [1: � ]] for some type � , and{ �(Aj) = f otherwise.The subsequent case analyses depend on whether a type has form [1: [1: � ]] or[1: [2: � ]]. The remainder of the proof works without any substantial changes. utIt follows that with subtyping rule (2) deriving pure nonempty types is morecomplicated than deriving object types (unless P = NP ). Both kinds of typa-bility di�er, and once we know whether a term has an object type, the nextquestion to ask is whether a term has a nonempty record type. Both representimportant interesting problems worth consideration.6 General Proof PatternThe proof of Section 4 for functional+nonempty record types with subtypingrule (3) is based on the simultaneous use of both functional and record typeconstructors in the de�nitions (6) of the truth value types t and f. The argumentin Section 5, for nonempty object types with subtyping rule (2), suggests thatthe use of functional types might also be avoided with subtyping rule (3).The �rst idea to avoid using functional types in the proof of Section 4, isto de�ne truth values t and f as in (8). However, with this choice Lemma 1fails, because for every conjunction of clauses � its translation �� to the setof subtyping judgments de�ned by (7) is satis�able. Indeed, let �i = C�i and



290 Sergei Vorobyov� = h i: [1: [1: ; 2: ]] iki=1 (where A1; : : : ; Ak are all variables in �). We see thatwith the choice (8) the proof of (() in Lemma 1 breaks in the case analysis,where we construct the truth assignment by selecting true or false depending onwhether a type has one of the two mutually exclusive structures.To better explain this phenomenon, one of the anonymous referees suggestedthe following `General pattern' of the proofs of (() in Lemmas 1 and 2. Bothproofs rely on the existence of a property T of types (depending on the codingsof t, f) such that for each � 2 ft; fg, all substitutions �, all types �, � with�(�) � � � � the following properties are satis�ed:� T (�) ) (� = t ^ T (�));:T (�)) (� = f ^ :T (�)): (9)(Intuitively, T (�) and :T (�) stand for `� represents true or false', respectively.)When � solves �� = fC�i � �i � �gli=1, we de�ne the truth assignment � by:{ �(Aj) = t if �(�) contains a �eld j:� such that T (�), and{ �(Aj) = f otherwise.This assignment � satis�es Vli=1 Ci.In the proof (() of Lemma 1 we selected T (x) = `x is a record type', ap-propriate for the truth values encodings (6) and subtyping rule (3). Clearly, thischoice satis�es (9).In the proof (() of Lemma 2 we selected T (x) = `x is a subtype of [1: [1: �]](for some type �)', appropriate for the truth values encodings (8) and subtypingrule (2). Clearly, this choice satis�es (9), because the empty record is excluded,and the rule (2) guarantees that the types [1: [1:�]] and [1: [2: ]] do not havea common subtype. However, as we saw above, these types do have a commonsubtype with subtyping rule (3).It is clear that no choice of pure record types for t, f in the presence ofsubtyping rule (3) satis�es (9). This can be proved by recursively constructingthe lower bound for any two pure record types. Thus, the use of nonempty recordtypes jointly with functional types5 is essential in the proof of the Main Theoremin Section 4. This does not imply, however, that the problem is in PTIME, nordoes it prevent that the problem (for pure record types) is also NP-hard (by adi�erent proof). But to the author's knowledge, until now this problem is open.7 Pure Nonempty Records with a Single AtomicConstantIf we allow a single type constant6 c, such that c � � and � � c are only possiblefor � = � = c, then the proof of our main result from Section 4 works (slightly5 or any other type constant or constructor; see Section 7 below.6 Before we had only type variables and two type constructors !, [ ].



Subtyping Functional+Nonempty Record Types 291modi�ed according to the `General pattern' of Section 6) for the truth valuesde�ned by t �df c; f �df [1: c]:Indeed, these types satisfy all the needed properties (9) if we let T (�) �df `�equals c'. Exactly the same argument works for nonempty records + anothertype constructor (provided that types with di�erent type constructors are in-comparable).It is interesting to compare this result with the results on complexity offunctional types subtyping with subtyping on atomic types.1. If the atomic subtyping is a lattice (which is the case of a single type con-stant) then the satis�ability of functional type constraints is PTIME decid-able. It becomes PSPACE-complete for n-crowns (n � 2), (Tiuryn 1992).2. In the pure nonempty record subtyping it is NP-hard already in the caseof a single (atomic) type constant (which is clearly a lattice), in contrast to(Tiuryn 1992, Tiuryn 1997).What are the precise lower and upper bounds for the SSCP in the case of purerecord types in presence of a nontrivial atomic subtyping, lattice and non-lattice?A classi�cation similar to (Tiuryn 1992, Benke 1993, Tiuryn 1997) would beinteresting.8 Upper Bound(Kozen et al. 1994, Hoang & Mitchell 1995, Palsberg 1995) show that satis-�ability of systems of subtype inequalities (for partial types or record types)is polynomial time equivalent to the type reconstruction problem (i.e., given aterm can it be assigned some type?). By similar arguments we can prove that inany reasonable type system based on functional+record types with subtyping asde�ned in De�nitions 1, 2 the type reconstruction problem is polynomial timeequivalent to the SSCP, hence also is NP-hard.Therefore, unlike the results of (Kozen et al. 1994, Palsberg 1995), which showdeterministic cubic time tractability of the SSCP for either functional or recordtypes (separately), our Main Theorem shows that subtyping and type recon-struction in presence of both functional and nonempty record types is NP-hard,i.e., presumably intractable. It follows that the automata-theoretic decidabilitytechniques of (Kozen et al. 1994, Palsberg 1995) (for the functional and recordsubtyping, separately) do not carry over straightforwardly to the combined caseof functional+nonempty record types. Extra e�ort is necessary even to establishdecidability of the SSCP for functional+record types. Here we just claim withouta proof the following complexity resultTheorem 2. The SSCP for functional+nonempty record types of De�nitions 1,2 is in NEXPTIME. ut



292 Sergei VorobyovRecall that NEXPTIME is the class of problems solvable by nondeterministicTuring machines in time O(2nk ) for some �xed k, where n denotes the lengthof input. The proof of Theorem 2 is by a tedious pumping argument (outsidethe scope of this paper) showing that whenever an instance of SSCP of size nhas a solution, then it necessarily has a solution of depth polynomial in n. Thus,given an SSCP instance, it su�ces to nondeterministically guess a polynomiallydeep solution tree (forest), with the resulting tree size O(2poly(n)), and to checkthat it is indeed a solution in deterministic exponential time. This proves theNEXPTIME membership. Of course, this is not a very e�cient algorithm. Itremains an open problem whether the SSCP for functional+record types is inPSPACE or NP. We believe that more sophisticated data structures, like DAGsand automata on DAGs, may lead to improvement of the above NEXPTIMEupper bound to PSPACE, or even NP. It is also possible that the sophisticatedtechniques of (Tiuryn 1992) may raise the lower bound to PSPACE. This remainsan intriguing subject for further investigations, we will report on elsewhere.9 ConclusionsWe presented the NP-lower bound for the Satis�ability of Subtype ConstraintsProblem (SSCP) for the types built by using simultaneously the functional !and the nonempty record [: : :] type constructors. Earlier research concentratedexclusively either on the SSCP for pure functional, or for pure record types,but not for both simultaneously, or else immediately included > and ? typesturning the type structure into a lattice. Both in the case of the pure func-tional types (Lincoln & Mitchell 1992, Tiuryn 1992, Kozen et al. 1994) and purerecord types (Palsberg 1995), deterministic polynomial time algorithms are pos-sible. In the case of the pure functional types constructed from atomic typeswith nontrivial subtyping relation on them the SSCP, in general, is NP-hard(Lincoln & Mitchell 1992) and even PSPACE-hard (Tiuryn 1992) (and, in fact,PSPACE-complete (Frey 1997)). In contrast, our result shows that even withoutany atomic types, the SSCP for functional+nonempty record types is NP-hard.We give the NEXPTIME upper bound for the problem, but conjecture that byusing more sophisticated data structures and more subtle arguments this upperbound can be improved to PSPACE (or even NP). It is also quite possible thatthe techniques of (Tiuryn 1992) may lead to the PSPACE lower bound.All these topics constitute an interesting and promising direction for futureresearch, together with the investigation of the related partial type systems withpossible simpli�cation of the SSCP, as suggested by results of (Kozen et al. 1994,Palsberg 1995).We conclude by summarizing several earlier mentioned technical problemsremaining open:1. Improve the NP lower and/or the NEXPTIME upper bounds for the SSCPfor functional+nonempty record types with subtyping rule (3).



Subtyping Functional+Nonempty Record Types 2932. We gave the NP lower bound for pure nonempty record types with a sin-gle atomic constant. Does the same hold without the constant, or does thecomplexity drop to PTIME?3. The SSCP for Palsberg's object types without empty record is NP-hard.What is the upper bound?4. Pure functional+nonempty record types seemingly do not allow for model-ing crowns. Give a strict proof, so as to demonstrate that our results areindependent of (Tiuryn 1992, Pratt & Tiuryn 96).5. Results of (Tiuryn 1992, Tiuryn 1997) and (Kozen et al. 1994, Palsberg 1995,Brandt & Henglein 1997) on PTIME decidability of constraints of di�erentkinds heavily exploit the fact that the type structure is a lattice. Could oneconstruct a uniform polynomial time algorithm, which works for an arbitrarycombination of type features, once types form a lattice?6. What are the precise lower and upper bounds for the SSCP in the case of purerecord types in the presence of a nontrivial atomic subtyping, lattice and non-lattice? A classi�cation similar to (Tiuryn 1992, Benke 1993, Tiuryn 1997)would be interesting.7. Does there exist a functional+record system of partial types, which: 1) hasthe PTIME decidable SSCP and type reconstruction problem, 2) types allnormal forms, 3) all typable terms are SN, 4) a typable term never goeswrong (appropriately de�ned)? Could PTIME decidability of such a systembe obtained by a generalization of the automata-based decision proceduresof (Kozen et al. 1994, Palsberg 1995)?Acknowledgments. Thanks to David McAllester for motivating this research,for fruitful discussions, careful proofreading, thoughtful and illuminating re-marks. Thanks to the anonymous referees for reporting gaps in the proofs, care-ful reading, numerous constructive suggestions for improvements, sharp remarks.One of the referees suggested substantial generalizations of the main theoremand the general proof pattern of Section 6.
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