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Abstract. The theory of finite trees is the full first-order theory of equal-
ity in the Herbrand universum (the set of ground terms) over a functional
signature containing non-unary function symbols and constants. Albeit
decidable, this theory turns out to be of non-elementary complexity [14].

To overcome the intractability of the theory of finite trees, we introduce
in this paper the bounded theory of finite trees. This theory replaces
the usual equality =, interpreted as identity, with the infinite family of
approzimate equalities “down to a fixed given depth” {=}4c,, with d
written in binary notation, and s =% ¢ meaning that the ground terms s
and t coincide if all their branches longer than d are cut off.

By using a refinement of Ferrante-Rackoff’s complexity-tailored Ehren-
feucht-Fraissé games, we demonstrate that the bounded theory of finite
trees can be decided within linear double exponential space 22" (n is the
length of input) for some constant ¢ > 0.

1 Introduction

Tree-like structures are fundamental for almost all domains of Computer Sci-
ence, and especially relevant to logic programming, symbolic computation, data
types, constraint solving, automated theorem proving, data bases, knowledge
representation. Whenever the reasoning about a class of data structures is in-
volved, it is interesting to know what is the inherent computational complexity
of this reasoning. This may be crucial in practical implementations of theorem
provers, constraint solvers, systems of logic programming.

The first-order theory of finite trees, also known as the theory of term alge-
bras, or Clark’s equational theory, although decidable [9, 7, 8, 4], turns out to
be non-elementary in the sense of Kalmar [14]. Any nondeterministic decision
procedure for tlnle theory takes time exceeding infinitely often any fixed tower of
exponents 22 , where n is the length of input.

In this paper we suggest a practical substitute for the theory of finite trees,
which we call the bounded theory of finite trees. In this theory, instead of the
unique usual equality =, one has an infinite family of equalities {=%}4¢.,, with
s = t interpreted as true if and only if the trees s and ¢ coincide to depth d,
where d is written in > 2-ary. Thus instead of claiming for the complete equality,
one has to specify explicitly which precision is needed in every comparison. We
demonstrate that the bounded theory is decidable within elementary space 22
for some ¢ > 0, and thus can be considered a useful practical alternative to the
usual (unbounded) non-elementary recursive theory of finite trees.



Finite trees is one of the basic domains in the Constraint Logic Programming
[6]. One can hardly expect to use the full first-order theory of trees to express
constraints, because of its non-elementary complexity. Allowing only existential
quantification (as is usually done) seems to be a serious restriction of expres-
siveness. In this respect the bounded theory of finite trees, allowing for the full
first-order quantification and being elementary, may be considered useful.

Venkataraman in [13] showed that the first-order theory of finite trees with
the subtree predicate is undecidable. By using the machinery of this paper we
can show that the bounded theory of trees with the “to be a subtree at bounded
depth” predicate is decidable in elementary space and time.

Outline. After briefly surveying the standard theory of finite trees we introduce
the approximate tree equality and the bounded theory of trees in functional and
relational formalizations, and state our Main Theorem in the end of Section 3.
In Section 4 we explain Ferrante-Rackoff’s complexity-tailored refinement of the
Ehrenfeucht-Fraissé games and extend it for infinite signatures. In Section 5 we
settle the upper complexity bounds for the bounded theory of trees.

Preliminaries. We suppose familiarity with standard logical notation. By w
we denote the set of natural numbers. A signature X' is called functional iff
it contains no predicate symbols. Const(Y) and Fun(X) denote the subsets of
constant and non-nullary function symbols of X' respectively. T'(X) denotes the
set of all ground (variable-free) terms of signature X', usually called the Herbrand
universum over X; ar(f) is the arity of f € X.

First-order formulas, free and bound occurrences, substitutions are defined
as usual. A sentence or closed formula is a formula without free variables. The
quantifier depth of a formula ¢ is a maximal number of nested quantifiers in ¢.

First-order models and their carriers are denoted by A, B. The elements
of models are denoted by a, b, possibly with indices; @z, b, denote k-tuples of
elements aj ...ag, by ...b;. For example, ay41 = a1 ...a,ar+1 = Ay, ar+1. By
Tj we denote a k-tuple of distinct variables. By (A, a;) we denote a model A
with distinguished elements @j. The satisfaction relation |= is defined as usual.

2 Theory of Finite Trees

Global Proviso. Throughout the paper X' denotes a finite functional signature
containing at least one constant symbol. Hence T'(X) # 0. O

Definition1 (Theory of Finite Trees). The theory of finite trees is the full
first-order theory Th(T'(X)) of the Herbrand universum 7'(X) in the language
of the first-order predicate calculus of signature X' with equality. ad

The good well-known news is that the theory is decidable.

Theorem 2 (Mal’cev-Kunen-Maher-Hodges [9, 7, 8, 4]). Both for finite
and infinite signatures the theory of finite trees possesses complete axiomatiza-
tions; therefore is decidable. ad



The quantifier elimination procedures for the theory of finite trees are de-
scribed in [9, 7, 8, 4]. The bad news is that the decision problem for the theory
is computationally intractable.

Definition 3 (Iterated Exponentials). For m,n € w let expy(n) = n and
exp,,,1(n) = 2°P=(")_ Define exp_(n) as exp, (0). A decision problem is el-
ementary in the sense of Kalmar iff it can be decided within space (or time)
bounded by a function exp,,(n) for some fized m € w, where n is the length of
input. Otherwise, a problem is called non-elementary. O

It turns out that the theory of finite trees is non-elementary. This disproves
K. Kunen’s claim [6] that the theory of finite trees is PSPACE-complete:

Theorem 4 ([14]). The first-order theory of finite trees is non-elementary if the
signature X (finite or infinite) contains non-unary function symbols. Moreover,
any decision algorithm for the theory takes time exceeding infinitely often

exp., (|en|) for some ¢ > 0, where n is the length of input. a

The same applies to variations of the theory, like the theories of rational and
feature trees (for the definitions of these theories see, e.g., [8, 1, 10]).

3 Approximate Equality and Bounded Theories of Trees

As a partial remedy to overcome the intractability of the theory of finite trees,
we introduce the approzrimate tree equality and the bounded theory of finite trees.

One of the reasons of the high complexity of the theory of finite trees is as
follows: given two pointers to two random constant terms of signature X, there is
no upper bound on the complexity of their comparison. The approximate equality
=% defined below has such a bound (exponential in d).

Definition 5 (Approximate Equality). For d € w define the approzimate
equality relations =% on T(X) x T(X) inductively as follows:

—s=tiff s= f(s1,...,8m), t = f(t1,...,tm) for some f € X;
— 5= tiff s = f(s1,...,8m), t = f(t1,...,tm), and s; =4 ¢; (1 < j < m).

Definition 6 ((Functional) Bounded Theories of Finite Trees). Denote
by X_ the signature X U{=%}4c, without usual equality =. Let .7-'bfnd(2) be the
set of all first-order formulas of signature Y_ without equality =. The functional
bounded theory of finite trees Th{nd(T(E)) is the set of all sentences of flfnd(Z)
true in the Herbrand universum 7'(Y). O

The bounded theory is different from the usual one: in the usual theory one
has Vz—(z = t(z)) for any term ¢(z) containing z properly. In the bounded
theory one may have =Vz—(z =% t(z)), e.g., s!%97(0) =196 52000(0). In this
respect the bounded theory is closer to the theory of rational trees.

By a simple reduction to the theory of finite trees we get the following



Proposition 7. For any finite functional signature X the functional bounded
theory of trees Thbfnd(T(E)) is decidable. O

The reduction to the theory of finite trees suggests only a very ineffective
way to decide Th{nd(T(E)), because the target theory of finite trees is of non-
elementary complexity. In this paper we describe a much more efficient procedure
to decide the theory Thfnd(T(E)), which runs in elementary space (hence time).

Since playing Ehrenfeucht-Fraissé-games is much easier without function
symbols it is convenient to get rid of all constant and function symbols.

Definition 8 (Companion Relational Signature). For a signature Y_ =
Y U {=%4ew, where ¥ is a finite functional signature, let the companion re-

lational signature Y— contain:

1. a unary predicate symbol Is. for every constant symbol ¢ € X/;

2. binary predicate symbols fg foralld € w, fe X, and 1 <p < ar(f);
3. binary predicate symbols =9 for every d € w.

The upper indices ¢ in the predicate symbols fg and =% are called ranks. ad

Definition 9 (Canonical Relational Model of Trees). For a finite functio-
nal signature X' define the canonical relational model of the bounded theory of
trees M = (T'(X); ¥_) with the Herbrand universum 7'(X) as a carrier, of

signature Y_, the relational companion to Y_, as follows:
— for d € w the meaning of =% is given by Definition 5;
— for s € T(X) one has M = Is.(s) if and only if T'(X) |= s =0 ¢;
— for s,t € T(X) and 1 < p < ar(f) one has M |= fl(s,t) if and only if

T(X)E3r1 . 2p 1Tpr1 - Tar(y) (s =3 f(z1,. . Ty 1t Tpit,- - .,a;M(f))).

Hence, instead of y =2 f(z; ...zx) we may write A¥_, f4(y, z;).
Definition 10 ((Relational) Bounded Theory of Trees). Given a finite
functional signature X with constants, denote by F; .(¥) the set of all first-

order formulas of the companion relational signature Y_ without usual equality.
The relational bounded theory of trees Thy, ,(T(X)) is the full first-order theory
of the canonical relational model M = (T'(¥); Y_) in the first-order language

of signature 5 without equality. ad
There is no essential difference between functional and relational theories.

Proposition11. The functional and the relational bounded theories of trees are
definitionally equivalent, see [4]. O

The decision complexity of the bounded theory of trees is determined by the
number of quantifiers in the prenex form of a formula (see Section 5). It is the
same for both theories:

Proposition 12. An arbitrary formula of length n of Thbfnd(T(Z)) can be trans-
formed into an equivalent prenex formula of Thy, ,(T(X)) with O(n) quantifiers.



Main Theorem. For any finite functional signature X, the bounded theory of
finite trees over X (both functional or relational) can be decided within space
22" for some constant ¢ > 0, where n is the length of input.

If the signature contains function symbols of arity at most 1, then the bounded
theory of trees can be decided within space 2°™ for some constant ¢ > 0.

If the signature has only constant symbols then the bounded theory of trees
can be decided within polynomial space and is PSPACE-complete if X contains
> 2 constants. ad

4 Ferrante-Rackoff’s Games for Complexity Analysis

In the next section we prove our Main Theorem by applying Ferrante-Rackoff’s
games described in Section 2 of [3]. We have to spend additional effort to make
these games applicable to infinite signatures. This is necessary because com-
panion relational signatures (Definition 8) are always infinite, whereas original
Ferrante-Rackoff’s games apply to finite signatures only. We attain the needed
generalization by relativizing Ferrante-Rackoff’s boundedness conditions to finite
subsignatures and by proving that the games carry over with this modification.

Ferrante-Rackoff’s complexity-tailored games [3] refine Ehrenfeucht-Fraissé-
games [2, 4] by additional boundedness analysis in the back-and-forth conditions.
Boundedness means that whenever a formula of the form Jz &(z) is true, one
can always find a small witness for #(z) from a finite subset of a model. Con-
trapositively, if there are no small witnesses for ®(z), one may safely consider
Jz &(z) false. Thus, assuming boundedness, to decide 3z ¢(z), one just needs to
check finitely many small candidates for witnesses. This forms the basis of the
decision method. We carry over this machinery to the case of infinite signatures.

4.1 Modification of Ferrante-Rackoff Games for Infinite Signatures

Although the extension of Ferrante-Rackoff games to infinite signatures can be
done in full generality, for the lack of space we develop it here (Theorems 15 and
17) only for the bounded theories of trees. We also have to omit proofs. All this
appears in the full paper [15].

Definition 13. For D € w denote by ff the finite subsignature
{Is, | Isee B_} U {=%¢ | =4, f?e S_andd < D} C 3_.

Obviously, if X' is finite, then for every D € w the signature f’f is finite.
Every formula of s is, of course, a formula of signature f’f for some D € w.

For the purposes of decidability and complexity analysis, we need to associate
norms to terms. A norm of a variable-free term is its height, defined as usual.
For such a term a we write |a| < m or simply a < m to mean that the norm of
a does not exceed m. By writing a; < m we mean that for every term a; of the
k-tuple @ one has a; < m.



Definition 14 (Local Boundedness). Let M = (T'(X); Y_) be the canonical
relational model of the bounded theory of trees (see Definition 9) and H : w* — w
be a function. We say that M is H-locally bounded iff for every n,k,m,D € w,
every aj € T(X)* with @, < m, and every formula of quantifier depth < n with
k free variables of signature Ef the following is true:

M = Fzp 1 P(Gg, Tp+1) = M | (ak, ag+1) for some apy1 < H(n, k,m, D).

Remark. Notice that the upper bound on the size of a witness a1 in the above
definition may depend on the maximal rank D of a predicate in a formula. This
is not taken into account in the original Ferrante-Rackoff games, which apply
only to finite signatures; recall that Y_ is always infinite.

Notation. For Q € {3,V} we write M = (Qzyy1 < H(n, k,m,D))®(ay, Tr1+1)
to mean that M = &(ay, art1) for some (resp. for all) apy1 < H(n,k,m, D).

Local boundedness yields decidability and provides means to settle upper
complexity bounds, quite similar to Theorem 1 from [3] p. 30.

Theorem 15. Suppose that M is H-locally bounded and Q1x1Q225 . .. Qrxy P(Ty)
is a sentence with Q; € {V,3} and a quantifier-free matriz ®(T;) of signature
f‘f for some D € w. Suppose mog < m; < my < ... < my is a sequence of
natural numbers such that H(k —i,5 — 1,m;_1,D) < m; for 1 < i < k. Then
M= Quz1Q21s ... Qpzy P(Th) & M E (Quzr < ma) ... (Qrzr < my) S(Ty).

Thus local boundedness reduces the validity of a quantified formula to the
validity of a boundedly quantified formula. Since X is a finite functional signature,
the number of terms of bounded height is finite. Therefore, the validity check
for the last formula amounts to verification of its matrix over finite number of
tuples of terms. Consequently, we have the following simple way to settle the
upper complexity bound for the theory. Suppose, an arbitrary element z; < m;
can be written in space at most S(m;). Then to test the validity of the last
formula, it suffices to generate all k-tuples of elements z1 < mq,...,x; < myg
and to check the validity of its quantifier-free matrix &(zy) for each such k-
tuple. The latter test does not usually use much additional space. Thus, the
space Zle S(m;) to is sufficient to decide. We return to these calculations in
Sections 5.3-5.5.

To prove local boundedness, necessary to apply Theorem 15, we need an aux-
iliary notion of indistinguishability of tuples by formulas of bounded quantifier
depth and bounded rank of predicate symbols.

Definition 16 ( =, Relations). For n,k,D € w define the binary relation
Eﬁk on the set of k-tuples of constant terms of signature X as follows:
ay Eik by iff (M, @) and (M, by,) satisfy the same formulas of

signature f‘f with k free variables of quantifier depth at most n. (1)



The following theorem, extending Ferrante-Rackoff’s Theorem 3 [3] pp. 34—
35 for infinite signatures, simplifies the proof of local boundedness, by reducing
it to the proof of two conditions (2) and (3), familiar as the back-and-forth
conditions in Ehrenfeucht-Fraissé games [2, 4], but with additional boundedness
constraints.

Theorem 17. Let M be the canonical relational model of the bounded theory of
trees. Suppose H : w* = w is a function and there exist binary relations E{Zk

satisfying properties (2), (3) for all n,k,m,D € w, and Gy, by, € T(X)*:

*EkEOL?kgk = ai E(?k Zk. (2)

— Ifay E7?+17k by, and by, < m, then for every ayr1 € T(X) there exists
brt+1 € T(X) such that byy1 < H(n,k,m,D) and Gj41 ET?,IH—I bry1- (3)
THEN: e ay Eﬁk by = Ty, Eﬁk by, for all n,k, D € w. (4)
e The model M is H-locally bounded. (5)

5 Upper Bounds for the Bounded Theories of Trees

5.1 EP

ok Relations

Now we apply Theorem 17 to prove the local boundedness of the bounded theory
of finite trees, and then use Theorem 15 to conclude its decidability and to settle
the upper complexity bounds. The crucial point in application of Theorem 17 is
the invention of appropriate refinement relations Efk . We first need a simple
auxiliary definition. 7

Definition 18 (Truncation). Let ¢ be a ground term of signature ¥ and h € w.
The h-truncation of t results from ¢ by replacing all the subterms of ¢ at depth
h+1 with an arbitrary but fized constant symbol from Y. Define the h-truncation
of a k-tuple of ground terms componentwise. O

Proposition 19. Let for some D € w the D-truncations of Gy and by coincide
(k € w). Then for any d € {0,...,D} and any i,j € {1,...,k} one has:

1) ai ="a; & b ="b;; 2) fI(ai,a;) & fI(bi,b;); 3) Isc(a;) & Isc(b).

The proof is immediate from definitions. Here comes the principal

Definition 20 (Efzk Relations). For D,n,k € w define the binary relation
Eﬁk on the set of k-tuples of constant terms of signature X as follows:
ax Eﬁk by, if and only if the 2™ + D-truncations of @y and by coincide. (6)

We now prove that Eﬁk satisfy conditions (2), (3) of Theorem 17.



5.2 Basis: Condition (2) of Theorem 17

We must prove @, E({’k b = a EOD’k b (7)
By (6), ay E(i)k b, means that 1 + D-truncations of @5 and by, coincide.
By (1), ax E[?k by, means that (M, ay,) and (M, by,) satisfy the same atomic
formulas of signature YD Such an atomic formula is either z =¢ y or fg(z, Y),

or Is.(z) for some d < D, f € Fun(X), p € {1,...,ar(f)}, and ¢ € Const(X).
Thus (7) is true by Proposition 19.

5.3 Inductive Step: Condition (3) of Theorem 17

Suppose a E7?+1,k by, b, < m, and ay,; is an arbitrary ground term. We
must prove that for an appropriate bounding function H one can always choose
br+1 < H(n,k,m, D) in such a way that ax,1 Er?,k+1 by 1 is satisfied. It suffices
to select byy1 to be equal the 2™ 4+ D-truncation of agy;. With this choice of
br11 we obviously have a1 Er?,k+1 bi11, because (cf., Definition 20):

— ag Er?+1,k Ek implies ay, E??,k Zk,
— the 2™ + D-truncation of aj41 and bgy; coincide.

It follows that the appropriate bounding function we need is
H(n,k,m,D) = 2"+ D, (8)
because the 2™ + D-truncation of ay4; is of the norm 2™ + D. Notice that the
value of H does not depend neither on the number k of elements in a k-tuple,
nor on their size m.
Therefore, the canonical model M of the bounded theory of trees is H-locally
bounded for H defined by (8). This finishes the proof of the Theorem 17. O

5.4 Decidability

We now apply Theorem 15 to derive decidability of the bounded theory of finite
trees from the H-local boundedness of its canonical model. We have to find a
sequence of natural numbers my < m; < mq < ... < my such that H(k — 1,7 —
1,m;_1) < m; for 1 <i <k, where H is the bounding function defined by (8).
As our function does not depend on its third argument, we simply let my = 0,
and m; = H(k —i,i — 1,%¥) = 2¥7" 4+ D for i € {1,...,k}. Therefore, to decide
Q171Q27> ... Qg Y(T}) or, equivalently, (Q1z1 < my) ... (Qrzr < my) D(Ty)
(by Theorem 15), we never need to consider trees higher than 2% + D. Since for a
finite signature X' the number of such trees is finite (finiteness of the signature is
crucial here!), the bounded theory of finite trees over finite signature is decidable.

5.5 Complexity

We now turn to the upper complexity bound of the bounded theory of finite
trees. It follows from Theorem 15 that the principal measure of complexity is
the number of quantifiers in the prenex form of a formula. For an arbitrary
formula ¢ of length [ of signature X_:



— the number of quantifiers k in ¢ is O(l), and
— the maximal rank D of a predicate symbol in ¢ is 200 i.e., is exponential
in its length; recall that we write the ranks of predicates =¢, fg in binary.

Since the transformation of an arbitrary formula of the bounded theory of
trees in the functional signature to an equivalent formula of the companion
relational signature in prenex form results in a formula with O(l) quantifiers
(see Proposition 12) and of the same rank, to decide a formula of length I, we
never need to consider trees higher than 2°(") (recall 2¥ 4+ D).

An arbitrary tree of height 20() (we need to cycle through the k-tuples of

o(l) . ..

such trees) may have up to 22 vertices and can be represented by an incidence
. ow

matrix in space 22 .

Therefore, an arbitrary formula of length [ in the bounded theory of trees can
20

be decided within space at most 22°"'; hence, within deterministic time 22
We thus established that the decision problem for the bounded theory of

finite trees in a finite functional signature (or its relational companion) belongs
20(D)
to the complexity classes SPACE(22°") C DTIME(2¥ ).

This estimate is true in general, when a signature X contains function sym-
bols of arbitrary arities. In the particular case, when X has no function symbols
of arity > 1, the above upper bound can be decreased. In fact, with monadic
function symbols only, an arbitrary tree of height 2°() may have only up to
20() vertices and can be represented in space 2°(). Thus the whole decision
procedure runs within space 2°() in this case.

Finally, consider a functional signature X containing > 2 constant symbols
only. In this case the bounded theory of finite trees is equivalent to the first-
order theory of pure equality in a > 2-element structure, known to be PSPACE-
complete [12, 11].

6 Conclusion and Future Research

We introduced the bounded theory of finite trees and proved that it can be de-
cided within elementary space (hence time), as contrasted to the usual theory of
finite trees, which is of non-elementary decision complexity [14]. We thus demon-
strated that the bounded theory of finite trees with its approximate equality may
be used as a good practical substitute for the theory of finite trees.

In a subsequent publication we will demonstrate that the lower bound for
the bounded theory of trees is as follows. For some constant ¢ > 0 the the-
ory does not belong to the complexity class SPACE(2"); consequently, requires
nondeterministic exponential time to decide.

Venkataraman in [13] demonstrated that the first-order theory of finite trees
with the subtree predicate is undecidable. By using the same machinery as we
used in the paper it is possible to show that the bounded theory of trees with
the “to be a subtree at bounded depth” predicate is decidable within elementary
space and time. We will do it elsewhere.



As we see, the bounded theories may be useful when their unbounded coun-
terparts are undecidable or intractable. It would be interesting to investigate
practical applications of the bounded theories in, say, constraint logic program-
ming schemes. This is, however, the topic of the future research.
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