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A minor example

Example (Games played on Argument Graphs)
Can you defend an argument a beyond doubt, i.e. defeat any
attackers without running into conflict with your own argument base?

Who has a winning strategy, you as the proponent or your oponent?

a b c . . .
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The Why? of Infinities I

Question
How many prime numbers are there?

Question
How many rational numbers p

q are there?

Question
How many decimal numbers are there?

Question
Is there a set of all sets?

Christof Spanring, PhDs Tea Talk Choice and Argumentation 4 / 16



The Why? of Infinities I

Question
How many prime numbers are there?

Question
How many rational numbers p

q are there?

Question
How many decimal numbers are there?

Question
Is there a set of all sets?

Christof Spanring, PhDs Tea Talk Choice and Argumentation 4 / 16



The Why? of Infinities I

Question
How many prime numbers are there?

Question
How many rational numbers p

q are there?

Question
How many decimal numbers are there?

Question
Is there a set of all sets?

Christof Spanring, PhDs Tea Talk Choice and Argumentation 4 / 16



The Why? of Infinities I

Question
How many prime numbers are there?

Question
How many rational numbers p

q are there?

Question
How many decimal numbers are there?

Question
Is there a set of all sets?

Christof Spanring, PhDs Tea Talk Choice and Argumentation 4 / 16



The Why? of Infinities II

Example (|Q| = |N|)
There are only as many rational
as natural numbers.
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Example (|N| < |R|)
There are more real than natural
numbers.

i1 = 0.

i2 = 0.
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Set Theory

Definition
Zermelo-Fraenkel Set Theory (ZFC-Axioms)

1 Extensionality ∀x∀y (∀z (z ∈ x⇔ z ∈ y)⇒ x = y)
2 Foundation ∀x (∃a (a ∈ x)⇒ ∃y (y ∈ x ∧ ¬∃z (z ∈ y ∧ z ∈ x)))
3 Specification ∀z∀v1∀v2 · · · ∀vn∃y∀x (x ∈ y⇔ (x ∈ z ∧ ϕ))

4 Pairing ∀x∀y∃z (x ∈ z ∧ y ∈ z)
5 Union ∀x∃z∀y∀v ((v ∈ y ∧ y ∈ x)⇒ v ∈ z)
6 Replacement
∀x∀v1∀v2 · · · ∀vn (∀y (y ∈ x⇒ ∃!zϕ)⇒ ∃w∀y (y ∈ x⇒ ∃!z(y ∈ w ∧ ϕ))

7 Infinity ∃x (∅ ∈ x ∧ ∀y (y ∈ x⇒ (y ∪ {y}) ∈ x))
8 Power Set ∀x∃y∀z (z ⊆ x⇒ z ∈ y)
9 Choice ∀x (∅ 6∈ x⇒ ∃f : x→

⋃
x,∀a ∈ x (f (a) ∈ a))
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Choice and Companions

Example (The Axiom of Choice)
Every set of non-empty sets has a choice function, selecting exactly one
element from each set.

Example (Basis Theorem for Vector Spaces)
Every vector space has a basis.

Example (Well-ordering Theorem)
Every set can be well-ordered.

Example (Zorn’s Lemma)
If any chain of a non-empty partially ordered set has an upper bound
then there is at least one maximal element.
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Determinacy

Example (A number game)

Some well-known set of sequences of natural numbers S ⊆ NN,
defines the winning set.

Move i selects a number for position i, two players alternate,
proponent starts with move 0.

Proponent wins if the played sequence is an element of S, otherwise
opponent wins.

Definition (Axiom of Determinacy)
Every number game of the above form is predetermined, i.e. one of the
players has a winning strategy.
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Possibly infinite Games

Example (Some number game)
Two players alternate stating moves.

Moves are decimal digits 0, 1, · · · 10.

Proponent wins if 0.i0i1i2i3 · · · ∈ Q.

Example (A slightly simpler number game)
Two players alternate making moves i0, i1, i2, i3, . . .

Moves are binary digits 0 or 1.

The winning set (for proponent) consists of sequences where for
some n > 0 we have ij = ij+n for all j < n, i.e. the initial sequence is
repeated at least once.

For instance in who wins?

Christof Spanring, PhDs Tea Talk Choice and Argumentation 10 / 16



Possibly infinite Games

Example (Some number game)
Two players alternate stating moves.

Moves are decimal digits 0, 1, · · · 10.

Proponent wins if 0.i0i1i2i3 · · · ∈ Q.

Example (A slightly simpler number game)
Two players alternate making moves i0, i1, i2, i3, . . .

Moves are binary digits 0 or 1.

The winning set (for proponent) consists of sequences where for
some n > 0 we have ij = ij+n for all j < n, i.e. the initial sequence is
repeated at least once.

For instance in 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, · · · who wins?

Christof Spanring, PhDs Tea Talk Choice and Argumentation 10 / 16



Possibly infinite Games

Example (Some number game)
Two players alternate stating moves.

Moves are decimal digits 0, 1, · · · 10.

Proponent wins if 0.i0i1i2i3 · · · ∈ Q.

Example (A slightly simpler number game)
Two players alternate making moves i0, i1, i2, i3, . . .

Moves are binary digits 0 or 1.

The winning set (for proponent) consists of sequences where for
some n > 0 we have ij = ij+n for all j < n, i.e. the initial sequence is
repeated at least once.

For instance in 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, · · · proponent wins.

Christof Spanring, PhDs Tea Talk Choice and Argumentation 10 / 16



Choice and Determinacy

Question
How do the axioms of choice (AC) and determinacy (AD) relate to each
other?

Theorem (AD implies countable AC)
(AD)⇒ (AC)fin

Theorem (AD implies Consistency of ZF Set Theory)
(AD)⇒ Con(ZF)

Theorem (AC implies not AD)
(AC)⇒ ¬(AD)
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Abstract Argumentation I

Definition (Argumentation Frameworks)
An argumentation framework (AF) is a pair F = (A,R).

A is an arbitrary set of arguments.

R ⊆ (A× A) is the attack relation.

For (a, b) ∈ R write a � b, and say a attacks b.

For a � b � c say a defends c against b.

Example

a b
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Abstract Argumentation II

Definition (Argumentation Semantics)
Some AF F = (A,R) and some set E ⊆ A.

E is conflict-free (cf) iff E 6� E.

E is admissible (adm) iff E ∈ cf (F) and for all a � E also E � a.

E is a preferred extension (pref) iff it is maximal admissible, i.e.
E ∈ adm(F) and for any E′ ∈ adm(F) with E ⊆ E′ already E = E′.

Example

a b

cf (F) = {∅, {a} , {b}} adm(F) = {∅, {a}} prf (F) = {{a}}
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(AC)⇒ prf (F) 6= ∅

Definition (Zorn’s Lemma)
If any chain of a non-empty partially ordered set has an upper bound
then there is at least one maximal element.

Definition (Partial Order)
A partial order (P,≤) is a set P with a binary relation ≤ that fulfills

reflexivity: a ≤ a,

antisymmetry: a ≤ b ∧ b ≤ a⇒ a = b,

transitivity: a ≤ b ∧ b ≤ c⇒ a ≤ c.

Definition (Axiom of Union)
The union over the elements of a set is a set.

∀z∃y∀x∀u(x ∈ z ∧ u ∈ x)⇔ u ∈ y
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(∀Fprf (F) 6= ∅)⇒(AC)

Definition (ZF-Axioms)
Comprehension: we can construct formalizable subsets of sets.

Union: the union over the elements of a set is a set.

Replacement: definable functions deliver images of sets.

Power Set: we can construct the power set of any set.

Selecting Nodes/Elements: a choice function
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