# Comparing the Expressiveness of Argumentation Semantics<sup>\displaystarter{o}</sup>

**COMMA 2012** 

#### Wolfgang Dvořák, Christof Spanring

Database and Artificial Intelligence Group Institut für Informationssysteme Technische Universität Wien

September 11, 2012





<sup>♦</sup> Supported by the Vienna Science and Technology Fund (WWTF) under grant ICT08-028.



## "Plethora" of Argumentation Semantics

Comparison of semantics still relates to

- basic properties,
- computational aspects,

but do not provide satisfying answers about expressiveness.

#### Motivation

# "Plethora" of Argumentation Semantics

Comparison of semantics still relates to

- basic properties,
- computational aspects,

but do not provide satisfying answers about expressiveness.

## Intertranslatability

A translation function transforms Argumentation Frameworks s.t. one can switch from one semantics to another.

- Intertranslatability w.r.t. efficiency has been studied for several semantics and gives a clear hierarchy [Dvořák and Woltran, 2011].
- Considering expressiveness we no longer care about efficiency.

#### Outlook

- We consider 9 semantics: conflict-free, naive, grounded, admissible, stable, complete, preferred, semi-stable and stage.
- We present consider two kinds of translations (faithful and exact), and provide full hierarchies of expressiveness.
- Semi-stable and preferred are of same expressiveness (although they have different complexity).

An argumentation framework (AF) is a pair (A, R) where

- A is a non-empty set of arguments
- $R \subseteq A \times A$  is a relation representing "attacks" ("defeats")

# Example

 $F=(\{a,b,c,d,e\},\{(a,b),(c,b),(c,d),(d,c),(d,e),(e,e)\})$ 



A Translation Tr is a function mapping (finite) AFs to (finite) AFs.



A Translation Tr is a function mapping (finite) AFs to (finite) AFs.



## **Translations**

"Levels of Faithfulness" (for semantics  $\sigma, \sigma'$ )

- exact: for every AF F,  $\sigma(F) = \sigma'(Tr(F))$
- faithful: for every AF F,  $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(Tr(F))\}$  and  $|\sigma(F)| = |\sigma'(Tr(F))|$ .

- exact: for every AF F,  $\sigma(F) = \sigma'(Tr(F))$
- faithful: for every AF F,  $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(Tr(F))\}$  and  $|\sigma(F)| = |\sigma'(Tr(F))|$ .

# Example (An exact translation: $cf \Rightarrow adm$ )



$$\{b,d\} \in cf(\mathcal{F})$$

- exact: for every AF F,  $\sigma(F) = \sigma'(Tr(F))$
- faithful: for every AF F,  $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(Tr(F))\}$  and  $|\sigma(F)| = |\sigma'(Tr(F))|$ .

# Example (An exact translation: $cf \Rightarrow adm$ )



$$\{b,d\} \in cf(\mathcal{F})$$
  $\{b,d\} \in adm(Tr(\mathcal{F}))$ 

#### **Translations**

"Levels of Faithfulness" (for semantics  $\sigma, \sigma'$ )

- exact: for every AF F,  $\sigma(F) = \sigma'(Tr(F))$
- faithful: for every AF F,  $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(Tr(F))\}$  and  $|\sigma(F)| = |\sigma'(Tr(F))|$ .

- exact: for every AF F,  $\sigma(F) = \sigma'(Tr(F))$
- faithful: for every AF F,  $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(Tr(F))\}$  and  $|\sigma(F)| = |\sigma'(Tr(F))|$ .

# Example (A faithful translation: $comp \Rightarrow stable$ )



 $\{a\} \in comp(\mathcal{F})$ 

- exact: for every AF F,  $\sigma(F) = \sigma'(Tr(F))$
- faithful: for every AF F,  $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(Tr(F))\}$  and  $|\sigma(F)| = |\sigma'(Tr(F))|$ .

# Example (A faithful translation: $comp \Rightarrow stable$ )



$$\{a\} \in comp(\mathcal{F})$$
  $\{a, a^*, c^*, d^*, e^*\} \in stable(Tr(\mathcal{F}))$ 

- exact: for every AF F,  $\sigma(F) = \sigma'(Tr(F))$
- faithful: for every AF F,  $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(Tr(F))\}$  and  $|\sigma(F)| = |\sigma'(Tr(F))|$ .
- weakly exact: there is a fixed S of sets of arguments, such that for any AF F,  $\sigma(F) = \sigma'(Tr(F)) \setminus S$ ;
- weakly faithful: there is a fixed  $\mathcal S$  of sets of arguments, such that for any AF F,  $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(Tr(\mathcal F)) \setminus \mathcal S\}$  and  $|\sigma(\mathcal F)| = |\sigma'(\mathcal F) \setminus \mathcal S|$ .
- We further consider translations w.r.t. the properties efficient, covering, embedding, monotone, and modular.

# State of the Art

Table: Faithful / exact intertranslatability (efficient).

|        | cf       | naive | ground | adm | stable       | сошр | pref         | semi         | stage |
|--------|----------|-------|--------|-----|--------------|------|--------------|--------------|-------|
| cf     | <b>√</b> |       |        |     |              |      |              |              |       |
| naive  |          | ✓     |        |     |              |      |              |              |       |
| ground |          |       | ✓      | √/- | √/-          | √/-  | √/?          | √/?          | √/?   |
| adm    |          |       | –      | ✓   | √/-          | ✓    | √/-          | √/-          | 🗸 / - |
| stable |          |       | –      | ✓   | $\checkmark$ | ✓    | $\checkmark$ | $\checkmark$ | ✓     |
| comp   |          |       | _      | √/- | √/-          | ✓    | √/-          | √/-          | 🗸 / - |
| pref   |          |       | –      | _   | _            | _    | ✓            | $\checkmark$ | ? / - |
| semi   |          |       | –      | _   | _            | _    | _            | $\checkmark$ | ? / - |
| stage  |          |       | –      | _   | _            | _    | _            | $\checkmark$ | 🗸     |

# State of the Art

Table: Faithful / exact intertranslatability (inefficient).

|        | cf       | naive        | ground | adm          | stable | сошр | pref | semi | stage |
|--------|----------|--------------|--------|--------------|--------|------|------|------|-------|
| cf     | <b>√</b> |              |        |              |        |      |      |      |       |
| naive  |          | $\checkmark$ |        |              |        |      |      |      |       |
| ground |          |              | ✓      | √/?          | √/?    | √/?  | √/?  | √/?  | √/?   |
| adm    |          |              | -      | $\checkmark$ | √/-    | ✓    | √/-  | √/-  | 🗸 / - |
| stable |          |              | -      | $\checkmark$ | ✓      | ✓    | ✓    | ✓    | ✓     |
| comp   |          |              | -      | √/-          | √/-    | ✓    | √/-  | √/-  | 🗸 / - |
| pref   |          |              | -      |              |        |      | ✓    | ✓    | ? / - |
| semi   |          |              | -      |              |        |      |      | ✓    | ? / - |
| stage  |          |              | -      |              |        |      |      | ✓    | ✓     |

# Summarized Results

Table: Faithful / exact intertranslatability

|        | cf       | naive | ground | adm | stable | сотр | pref         | semi         | stage        |
|--------|----------|-------|--------|-----|--------|------|--------------|--------------|--------------|
| cf     | <b>√</b> | √/-   | _      | ✓   | √/-    | ✓    | √/-          | √/-          | √/-          |
| naive  | _        | ✓     | _      | √/- | √/-    | √/-  | $\checkmark$ | $\checkmark$ | ✓            |
| ground | _        | ✓     | ✓      | √/- | √/-    | ✓    | $\checkmark$ | $\checkmark$ | ✓            |
| adm    | _        | _     | –      | ✓   | √/-    | ✓    | √/-          | √/-          | √/-          |
| stable | _        | _     | –      | ✓   | ✓      | ✓    | $\checkmark$ | $\checkmark$ | ✓            |
| comp   | _        | _     | –      | √/- | √/-    | ✓    | √/-          | √/-          | √/-          |
| pref   | _        | _     | –      | √/- | √/-    | √/-  | $\checkmark$ | $\checkmark$ | <b>√</b> / - |
| semi   | _        | _     | -      | √/- | √/-    | √/-  | $\checkmark$ | $\checkmark$ | <b>√</b> / - |
| stage  | _        | _     | -      | √/- | √/-    | √/-  | $\checkmark$ | $\checkmark$ | ✓            |

## The Paper

For the 9 Semantics under our considerations we

- provide exact / faithful translations whenever possible, and
- prove that no such translation exists otherwise.

#### The Paper

For the 9 Semantics under our considerations we

- provide exact / faithful translations whenever possible, and
- prove that no such translation exists otherwise.

#### The Talk

In the following we give examples for both kind of results.

- Translation 8: exact for semi-stable to stage semantics.
- Theorem 3: There is no weakly faithful translation for preferred to naive semantics.

$$S^+ = S \cup \{a \in A \mid \exists b \in A, b \rightarrowtail a\}$$

the range of S.

#### Definition

Let  $\mathcal{F} = (A, R)$  be an Argumentation Framework. For  $S \subseteq A$  it holds that

- $S \in cf(\mathcal{F})$  if there are no  $a, b \in S$ , such that  $(a, b) \in R$ ;
- $S \in adm(\mathcal{F})$ , if each  $a \in S$  is defended by S;
- $S \in pref(\mathcal{F})$ , if  $S \in adm(\mathcal{F})$  and there is no  $T \in adm(\mathcal{F})$  with  $T\supset S$ :
- $S \in semi(\mathcal{F})$ , if  $S \in adm(\mathcal{F})$  and there is no  $T \in adm(\mathcal{F})$  with  $T_{P}^{+}\supset S_{P}^{+}$ .





- $pref(\mathcal{F}) = \{\{a, c\}, \{a, d\}\}$
- $semi(\mathcal{F}) = \{\{a, d\}\}$

#### Definition

- Tr(A, R) = (A', R')
- $A' = A \cup \{E \mid E \in pref(\mathcal{F}) \setminus semi(\mathcal{F})\}$
- $R' = R \cup \{(a, E), (E, E), (E, b) \mid a \in A \setminus E, b \in E\}$



- $pref(\mathcal{F}) = \{\{a, c\}, \{a, d\}\}$
- $semi(\mathcal{F}) = \{\{a, d\}\}$

#### Definition

- Tr(A, R) = (A', R')
- $A' = A \cup \{E \mid E \in pref(\mathcal{F}) \setminus semi(\mathcal{F})\}$
- $R' = R \cup \{(a, E), (E, E), (E, b) \mid a \in A \setminus E, b \in E\}$



- $pref(\mathcal{F}) = \{\{a, c\}, \{a, d\}\}$
- $semi(\mathcal{F}) = \{\{a, d\}\}$



#### Definition

- Tr(A, R) = (A', R')
- $A' = A \cup \{E \mid E \in pref(\mathcal{F}) \setminus semi(\mathcal{F})\}$
- $R' = R \cup \{(a, E), (E, E), (E, b) \mid a \in A \setminus E, b \in E\}$



- $pref(\mathcal{F}) = \{\{a, c\}, \{a, d\}\}$
- $semi(\mathcal{F}) = \{\{a, d\}\}$

- Tr(A, R) = (A', R')
- $A' = A \cup \{E \mid E \in pref(\mathcal{F}) \setminus semi(\mathcal{F})\}$
- $R' = R \cup \{(a, E), (E, E), (E, b) \mid a \in A \setminus E, b \in E\}$



- $pref(\mathcal{F}) = \{\{a, c\}, \{a, d\}\}$
- $semi(\mathcal{F}) = \{\{a, d\}\}$

- Tr(A, R) = (A', R')
- $A' = A \cup \{E \mid E \in pref(\mathcal{F}) \setminus semi(\mathcal{F})\}$
- $R' = R \cup \{(a, E), (E, E), (E, b) \mid a \in A \setminus E, b \in E\}$



- $pref(\mathcal{F}) = \{\{a, c\}, \{a, d\}\}$
- $semi(\mathcal{F}) = \{\{a, d\}\}$

- Tr(A, R) = (A', R')
- $A' = A \cup \{E \mid E \in pref(\mathcal{F}) \setminus semi(\mathcal{F})\}$
- $R' = R \cup \{(a, E), (E, E), (E, b) \mid a \in A \setminus E, b \in E\}$



- $pref(\mathcal{F}) = \{\{a, c\}, \{a, d\}\}$
- $semi(\mathcal{F}) = \{\{a, d\}\}$

#### **Definition**

- Tr(A, R) = (A', R')
- $A' = A \cup \{E \mid E \in pref(\mathcal{F}) \setminus semi(\mathcal{F})\}$
- $R' = R \cup \{(a, E), (E, E), (E, b) \mid a \in A \setminus E, b \in E\}$



- $pref(\mathcal{F}) = \{\{a, c\}, \{a, d\}\}$
- $semi(\mathcal{F}) = \{\{a, d\}\}$
- $pref(Tr(\mathcal{F})) = \{\{a, d\}\}$

Let  $\mathcal{F}=(A,R)$  be an Argumentation Framework. For  $S\subseteq A$  it holds that

- $S \in cf(\mathcal{F})$  if there are no  $a, b \in S$ , such that  $(a, b) \in R$ ;
- $S \in naive(\mathcal{F})$ , if there is no  $T \in cf(\mathcal{F})$  with  $T \supset S$ ;
- $S \in adm(\mathcal{F})$ , if each  $a \in S$  is defended by S;
- $S \in pref(\mathcal{F})$ , if  $S \in adm(\mathcal{F})$  and there is no  $T \in adm(\mathcal{F})$  with  $T \supset S$ ;

#### Theorem

There is no weakly faithful translation for pref  $\Rightarrow$  naive.

#### **Theorem**

There is no weakly faithful translation for pref  $\Rightarrow$  naive.



#### **Theorem**

There is no weakly faithful translation for pref  $\Rightarrow$  naive.



$$pref(\mathcal{F}) = \{\{a_1, b_2, b_3\}, \\ \{b_1, a_2, b_3\}, \\ \{b_1, b_2, a_3\}\}$$

#### **Theorem**

There is no weakly faithful translation for pref  $\Rightarrow$  naive.



$$pref(\mathcal{F}) = \{ \{a_1, b_2, b_3\}, \\ \{b_1, a_2, b_3\}, \\ \{b_1, b_2, a_3\} \}$$

#### **Theorem**

There is no weakly faithful translation for pref  $\Rightarrow$  naive.



$$pref(\mathcal{F}) = \{\{a_1, b_2, b_3\}, \\ \{b_1, a_2, b_3\}, \\ \{b_1, b_2, a_3\}\}$$

#### **Theorem**

There is no weakly faithful translation for pref  $\Rightarrow$  naive.



$$pref(\mathcal{F}) = \{\{a_1, b_2, b_3\},\$$
  
 $\{b_1, a_2, b_3\},\$   
 $\{b_1, b_2, a_3\}\}$   
 $\subseteq naive(Tr(\mathcal{F}))$ 

#### **Theorem**

There is no weakly faithful translation for pref  $\Rightarrow$  naive.



$$pref(\mathcal{F}) = \{\{a_1, b_2, b_3\},\ \{b_1, a_2, b_3\},\ \{b_1, b_2, a_3\}\}$$
  
 $\subseteq naive(Tr(\mathcal{F}))$ 

$$\Rightarrow \{b_1, b_2, b_3\} \in cf(Tr(\mathcal{F}))$$

#### **Theorem**

There is no weakly faithful translation for  $\{stage, stable, semi, pref, comp, adm\} \Rightarrow \{cf, naive\}$ .



$$pref(\mathcal{F}) = \{\{a_1, b_2, b_3\}, \\ \{b_1, a_2, b_3\}, \\ \{b_1, b_2, a_3\}\} \\ \subseteq naive(Tr(\mathcal{F}))$$

$$\Rightarrow \{b_1, b_2, b_3\} \in cf(Tr(\mathcal{F}))$$

#### Results



#### Almost finished...

#### **Achievments**

- Full hierarchy of expressiveness for the selected semantics.
- Extended existing investigations on intertranslatability
  - to naive extensions and conflict-free sets, and
  - to the case of inefficient translations.
- Improved an existing translation w.r.t. size of transformed Argumentation Frameworks.

## **Open Questions**

- More semantics for investigation
- Labeling-preserving translations

#### Finished

#### **Achievments**

- Full hierarchy of expressiveness for the selected semantics.
- Extended existing investigations on intertranslatability
  - to naive extensions and conflict-free sets, and
  - to the case of inefficient translations.
- Improved an existing translation w.r.t. size of transformed Argumentation Frameworks.

## **Open Questions**

- More semantics for investigation
- Labeling-preserving translations