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Abstract. In this work we complement recent investigations of the intertranslata-
bility of argumentation semantics. Our focus is on the expressiveness of argumen-
tation semantics and thus we expand the area of interest beyond efficiently com-
putable translations. To this end we provide new translations between semantics as
well as new translational impossibility results. This allows us to draw a hierarchy
for the expressiveness of argumentation semantics.
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1. Introduction

We investigate the intertranslatability of abstract argumentation semantics, i.e. whether
it is possible to modify an arbitrary argumentation framework such that the σ -extensions
of the original framework are in a certain correspondence with the σ ′-extensions of the
modified framework (σ , σ ′ being argumentation semantics).

In his seminal paper Dung [6] already proposed a broad range of argumentation se-
mantics which since then was enhanced by the community (see e.g. [1] for an exten-
sive overview). Inevitably when dealing with different semantics the question arises what
kind of characteristics the difference affects. To this end basic properties [2] as well as the
computational behaviour [7] of semantics have been extensively studied in the literature.
Studies on intertranslatability of semantics complement the perception of argumentation
semantics by relating semantics wrt. their expressiveness. With being able to translate
one semantics into another immediately we are also able to interlock respective exten-
sions and thus provide some sort of directed logical equivalence. On the other hand if one
semantics cannot be translated into another we conclude that the first semantics provides
certain expressiveness that cannot be simulated by the other semantics. Such investiga-
tions come into play in so called meta-level argumentation (e.g. [9]), where one wants
to express certain semantics within another, for instance for the purpose of merging two
frameworks with different corresponding semantics.

Intertranslatability results also affect more complex argumentation procedures.
In this context we think about frameworks being instantiated from some (logical)
knowledge-base, where the aim is to retrieve extensions satisfying specific rationality
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028.



postulates wrt. the original knowledge-base (see e.g. [3]). One is thus only interested in
semantics ensuring such extensions. Given some translation from one semantics σ to an-
other semantics σ ′ and an instantiation such that the conclusions provided by σ satisfy
the desired postulates one can build a similar instantiation for σ ′ by concatenating the
original instantiation and the translation.

Prior investigations for translating argumentation semantics are to be found in [8],
where complexity theoretic reductions are transferred to the area of abstract argumenta-
tion. This work is motivated mainly by computational issues, e.g. generalising existing
solvers for application to various semantics, and thus focuses on translation functions
that are efficiently computable. In contrast, our work goes beyond efficient translations
and also considers translations making use of any desired computational resources. This
is due to the fact that we are interested in the expressiveness of argumentation semantics.

In this work we will consider the semantics proposed in Dung’s seminal paper [6]
as well as stage [10] and semi-stable [4,10] semantics. We study two kinds of transla-
tions, exact translations, where the extensions of the original framework and the modi-
fied framework are identical, and faithful translations, where the extensions of the origi-
nal framework and the translated framework agree on the original arguments but the ex-
tensions of the modified framework may contain additional arguments introduced by the
translation. Depending on the concrete application additional arguments in an extension
might be appropriate or not. As we will see later the different notions of intertranslata-
bility lead to different hierarchies of expressiveness.

This work contributes in the following ways. First, we complement results from [8]
by providing additional efficient translations for conflict-free and naive semantics, as
well as an explicit translation for complete to preferred semantics which also improves
a translation from [8]. Second, we present novel (inefficient) translations in cases where
no efficient translation is possible. Finally, we provide negative results stating that trans-
lations between certain semantics are impossible independently of computational con-
straints and thus strengthen existing results.

The remainder of the paper is organised as follows: In Section 2 we present neces-
sary background information for abstract argumentation and necessary notions for trans-
lations. On the positive side, in Section 3, we present translations between argumentation
semantics. In Section 4 we present negative results showing that certain translations are
not possible. Finally, in Section 5, we conclude with a summary of the results.

2. Background

2.1. Abstract Argumentation

In this section we introduce (abstract) argumentation frameworks [6] and recall the se-
mantics we study in this paper (see also [1], for an overview).

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where A is a finite
and non-empty 2 set of arguments and R ⊆ A×A represents the attack relation. For a
given AF F = (A,R) we use AF to denote the set A of its arguments and RF to denote its
attack relation R. The pair (a,b) ∈ R means that a attacks b.

2For technical reasons we only consider AFs with A 6= /0.



We sometimes use the notation a�R b instead of (a,b) ∈ R. For S ⊆ A and a ∈ A,
we also write S�R a (resp. a�R S) in case there exists an argument b ∈ S, such that
b�R a (resp. a�R b). In case no ambiguity arises, we use� instead of�R.

An AF can naturally be represented as a directed graph. Semantics for argumenta-
tion frameworks are given via a function σ which assigns to each AF F = (A,R) a set
σ(F)⊆ 2A of extensions. In place of σ we will consider the functions cf , naive, stb, adm,
prf , com, grd, stage, and sem which stand for conflict-free, naive, stable, admissible, pre-
ferred, complete, grounded, stage, and respectively, semi-stable semantics. Before giving
the actual definitions for these semantics, we require a few more formal concepts.

Definition 2. Given an AF F = (A,R), an argument a ∈ A is defended (in F) by a set
S ⊆ A if for each b ∈ A, such that b� a, also S� b holds. Moreover, for a set S ⊆ A,
we define the range of S, denoted as S+R , as the set S∪{b | S� b}.

We continue with the definitions of the considered semantics. Observe that their
common feature is the concept of conflict-freeness, i.e. arguments in an extension are not
allowed to attack each other.

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F), denoted as
S ∈ cf (F), if there are no a,b ∈ S, such that (a,b) ∈ R. For S ∈ cf (F), it holds that

• S ∈ naive(F), if there is no T ∈ cf (F) with T ⊃ S;
• S ∈ stb(F), if for each a ∈ A\S, S� a, i.e. S+R = A;
• S ∈ adm(F), if each a ∈ S is defended by S;
• S ∈ prf (F), if S ∈ adm(F) and there is no T ∈ adm(F) with T ⊃ S;
• S ∈ com(F), if S ∈ adm(F) and for each a ∈ A that is defended by S, a ∈ S;
• S ∈ grd(F), if S ∈ com(F) and there is no T ∈ com(F) with T ⊂ S;
• S ∈ stage(F), if there is no conflict-free set T in F, such that T+

R ⊃ S+R ;
• S ∈ sem(F), if S ∈ adm(F) and there is no T ∈ adm(F) with T+

R ⊃ S+R .

We recall that for any AF F , stb(F)⊆ sem(F)⊆ prf (F)⊆ com(F)⊆ adm(F) holds,
and that for each of the considered semantics σ except stable semantics, σ(F) 6= /0 holds.
The grounded semantics always yields exactly one extension. Moreover if an AF has at
least one stable extension then stable, semi-stable, and stage semantics coincide.

Example 1. Consider the AF F = (A,R), with A = {a,b,c,d,e} and R = {(a,b), (c,b),
(c,d), (d,c), (d,e), (e,e)}. The graph representation of F is given as follows.

a b c d e

We have stb(F) = stage(F) = sem(F) = {{a,d}}. Further we have adm(F) =
{{},{a},{c},{d},{a,c},{a,d}}, thus prf (F) = {{a,c},{a,d}} and cf (F) = adm(F)∪
{{b},{b,d}}, thus naive(F) = prf (F)∪{{b,d}}. Finally the complete extensions of F
are {a}, {a,c} and {a,d}, with {a} being the grounded extension of F . ♦

2.2. Translations

In what follows, we understand as a translation Tr a function which maps AFs to AFs.
In particular, we seek translations, such that for given semantics σ ,σ ′, the extensions



σ(F) are in a certain relation to extensions σ ′(Tr(F)) for each AF F . Following [8],
we introduce a few additional properties which seem desirable for such translations. To
this end, we define, for AFs F = (A,R), F ′ = (A′,R′), the union of AFs as F ∪F ′ =
(A∪A′,R∪R′), and inclusion as F ⊆ F ′ iff jointly A⊆ A′ and R⊆ R′.

Definition 4. A translation Tr is called

• efficient if for every AF F, the AF Tr(F) can be computed using logarithmic space
wrt. to |F |;

• covering if for every AF F, F ⊆ Tr(F);
• embedding if for every AF F, AF ⊆ ATr(F) and RF = RTr(F)∩ (AF ×AF);
• monotone if for any AFs F,F ′, F ⊆ F ′ implies Tr(F)⊆ Tr(F ′);
• modular if for any AFs F,F ′, Tr(F)∪Tr(F ′) = Tr(F ∪F ′).

It is easy to see that each embedding translation is also covering and that each modu-
lar translation is also monotone. For a deeper discussion of these properties the interested
reader is referred to [8]. Next, in accordance with [8], we give different notions of how
extensions of the original AF and the modified AF correspond to each other.

Definition 5. Let σ ,σ ′ be semantics. We call a translation Tr

• exact for σ ⇒ σ ′ if for every AF F, σ(F) = σ ′(Tr(F));
• faithful for σ ⇒ σ ′ if for every AF F, σ(F) = {E ∩AF | E ∈ σ ′(Tr(F))} and
|σ(F)|= |σ ′(Tr(F))|.

• weakly exact for σ ⇒ σ ′ if there exists a collection S of sets of arguments, such
that for any AF F, σ(F) = σ ′(Tr(F))\S ;

• weakly faithful for σ ⇒ σ ′ if there exists a collection S of sets of arguments,
such that for any AF F, σ(F) = {E ∩AF | E ∈ σ ′(Tr(F)) \S } and |σ(F)| =
|σ ′(Tr(F))\S |.

The notion of “weakly” exact / faithful is because we have to face that, for some
semantics some AFs do not possess an extension, while other semantics always yield at
least one extension and further that there are semantics where the empty set is always an
extension. We sometimes refer to the elements from S as remainder sets. Note that S
depends only on the translation, but not on the input AF. Thus, by definition, each S ∈S
only contains arguments which never occur in AFs subject to translation. In other words,
we reserve certain arguments for introduction in weak translations.

All the properties from Definition 4 as well as the properties of being exact, weakly
exact and faithful are transitive, i.e. for two transformations satisfying one of these prop-
erties, also the concatenation satisfies the respective property. However, transitivity is
not guaranteed for being weakly faithful. Next we present a new relation between the
properties efficiency and modularity.

Proposition 1. Any modular translation is already efficient.

Proof. We look at an arbitrary AF F = (A,R) and investigate some modular translation
Tr. By the definition of modularity we have Tr(F) =

⋃
G⊆F,|G|≤2 Tr(G). Notice that nam-

ing of arguments is irrelevant and thus a modular translation is fully determined by its
translations of all AFs over arguments a,b. This gives us a finite number of graph patterns
of bounded size.



Table 1. Results for (weakly) faithful / exact translations (state of the art).

cf naive grd adm stb com prf sem stage
cf X
naive X
grd X X/ ? X/ ? X/ ? X/ ? X/ ? X/ ?
adm – X X/ - X X/ - X/ - X/ -
stb – X X X X X X
com – X/ - X/ - X X/ - X/ - X/ -
prf – X X ? / -
sem – X ? / -
stage – X X

To translate an AF F , for each of these graph patterns we have to identify isomorphic
subgraphs of F and apply Tr to these subgraphs. As the patterns are fixed searching for
isomorphic subgraphs can be done in logarithmic space and as also the translation of the
patterns is fixed also translations of isomorphic subgraphs are in logarithmic space.

In Table 1 we summarize existing results on the intertranslatability of semantics
taken from [8] (recall that in contrast to [8] we do not require translations to be efficient).
An entry in row σ and column σ ′ of Table 1 is to be read as follows: “X” there is a
(weakly) exact translation for σ ⇒ σ ′; “X/-” there is a (weakly) faithful translation, but
there does not exist a (weakly) exact translation, for σ ⇒ σ ′; “X/ ?” there is a (weakly)
faithful translation, but it is not known whether there exist a (weakly) exact translation,
for σ ⇒ σ ′; “ ? / -” there does not exist a (weakly) exact translation, but it is not known
whether there exist a (weakly) faithful translation, for σ ⇒ σ ′; “–” there is no (weakly)
faithful translation for σ ⇒ σ ′.

3. Translations between Semantics

In this Section we present translations between the semantics of interest. In the following,
given a set of arguments A, we write A∗ (resp. Ā) to denote the set of new arguments
{a∗ | a∈A} (resp. {ā | a∈A}). We start with a translation mapping complete semantics to
stage, stable, semi-stable and preferred semantics. While the intertranslatability of these
semantics was already shown in [8], the given translation improves existing results in two
directions. First, it gives an explicit translation for com⇒ prf , whereas the equivalent
from [8] relies on transitive concatenation of other translations and second it provides
smaller target frameworks which might be crucial when applying translations for the
reuse of sophisticated solvers.

Translation 1 (com ⇒ (stage|stb|sem|prf )). The transformation Tr(A,R) = (A′,R′),
with A′ = A∪A∗ and R′ = R∪{(a,b∗),(a∗,b) | (a,b) ∈ R}, is an embedding modular
faithful translation for com⇒ (stage|stb|sem|prf ).

Proof. We take an AF F = (A,R) as given and investigate Tr(F). Observe that for any
conflict-free set E ⊆ AF we have that E attacks a∗ in Tr(F) iff E attacks a in F and
therefore E defends some argument a (and a∗) in Tr(F) if and only if E defends a in F .

E ∈ com(F)⇒E ′=E∪{a∗ |E 6�R a} ∈ stb(Tr(F)): First observe that A∗ itself and
thus by definition E ′ is conflict-free. Furthermore we have {a∗ | a ∈ E} ⊆ {a∗ | E 6�R

a} ⊆ E ′, as E is conflict-free by definition, thus
{

a,a∗ | a ∈ E+
F

}
⊆ E ′+Tr(F)

. Now for any



a b c d e

a∗ b∗ c∗ d∗ e∗

(a) Translation 1 (com⇒ σ ).
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b̄
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c̄

d

d̄
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ē

(b) Translation 2 (cf ⇒ naive).

a b c d e

(c) Translation 3 (cf ⇒ adm, naive⇒ prf ).

a b c d e

(d) Translation 5 (grd⇒ (naive|stage)).

a

ā

b

b̄

c

c̄

d

d̄

e

ē

(e) Translation 4 (adm ⇒ com, naive ⇒ stage,
prf ⇒ sem).

a b

{a,c}F

c d e

F ′ ⊂ F ,
P∈P(F ′)

PF ′

(f) Translation 8 (sem⇒ prf ).

Figure 1. Four modular and two inefficient translations as applied to the AF from Example 1.

a∈ AF \E+
F we have that, by completeness of E, a is attacked by some argument b 6∈ E+

F .
Hence b∗ ∈ E ′ and thus E ′+ = ATr(F), i.e. E ′ ∈ stb(Tr(F)).

E ′ ∈ prf (Tr(F))⇒ E = E ′∩AF ∈ com(F): Due to the embedding property clearly
E is conflict-free. For a contradiction let us assume that E is not admissible, i.e. there
are a ∈ E, b ∈ AF , b�R a and E does not attack b. But then E ′ does not attack b∗ in
Tr(F) and as b∗ attacks a this contradicts E ′ being admissible. For completeness, again
for a contradiction, let us assume there is an a ∈ AF \E+

F defended by E. As mentioned
above then E (and E ′) also defend a in Tr(F), contradicting maximality of E ′. Hence
E ∈ com(F).

Furthermore since the difference between E and E ′ is to be found among the argu-
ments A∗ and due to maximality of E ′ we have E ′ = E ∪

{
a∗ | E 6�R a

}
, marking pro-

posed relations as bijections. Using the relations stb(F)⊆ sem(F)⊆ prf (F) and equality
of stage and stb semantics where the latter is non-empty we obtain the assertion.

Next we consider cf and naive semantics. In the following translation, for each ar-
gument a we introduce a new argument ā encoding that a is not in the extension.

Translation 2 (cf ⇒ naive). The transformation Tr(A,R) = (A′,R′), with A′ = A∪ Ā
and R′ = R∪ {(a, ā),(ā,a) | a ∈ A}, is an embedding modular faithful translation for
cf ⇒ naive.

Proof. For E ∈ cf (F) define E ′ = E ∪ {ā | a ∈ AF \E}. Now E ′ is maximal conflict-
free in Tr(F) and thus E ′ ∈ naive(Tr(F)). On the other hand for E ′ ∈ naive(Tr(F))
we observe that for each argument a ∈ AF either a ∈ E ′ or ā ∈ E ′, thus the induced
E = E ′∩AF is unique. Due to the embedding property it follows that E ∈ cf (F).

The next translation weakens the attack relation achieving symmetry such that ad-
missibility and conflict-freeness coincide.



Translation 3 (cf ⇒ adm, naive⇒ prf ). The transformation Tr(A,R) = (A,R′), with
R′ = R∪{(b,a) | (a,b) ∈ R}, is a covering modular exact translation for cf ⇒ (cf |adm)
and naive⇒ (naive|prf ).

Proof. We have that Tr(F) is a symmetric framework. The results are immediate by the
fact that the notion of admissibility and conflict-free coincide on such AFs.

Translation 4 (adm⇒ com, naive⇒ stage, prf ⇒ sem). The transformation Tr(A,R) =
(A′,R′), with A′=A∪Ā and R′=R∪{(a, ā),(ā,a),(ā, ā) | a∈A}, is an embedding modu-
lar exact translation for adm⇒ (com|adm), naive⇒ (naive|stage) and prf ⇒ (sem|prf ).

Proof. Observe that by definition Tr equals Tr1 from [8]. A detailed proof of adm⇒
(com|adm) and prf ⇒ (sem|prf ) is to be found there. We are left with showing that Tr is
an exact translation for naive⇒ (naive|stage). In other words for any AF F we have (1)
naive(F) = naive(Tr(F)) and (2) naive(Tr(F)) = stage(Tr(F)).
1) Since Tr is embedding and any ā ∈ Ā is self-conflicting we have that any E ⊆ ATr(F)

is conflict-free in F iff it is conflict-free in Tr(F). Thus naive(F) = naive(Tr(F)).
2) Recall that any stage extension is also a naive extension. If E ∈ naive(Tr(F)) then
E+

Tr(F)
= E+

F ∪ {ā | a ∈ E}. Consider E ′ ∈ naive(Tr(F)) such that E+
Tr(F)

⊆ E ′+Tr(F)
we

receive E ⊆ E ′ since any ā with a ∈ E is attacked only by a and ā. Thus with maximality
of naive extensions E ′ = E and therefore also naive(Tr(F))⊆ stage(Tr(F)).

We now study cases where no efficient translation exists and consider translations
with arbitrary computational power. We start with an obvious translation for grounded
semantics.

Translation 5 (grd⇒ (naive|stage)). The transformation Tr(A,R) = (A,R∪{(a,a) | a∈
A\grd(F)}) is a covering exact translation for grd⇒ (naive|stage).

Notice that although Translation 5 is not efficient in the sense of Definition 4 it can
be computed in polynomial time.

Due to Proposition 1 by leaving efficiency we as well leave modularity. Thus in the
following we give three monotone translations covering a broad range of semantics.

Translation 6 (σ ⇒ (stage|stb|sem|prf ), σ ⇒ com). We define Tr(A,R) = (A′,R′) as
A′ = A∪{F ′, EF ′ | F ′ ⊆ (A,R), E ∈ σ(F ′)} and

R′ = R∪{(EF ′ ,F
′),(F ′,F ′),(F ′,a) | a ∈ AF ′} (1)

∪{(EF ′ ,b) | b ∈ AF ′ \E} (2)

∪{(EF ′ ,E
′
F ′) | EF ′ 6= E ′F ′} (3)

∪{(EF ′ ,EF<),(EF ′ ,F
<) | F< ( F ′} (4)

For semantics σ with |σ(F)| ≥ 1 and σ(F) ⊆ cf (F) 3 Tr is an embedding monotone
faithful translation for σ ⇒ (stage|stb|sem|prf ) and a weakly faithful with remainder
set /0 translation for σ ⇒ com.

3As far as the semantics introduced in this work are concerned this excludes only stable semantics.



To achieve monotonicity we introduce arguments F ′ to represent subframeworks and
arguments EF ′ to encode extensions of those subframeworks. The attacks in (1) and (2)
ensure that a selected extension defends its arguments. The mutual attacks in (3) ensure
that only one extension is selected while (4) ensures that only extensions of the whole
framework are selected.

Proof. For AF F , extension E ∈ σ(F) and thus E ∈ cf (F) consider E ′ = E ∪ {EF}.
E ′ is conflict-free since E attacks only (but all) those arguments from AF not being
member of E. Furthermore EF attacks any E ′F with E ′ ∈ σ(F),E ′ 6= E, any EF ′ with
E ∈ σ(F ′),F ′ ( F and any argument F ′ for F ′ ⊆ F . Hence E ′ ∈ stb(Tr(F)) and thus also
E ′ ∈ stage(Tr(F)) = sem(Tr(F)) and E ′ ∈ prf (Tr(F)).

We now consider E ′ ∈ prf (Tr(F)). For any E ∈ σ(F ′) with F ′ ( F we have that EF ′

is not a member of E ′ since the only arguments defending EF ′ against the non-empty set
{EF | E ∈ σ(F)} are members of this set and thus also attacking EF ′ . Furthermore, by
(3), at most one EF is member of E ′. We observe that there is no D ∈ adm(Tr(F)) such
that D∩{EF | E ∈ σ(F)}= /0, since all arguments from A are attacked by the argument
F . We can thus pick the unique EF ∈ E ′ ∩{EF | E ∈ σ(F)}. But then EF defends all
arguments a ∈ E and it follows immediately that E ′∩A = E ∈ σ(F).

Translation 7 (grd⇒ (sem|prf |com)). We define the transformation Tr(A,R) = (A′,R′)
with A′ = A∪{F ′ | F ′ ⊆ F} and

R′ = R∪{(F ′,F ′),(F ′,a) | F ′ ⊆ (A,R),a ∈ AF ′ \grd(F ′)} (1)

∪{(a,F<) | F< ( F ′ ⊆ F,a ∈ AF ′} (2)

Tr is an embedding monotone exact translation for grd⇒ (sem|prf |com|grd).

Again for monotonicity we use arguments F ′ to represent subframeworks. The at-
tacks in (1) ensure that only arguments from the grounded extension of the AF F ′ remain
admissible in Tr(F ′), while (2) ensures that proper subframeworks of F ′ are disabled.

Proof. The argument F = (A,R) is attacked only by itself yet attacks any argument not
being member of the grounded extension of F , thus disabling the arguments AF \grd(F)
for any admissible extension. If grd(F) = /0 we clearly have /0 as only extension for all
the semantics of interest. Now consider the case where grd(F) 6= /0. Then there is an
argument a ∈ A that is not attacked at all in F and therefore in all subframeworks of
F . Hence a is in the grounded extension of all subframeworks containing a and thus in
the grounded extension of Tr(F) (as it is not attacked in Tr(F)). Now we can ignore all
arguments F ′ ( F since in Tr(F) they are self-attacking and attacked by a. It follows
that the grounded extension of F is also the grounded extension of Tr(F). Further as all
the other arguments are unacceptable the semantics of interest collapse.

Translation 8 (sem⇒ prf ). We use P(F ′) to denote P(F ′) = prf (F ′) \ sem(F ′). The
Transformation Tr(A,R) = (A′,R′) with A′ = A∪{PF ′ | F ′ ⊆ (A,R),P ∈P(F ′)} and

R′ = R∪{(a,PF ′),(PF ′ ,PF ′),(PF ′ ,b) | a ∈ AF ′ \PF ′ ,b ∈ PF ′} (1)

∪{(a,PF<) | F< ( F ′ ⊆ F,a ∈ AF ′} (2)

is an embedding monotone exact translation for sem⇒ prf .



The idea behind above translation is that we eliminate preferred extensions which
are not semi-stable by modifying the AF such that these extensions and their subsets are
no longer admissible.

Proof. Observe that any conflict-free set in Tr(F) (F = (A,R)) consists of arguments
a ∈ A only. Additional arguments of the form PF ′ ∈P(F ′) with F ′ ( F are attacked
by all a ∈ A, we can thus restrict ourselves to the set S ⊆ A∪P(F). Now assume E ∈
sem(A,R). Since E \P 6= /0 for any P ∈P(F) we have that E attacks all PF ∈ Tr(F)
and thus E ∈ prf (Tr(F)). On the other hand we might look at some E ∈ prf (Tr(F)) and
assume for a contradiction that E 6∈ sem(F). Then there has to be some P ∈P(F) such
that E ⊆ P. But now E is attacked by the argument PF ∈ Tr(F) and defended only by
arguments a ∈ A\P and thus cannot be admissible.

Now we can use the transitivity of translations to obtain stage⇒ prf .

Corollary 1 (stage⇒ prf ). Considering Translation 8 as Tr8 and Translation 2 in [8] as
Trstage,sem.Tr = Tr8 ◦Trstage,sem is a covering monotone exact translation for stage⇒ prf .

4. Negative Results

In this section we study cases where exact or even faithful translations are impossible.
The following theorem gives such impossibility results which rely on the incompatibility
of very basic properties of semantics.

Theorem 1. There is no translation which is

1. weakly faithful for (cf |naive|adm|stb|com|prf |sem|stage)⇒ grd,
2. weakly exact for (cf |naive|grd|adm|com|prf |sem|stage)⇒ stb,
3. weakly exact for (naive|grd|com|prf |sem|stage)⇒ (adm|cf ),
4. weakly faithful for (naive|grd|adm|stb|com|prf |sem|stage)⇒ cf ,
5. weakly exact for (cf |adm|com)⇒ (naive|stb|prf |sem|stage).

Proof. Any semantics of interest but grd can possess more than one extension imply-
ing (1). Any semantics of interest but stb can possess the empty set as an extension im-
plying (2). The empty set on the other hand is always an admissible and thus conflict-
free extension, while for the other semantics, depending on the concrete AF, the empty
set may be an extension or not (3). For cf furthermore any subset of any extension is an
extension which is not necessarily the case for the other semantics implying (4). Only
for cf , adm and com semantics we have that extensions may form proper subsets imply-
ing (5).

Next we consider the cases which are not already covered by Theorem 1.

Theorem 2. There is no weakly exact translation for (naive|prf |sem|stage)⇒ com.

Proof. We assume for a contradiction that such a translation Tr exists. Now observe that
for σ ∈ {naive,prf ,sem,stage} there are AFs such that /0∈σ(F). Thus /0 is not a member
of the remainder sets of Tr.

Now take into account the AF F = (A,R) with A = {a,b} and R = {(a,b),(b,a)}.
Then σ(F) = {{a} ,{b}}. The grounded extension is the least complete extension, thus
with {a} ,{b} ∈ com(Tr(F)) we need /0 = grd(Tr(F)) and thus /0 ∈ com(Tr(F)).
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Figure 2. Argumentation framework serving as a counter example for Theorem 3.

Theorem 3. There is no weakly faithful translation {stage,stb,sem,prf ,com,adm} ⇒
{cf ,naive}.

Proof. For a contradiction we assume that any such translation Tr : σ ⇒ σ ′ ex-
ists. Consider the AF F = (A,R) as shown in Figure 2. Now observe that for E1 =
{a1,b2,b3} ,E2 = {b1,a2,b3} ,E3 = {b1,b2,a3} ,B = {b1,b2,b3} we have that E1,E2,E3
are σ -extensions while B 6∈ σ(F). So for any Ei there has to be some E ′i ∈ σ ′(Tr(F))
such that Ei ⊆ E ′i . Thus immediately B ∈ cf (Tr(F)), since pairwise conflict-freeness of
the bi is granted by E ′1, E ′2 and E ′3. For any conflict-free set B in any AF F ′ there has to
be some extension E ∈ naive(F ′) such that B⊆ E, yielding a contradiction also for naive
semantics.

In the preceding section we presented various translations of different framework
similarity levels. As far as modular translations are concerned impossibility of weakly
exact translations stb⇒ (prf |com|adm), stage⇒ sem and weakly faithful translations
sem⇒ stage can be shown. Especially the proof of the latest result turns out to be compli-
cated and due to focus on inefficient translations has to be delayed to subsequent works.
However in the following we will give impossibility results for embedding respectively
monotone translations thus showing that the translations given in Section 3 are optimal
wrt. the translational properties of interest.

Theorem 4 (grd⇒ (naive|stage)). There is no translation which is

1. embedding or monotone weakly faithful for grd⇒ naive.
2. embedding or monotone weakly exact for grd⇒ stage.

Proof. For the semantics of interest we observe that for embedding or monotone trans-
lations Tr with a ∈ AF immediately also a ∈ ATr(F). Furthermore due to expandability
we have (a,a) ∈ ATr(F) ⇐⇒ (a,a) ∈ AF . We refer to these observations by the term
inheritance for the realm of this proof.

Take into account the AFs F = (A,R) and F ′ = (A,R′) with A = {a,b,c}, R =
{(b,c),(c,b)} and R′ = R∪ {(a,b)}. Now grd(F) = {a} and grd(F ′) = {a,c}. For a
contradiction we assume existence of a translation Tr : grd⇒ σ of the desired kind. For
σ = naive due to inheritance we deduce that (c,c) 6∈ Tr(F)R. Hence there exists an ex-
tension E ∈ naive(Tr(F)) with c ∈ E the latter implying that E cannot be a remainder
set, a contradiction. For σ = stage we observe that due to inheritance and exactness there
has to be some conflict between a and c in Tr(F), thus Tr cannot be embedding. If Tr is
monotone then from F ⊆ F ′ we conclude that the conflict between a and c also occurs in
Tr(F ′), a contradiction to {a,c} ∈ naive(Tr(F)).



Table 2. Final results for (weakly) faithful / exact translations.

cf naive grd adm stb com prf sem stage
cf X X/ - – X X/ - X X/ - X/ - X/ -
naive – X – X/ - X/ - X/ - X X X
grd – X X X/ - X/ - X X X X
adm – – – X X/ - X X/ - X/ - X/ -
stb – – – X X X X X X
com – – – X/ - X/ - X X/ - X/ - X/ -
prf – – – X/ - X/ - X/ - X X X/ -
sem – – – X/ - X/ - X/ - X X X/ -
stage – – – X/ - X/ - X/ - X X X

Theorem 5. There is no translation for (cf |naive)⇒ (stb|sem|prf |com|adm) which is
embedding and weakly exact.

Proof. For a contradiction we assume that such a translation Tr happens to exist. We
take into account the AF F = ({a,b} ,{(a,b)}). We have cf (F) = {{a} ,{b} , /0} and
naive(F) = {{a} ,{b}}. Since b is attacked by a in F and with the premise of embedding
in mind for any admissible set E with b ∈ E we need E to attack a. So either b attacks
a and the translation is not embedding or some from b different argument c ∈ E attacks
a and the translation is not exact. With the observation that stable, semi-stable, preferred
and complete semantics are all based on admissibility we finish this proof.

Remark. The AF F =(A,R) with A= {a,b,c} and R= {(a,b),(b,c),(c,c)} is used in [8]
to show impossibility of embedding weakly exact translations stage⇒ sem. Immediately
the same holds for embedding weakly exact translations stage⇒ prf .

5. Conclusion

We studied expressiveness of argumentation semantics using translations, and in contrast
to previous work on intertranslatability we did not restrict ourselves to efficiently com-
putable transformations. Our results together with those from [8] are stated in Table 2.

Our results strengthen preliminary knowledge in two ways. First it appears that cer-
tain translations remain impossible regardless of the computational effort one is willing
to pay. Second, in cases where no efficient translation exists, we showed that translations
satisfying in fact still nice properties are possible if we accept high computational costs.

Figure 3 visualises the hierarchies of expressiveness of the chosen argumentation
semantics for exact translations (a) and faithful translations (b). A solid path from a se-
mantic σ to a semantics σ ′ expresses that there is a translation for σ ⇒ σ ′. Furthermore,
if for two semantics σ ,σ ′ there is no path from σ to σ ′ then it is proven that there is
no such faithful translation for σ ⇒ σ ′. Let us highlight some differences to the picture
drawn for efficient translations (see [8]). When neglecting computational costs we have
exact translations for grd⇒ (com|stage|prf |sem) while for efficient translations the first
is impossible and the others are still open. Concerning (weakly) faithful translations we
have that stage,stb,sem, prf ,com,adm can be translated to each other while when con-
sidering efficient (weakly) faithful translations these semantics form at least three levels
of intertranslatability.
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Figure 3. Results for inefficient intertranslatability.

Finally, when motivating translations by expressiveness and meta-level discussion
(and not by computational issues) argument labelings (see e.g. [5]) distinguishing differ-
ent kind of arguments which are not accepted by an extension are of additional interest.
As preserving the labels of an argument when translating AFs needs additional effort it
is not clear whether positive results carry over to the labeling setting, while the obtained
negative results immediately hold for labelings. We leave this subject as future work.
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