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Part 1:

A panorama of complexity theory
via graph Ramsey games

Given two graphs G and A, two players, Red and Green,
alternate in coloring the edges of G in their respective co-
lor. Aim is to avoid (achieve) to build a monochromatic
subgraph isomorphic to A. How difficult are these games?
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Overview

� In medias res: Let’s play . . .� Complexity of the graph Ramsey games� Ultra-strongly solving Sim and Sim+

� About the unlikeliness of solving Sim4 etc.� Tractable cases� Provably intractable cases� The complexity of games: another view� Open problems and conjectures� Further remarks
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Sim: G � KRamsey
�
3 � 3 � � K6 � A � K3 on GAvoid-Ramsey
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Considering that a hands-on session with an interactive
system often is worth more than a thousand images:

�



Complexity theory (Wolfgang Slany) 5

... with random permutations between moves:

This Java applet plays Sim and a variant, Sim+ (players
color one or more edges per move). In case you win, you
will be allowed to leave your name in our hall-of-fame!
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Sim and Sim+ can never end in a tie:

Ramsey(3,3)=6

(visual proof by courtesy of Ranan Banerji)
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A winning strategy for the GAchieve-Ramsey game Sima:

w.l.o.g.

w.l.o.g.

or

forced forced

forced

forced
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No simple winning strategies are known for Sim and Sim+.� Natural question: How “difficult” is a game?

Translation to complexity theory:

How does the function bounding the computational
resources that are needed in the worst case to determine
a winning strategy for the first player grow in relation to the
size of the game description?

Typical results: Generalizations of well-known games
such as Chess, Checkers, and Go to boards of size n � n
have been classified as polynomial space and exponential
time complete (Fraenkel & Lichtenstein 1981, Fraenkel &
al. 1978, Lichtenstein & Sipser 1980).

Note: P 	 NP 	 PSPACE 	 EXPTIME and
P 
 EXPTIME
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How to generalize Sim to game boards of arbitrary size?� Graph Ramsey theor y

Definition 1 G � A:
We say that a graph G arrows a graph A if every edge-

coloring of G with colors red and green contains a mono-
chromatic subgraph isomorphic to A. G is called a Ram-
sey graph of A.

Theorem 1 (Chvátal & Harary 1972, Deuber 1975, Erdős
& al. 1975, Rödl 1973) Every graph has Ramsey graphs.

Theorem 2 (Burr 1976) Deciding G �� A when G and A
are part of the input is NP-complete.

Theorem 3 (M. Schaefer 1999) Deciding G � A
when G and A are part of the input is π 2-complete.
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Generalizing Sim to graph Ramsey theory leads to:

Definition 2 GAvoid-Ramsey � G � A � Er � Eg � :
Given two graphs G � � V � E � and A and two non-

intersecting sets Er � Eg 	 E that contain edges initially
colored in red and green, respectively. Two players, Red
and Green, take turns in selecting at each move one so-
far uncolored edge from E and color it in red for player
Red respectively in green for player Green. However, both
players are forbidden to choose an edge such that A beco-
mes isomorphic to a subgraph of the red or the green part
of G. It is Red’s turn. The first player who cannot move
loses.

Similar definitions of GAvoid’-Ramsey (a misère variant) and
GAvoid-Ramsey � (one or more edges colored per move). �



Complexity theory (Wolfgang Slany) 11

Definition 3 GAchieve-Ramsey � G � A � Er � Eg � :
Achievement variant: the first player who builds a mono-

chromatic subgraph isomorphic to A wins.

Definition 4 A simple strategy-stealing argument tells
us that with optimal play on an uncolored board,
GAchieve-Ramsey must be either a first-player win or a draw,
so it is only fair to count a draw as a second-player win.
Let us call this variant GAchieve’-Ramsey.

Definition 5 Following the terminology of (Beck &
Csirmaz 1982), let us call the variant of GAchieve-Ramsey

where all the second player does is to try to prevent
the first player to build A, without winning by building
it himself, the “weak” graph Ramsey achievement game
GAchieve”-Ramsey.
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Main comple xity results (Slany 1999)

Theorem 4
GAvoid-Ramsey and GAvoid’-Ramsey are PSPACE-complete.

Theorem 5 GAvoid-Ramsey � is PSPACE-complete.

And, surprisingly,

Theorem 6
GAchieve”-Ramsey and GAchieve’-Ramsey are PSPACE-complete.

Theorem 7 GAchieve-Ramsey is PSPACE-complete.

Significance: These games thus are as difficult as other
well-known difficult games such as Go, and at least as
difficult as any NP-complete problem.
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Proof sketc h of Theorem 4� Membership in PSPACE: easy.� Hardness: via a LOGSPACE reduction from the
PSPACE-complete game GAchieve-POS-CNF (T. Schaefer
1978):

Definition 6 GAchieve-POS-CNF � F � : We are given a positive
CNF formula F . A move consists of choosing some varia-
ble of F which has not yet been chosen. Player I starts the
game. The game ends after all variables of F have been
chosen. Player I wins iff F is true when all variables cho-
sen by player I are set to true and all variables chosen by
player II are set to false.

Ex.: On F � � x1 � x4
��� � x2 � x3

��� � x2 � x4
� player I wins.

F is reduced to the following GAvoid-Ramsey game . . .
�
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F � �
x1 � x4 ����
x2 � x3 ��� � x2 � x4 �

d1

d1,bu1,1

g1,by1,b

A :

d d2 3

r1

r0 d1

y g1 1

r y g2 2 2

r y g3 3 3

r y g4 4 4

=

=

g1 g1,ty
1,4

1,t

v

Abbreviations:

d1,t

u
u

1,2

1,0

y1
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Proof sketc h of Theorem 5

� A careful analysis of the proof of Theorem 4 reveals
that we can reuse the reduction of that proof to show
the PSPACE-completeness of GAvoid-Ramsey � .� Indeed, all arguments go through even when both
players are allowed to color more than one edge per
move.� The difficulty here lies in the analysis of the cases when
the opponent plays non-optimally.
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Proof sketc h of Theorem 6� Membership in PSPACE: easy.� Hardness: via a LOGSPACE reduction from the
PSPACE-complete game GAchieve-POS-DNF (T. Schaefer
1978):

Definition 7 GAchieve-POS-DNF � F � : We are given a positive
DNF formula F . A move consists of choosing some varia-
ble of F which has not yet been chosen. Player I starts the
game. The game ends after all variables of F have been
chosen. Player I wins iff F is true when all variables cho-
sen by player I are set to true and all variables chosen by
player II are set to false.

Ex.: On F � � x1
� x2

� � � x3
� x4

� x5
� � � x3

� x5
� x6

� � � x3
�

x4
� x7

� player II wins. The GAchieve”-Ramsey game . . .
�



Complexity theory (Wolfgang Slany) 17

F � �
x1 � x2 � � � x3 � x4 � x5 � ��
x3 � x5 � x6 � � � x3 � x4 � x7 �

=

7

X

X5

X4

X3

C2 C3 C4

X

X1

2

C1

r

X

6

1

A:

Abbreviation:

. . . .

m

size of largest clausem  . . .  
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Proof sketc h of Theorem 7

Similar to the proof for GAchieve”-Ramsey, but some changes
(A) and one addition (H) in the reduction are necessary:

F � �
x1 � x2 � � � x3 � x4 � x5 � ��
x3 � x5 � x6 � � � x3 � x4 � x7 �

n

A:

=

C2 C3 C4C1

S1

H:

S 2 S3

7

X

X5

X4

X3

X

X1

2

X

6

Abbreviations:

=

r1
r2

r3
r4

r5

. . . .

n

. . . .

number of variablesn  . . .  
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Definition 8 (J. Schaeff er & Lake 1996)
A combinatorial game is . . .� ultra-weakly solved if the game-theoretic value for the

initial position has been determined,� weakly solved if it is ultra-weakly solved and if a
strategy exists for achieving the game-theoretic va-
lue from the opening position, assuming reasonable
computing resources,� strongly solved if for all possible positions, a strat-
egy is known for determining the game-theoretic value
for both players, assuming reasonable computing re-
sources, and� ultra-strongly solved if for all positions in a strongly sol-
ved game, a strategy is known that improves the chan-
ces of achieving more than the game-theoretic value
against a fallible opponent.
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Theoretical size of Sim’s game tree: ��� ! � � �"! � ��#%$'& .
In case of Sim+: ��� ! � ()$+*-,�$.� (/�0� � �1#2$43 .
Practical size of their directed acyclic game graphs:

� Sim: 2,309 non-isomorphic positions� Sim+: 13,158 non-isomorphic positions�
Strong solutions of Sim and Sim+ are easily feasible.

To ultra-strongly solve Sim, we additionally need a
strategy for non-winning positions. In our Java applet, we:

� maximize static chance of opponent to make a mistake� improve this strategy by probabilistically learning the
value of moves through playing over the Internet

� Sim and Sim+ are ultra-str ongl y solved.
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Definition 9 Simn:
G � KRamsey

�
n � n � � A � Kn played on GAvoid-Ramsey.

Problem: Despite much effort, only Ramsey(4,4) � 18 is
known so far (conjecture (McKay 1998) Ramsey(5,5) �? 43
based on 10 cpu-years of computations . . . ).

Let us consider the game Sim4 played on a game board
G having 5 18

2 6 � 153 edges, the graph A to avoid being
a tetrahedron. Unfortunately, we found that the num-
ber of non-isomorphic game positions in Sim4 is around( � ��#7*98 .�

There is not much hope to even weakly solve any
game Simn and even less so any game Sim+

n for n : 3.
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Tractab le cases:

Theorem 8 (Harary, Slany, Verbitsky 2000)

GAvoid-Ramsey � Kn � �<; a � b � c = � ;>; a � b = � ; b � c =2= � � ; = � ; = �
for n ? 3 is a win for the second player.

Proof sketch:

There is a relatively simple two-phase winning strategy for
the second player. The proof uses a counting argument
and several lemmas.
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Provably intractab le cases:

Because of the known exponential lower bounds for clas-
sic symmetric binary Ramsey numbers

n2n @ 2 � 1 A e 2 �CB o � 1 �D� E Ramsey � n � n �
already computing the size of the game graph of a graph
Ramsey game played on � KRamsey

�
n � n � � Kn � ; = � ; = � given only

n for input will require at least doubly exponential time be-
cause of the succintness of the input (Graham et al. 1990).
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The comple xity of games: another view

Problem: PSPACE-completeness is a very coarse instru-
ment to measure the difficulty of combinatorial games: no
statement about particular instances are possible. For ex-
ample, how does the complexity of the real game Go com-
pare to that of Sim4 or Sim5?

� time-bounded Kolmogor ov comple xity of
combinatorial game instances:

What is the “size” n of the “smallest program” that, using
at most n “time units”, wins game G whenever a winning
strategy exists and plays “optimally” otherwise?

Good upper and lower bounds are most likely difficult . . .
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Open Problem 1 Consider GAvoid-Ramsey � Kk � Kn � ; = � ; = �
where k � Ramsey � n � n � . Is it always true that the first
player has a winning strategy in this game iff 5 k2 6 is even?

Open Problem 2 Consider GAvoid-Ramsey � G � A � Er � Eg � ,
where

c
def� minF

rG g HJI+K L 2

r M g or r M g N 1
r N g OQPE F G HRPTSUPEr PTSUPEg P; r B g V � G � Er � Eg � � r� g � � A = �

and where � G � Er � Eg � � r� g � denotes an � r� g � edge-red-
green-coloring of the uncolored edges of the precolored
graph � G � Er � Eg � . Is it always true that the first player has
a winning strategy in this game iff c is even?
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Conjecture 1 Graph Ramsey games played on

� G � A � ; = � ; = � are PSPACE-complete.

Conjecture 2 Graph Ramsey achievement games played
on � Kn � A � Er � Eg � are tractable.

Conjecture 3 Graph Ramsey avoidance games played
on � Kk � Kn � Er � Eg � where k ? Ramsey � n � n � are PSPACE-
complete.

Conjecture 4 The graph Ramsey avoidance games
played on � KRamsey

�
n � n � � Kn � ; = � ; = � are 2-EXPSPACE-

complete.
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Open Problem 3 Show that GAchieve-Ramsey remains
PSPACE-complete even if the achievement graph A is re-
stricted to a meaningful subclass of graphs such as fixed,
bipartite or degree-restricted graphs.

Open Problem 4 Show that Theorems 4–7 hold even if
the game graph G is restricted to a meaningful subclass
of graphs such as bipartite or degree-restricted graphs.
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Fur ther remarks

� Sim and Sim+: simple enough to analyze perfectly, yet
far from trivial.� Applications: competitive situations where opposing
parties try to achieve or to avoid a certain pattern in the
structure of their commitments, e.g., analysis of mobile
Internet agent warfare (Thomsen & Thomsen 1998).� Sim and Sim+ are to be integrated in a role-playing
game

�
“cheats” will be made very difficult.� Please try out our applet that plays Sim and Sim+ on

http://www.dbai.tuwien.ac.at/proj/ramsey/

so that it can continue to become even better.


