COMPLEXITY THEORY

Wolfgang Slany

Institut für Informationssysteme, Technische Universität Wien mailto: wsi@dbai.tuwien.ac.at, http://www.dbai.tuwien.ac.at/staff/slany/

Part 1:

A panorama of complexity theory via graph Ramsey games

Given two graphs G and A, two players, Red and Green, alternate in coloring the edges of G in their respective color. Aim is to avoid (achieve) to build a monochromatic subgraph isomorphic to A. How difficult are these games?

Overview

- In medias res: Let's play ...
- Complexity of the graph Ramsey games
- Ultra-strongly solving Sim and Sim⁺
- About the unlikeliness of solving Sim₄ etc.
- Tractable cases
- Provably intractable cases
- The complexity of games: another view
- Open problems and conjectures
- Further remarks

Sim: $G = K_{\text{Ramsey}(3,3)} = K_6, A = \overline{K_3}$ on $G_{\text{Avoid-Ramsey}}$

3

Considering that a hands-on session with an interactive system often is worth more than a thousand images:

 \triangleright

... with random permutations between moves:

This Java applet plays Sim and a variant, Sim⁺ (players color one *or more* edges per move). In case you win, you will be allowed to leave your name in our hall-of-fame!

Sim and Sim⁺ can never end in a tie:

Ramsey(3,3)=6

(visual proof by courtesy of Ranan Banerji)

A winning strategy for the $G_{\text{Achieve-Ramsey}}$ game Sima:

No simple winning strategies are known for Sim and Sim⁺.

 \Rightarrow Natural question: How "difficult" is a game?

Translation to complexity theory:

How does the function bounding the computational resources that are needed in the worst case to determine a winning strategy for the first player grow in relation to the size of the game description?

Typical results: Generalizations of well-known games such as Chess, Checkers, and Go to boards of size $n \times n$ have been classified as polynomial space and exponential time complete (Fraenkel & Lichtenstein 1981, Fraenkel & al. 1978, Lichtenstein & Sipser 1980).

Note: $\mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{PSPACE} \subseteq \mathbf{EXPTIME}$ and \mathbf{P} \subset $\mathbf{EXPTIME}$

How to generalize Sim to game boards of arbitrary size? \Rightarrow Graph Ramsey theory

Definition 1 $G \rightarrow A$:

We say that a graph G arrows a graph A if every edgecoloring of G with colors red and green contains a monochromatic subgraph isomorphic to A. G is called a Ramsey graph of A.

Theorem 1 (Chvátal & Harary 1972, Deuber 1975, Erdős & al. 1975, Rödl 1973) *Every graph has Ramsey graphs.*

Theorem 2 (Burr 1976) Deciding $G \not\rightarrow A$ when G and A are part of the input is **NP**-complete.

Theorem 3 (M. Schaefer 1999) Deciding $G \to A$ when G and A are part of the input is π_2^{P} -complete. Generalizing Sim to graph Ramsey theory leads to:

Definition 2 $G_{Avoid-Ramsey}(G, A, E^r, E^g)$:

Given two graphs G = (V, E) and A and two nonintersecting sets $E^r \cup E^g \subseteq E$ that contain edges initially colored in red and green, respectively. Two players, Red and Green, take turns in selecting at each move one sofar uncolored edge from E and color it in red for player Red respectively in green for player Green. However, both players are forbidden to choose an edge such that A becomes isomorphic to a subgraph of the red or the green part of G. It is Red's turn. The first player who cannot move loses.

Similar definitions of $G_{\text{Avoid'-Ramsey}}$ (a misère variant) and $G_{\text{Avoid-Ramsey}^+}$ (one or more edges colored per move).

>

Definition 3 $G_{Achieve-Ramsey}(G, A, E^r, E^g)$: Achievement variant: the first player who builds a monochromatic subgraph isomorphic to A wins.

Definition 4 A simple strategy-stealing argument tells us that with optimal play on an uncolored board, $G_{Achieve-Ramsey}$ must be either a first-player win or a draw, so it is only fair to count a draw as a second-player win. Let us call this variant $G_{Achieve'-Ramsey}$.

Definition 5 Following the terminology of (Beck & Csirmaz 1982), let us call the variant of $G_{Achieve-Ramsey}$ where all the second player does is to try to prevent the first player to build A, without winning by building it himself, the "weak" graph Ramsey achievement game $G_{Achieve"-Ramsey}$.

Main complexity results (Slany 1999)

Theorem 4

 $G_{\text{Avoid-Ramsey}}$ and $G_{\text{Avoid'-Ramsey}}$ are **PSPACE**-complete.

Theorem 5 $G_{Avoid-Ramsey^+}$ is **PSPACE**-complete. And, surprisingly,

Theorem 6

 $G_{Achieve"-Ramsey}$ and $G_{Achieve'-Ramsey}$ are **PSPACE**-complete.

Theorem 7 *G*_{Achieve-Ramsey} is **PSPACE**-complete.

Significance: These games thus are as difficult as other well-known difficult games such as Go, and at least as difficult as any **NP**-complete problem.

- Membership in **PSPACE**: easy.
- Hardness: via a LOGSPACE reduction from the PSPACE-complete game G_{Achieve-POS-CNF} (T. Schaefer 1978):

Definition 6 $G_{Achieve-POS-CNF}(F)$: We are given a positive CNF formula F. A move consists of choosing some variable of F which has not yet been chosen. Player I starts the game. The game ends after all variables of F have been chosen. Player I wins iff F is true when all variables chosen by player I are set to true and all variables chosen by player II are set to false.

Ex.: On $F = (x_1 \lor x_4) \land (x_2 \lor x_3) \land (x_2 \lor x_4)$ player I wins. *F* is reduced to the following $G_{\text{Avoid-Ramsey}}$ game ...

|>

- A careful analysis of the proof of Theorem 4 reveals that we can reuse the reduction of that proof to show the **PSPACE**-completeness of G_{Avoid-Ramsev}⁺.
- Indeed, all arguments go through even when both players are allowed to color more than one edge per move.
- The difficulty here lies in the analysis of the cases when the opponent plays non-optimally.

- Membership in **PSPACE**: easy.
- Hardness: via a LOGSPACE reduction from the PSPACE-complete game G_{Achieve-POS-DNF} (T. Schaefer 1978):

Definition 7 $G_{Achieve-POS-DNF}(F)$: We are given a positive DNF formula F. A move consists of choosing some variable of F which has not yet been chosen. Player I starts the game. The game ends after all variables of F have been chosen. Player I wins iff F is true when all variables chosen by player I are set to true and all variables chosen by player II are set to false.

Ex.: On $F = (x_1 \land x_2) \lor (x_3 \land x_4 \land x_5) \lor (x_3 \land x_5 \land x_6) \lor (x_3 \land x_4 \land x_7)$ player II wins. The $G_{\text{Achieve}^n-\text{Ramsey}}$ game . . .

>

 $\mathbf{F} = (\mathbf{x}_1 \wedge \mathbf{x}_2) \lor (\mathbf{x}_3 \wedge \mathbf{x}_4 \wedge \mathbf{x}_5) \lor \\ (\mathbf{x}_3 \wedge \mathbf{x}_5 \wedge \mathbf{x}_6) \lor (\mathbf{x}_3 \wedge \mathbf{x}_4 \wedge \mathbf{x}_7)$

m . . . size of largest clause

Abbreviation:

Similar to the proof for $G_{\text{Achieve}^{"}-\text{Ramsey}}$, but some changes (A) and one addition (H) in the reduction are necessary:

 $\mathbf{F} = (\mathbf{x}_1 \wedge \mathbf{x}_2) \vee (\mathbf{x}_3 \wedge \mathbf{x}_4 \wedge \mathbf{x}_5) \vee (\mathbf{x}_3 \wedge \mathbf{x}_5 \wedge \mathbf{x}_6) \vee (\mathbf{x}_3 \wedge \mathbf{x}_4 \wedge \mathbf{x}_7)$

 $n \ldots$ number of variables

Abbreviations:

Definition 8 (J. Schaeffer & Lake 1996) A combinatorial game is . . .

- ultra-weakly solved if the game-theoretic value for the initial position has been determined,
- weakly solved if it is ultra-weakly solved and if a strategy exists for achieving the game-theoretic value from the opening position, assuming reasonable computing resources,
- strongly solved if for all possible positions, a strategy is known for determining the game-theoretic value for both players, assuming reasonable computing resources, and
- ultra-strongly solved if for all positions in a strongly solved game, a strategy is known that improves the chances of achieving more than the game-theoretic value against a fallible opponent.

Theoretical size of Sim's game tree: $15! \approx 1.3 \times 10^{12}$. In case of Sim⁺: $15! \times 2^{15-1} \approx 2.1 \times 10^{16}$.

Practical size of their directed acyclic game graphs:

- Sim: 2,309 non-isomorphic positions
- Sim⁺: 13,158 non-isomorphic positions
- \Rightarrow Strong solutions of Sim and Sim⁺ are easily feasible.

To ultra-strongly solve Sim, we additionally need a strategy for non-winning positions. In our Java applet, we:

- maximize static chance of opponent to make a mistake
- improve this strategy by probabilistically learning the value of moves through playing over the Internet

 \Rightarrow Sim and Sim⁺ are ultra-strongly solved.

Definition 9 Sim_n:

 $G = K_{Ramsey(n,n)}, A = K_n$ played on $G_{Avoid-Ramsey}$.

Problem: Despite much effort, only Ramsey(4,4) = 18 is known so far (conjecture (McKay 1998) Ramsey $(5,5) \neq 43$ based on 10 cpu-years of computations ...).

Let us consider the game Sim_4 played on a game board G having $\binom{18}{2} = 153$ edges, the graph A to avoid being a tetrahedron. Unfortunately, we found that the number of non-isomorphic game positions in Sim_4 is around 2×10^{54} .

 \Rightarrow There is not much hope to even weakly solve any game Sim_n and even less so any game Sim⁺_n for n > 3.

Tractable cases:

Theorem 8 (Harary, Slany, Verbitsky 2000) $G_{Avoid-Ramsey}(K_n, (\{a, b, c\}, \{\{a, b\}, \{b, c\}\}), \{\}, \{\})$ for $n \ge 3$ is a win for the second player.

Proof sketch:

There is a relatively simple two-phase winning strategy for the second player. The proof uses a counting argument and several lemmas.

Provably intractable cases:

Because of the known exponential lower bounds for classic symmetric binary Ramsey numbers

$$n2^{n/2}(1/e\sqrt{2}) + o(1)) < \mathsf{Ramsey}(n,n)$$

already computing the size of the game graph of a graph Ramsey game played on $(K_{\text{Ramsey}(n,n)}, K_n, \{\}, \{\})$ given only *n* for input will require at least **doubly exponential time** because of the succintness of the input (Graham et al. 1990).

The complexity of games: another view

Problem: **PSPACE**-completeness is a very coarse instrument to measure the difficulty of combinatorial games: no statement about particular instances are possible. For example, how does the complexity of the *real* game Go compare to that of Sim_4 or Sim_5 ?

⇒ time-bounded Kolmogorov complexity of combinatorial game instances:

What is the "size" n of the "smallest program" that, using at most n "time units", wins game G whenever a winning strategy exists and plays "optimally" otherwise? Good upper and lower bounds are most likely difficult ... **Open Problem 1** Consider $G_{Avoid-Ramsey}(K_k, K_n, \{\}, \{\})$ where k = Ramsey(n, n). Is it always true that the first player has a winning strategy in this game iff $\binom{k}{2}$ is even?

Open Problem 2 Consider $G_{Avoid-Ramsey}(G, A, E^r, E^g)$, where

$$c = \min_{(r,g) \in \mathbb{N}^2 \atop r=g \text{ or } r=g+1 \atop r+g \leq |E(G)| - |E'| - |E^g|}} \{r+g \,|\, (G, E^r, E^g)^{(r,g)} \to A\} \;,$$

and where $(G, E^r, E^g)^{(r,g)}$ denotes an (r,g) edge-redgreen-coloring of the uncolored edges of the precolored graph (G, E^r, E^g) . Is it always true that the first player has a winning strategy in this game iff c is even? **Conjecture 1** Graph Ramsey games played on $(G,A,\{\},\{\})$ are **PSPACE**-complete.

Conjecture 2 Graph Ramsey achievement games played on (K_n, A, E^r, E^g) are tractable.

Conjecture 3 Graph Ramsey avoidance games played on (K_k, K_n, E^r, E^g) where $k \ge \text{Ramsey}(n, n)$ are **PSPACE**complete.

Conjecture 4 The graph Ramsey avoidance games played on $(K_{\text{Ramsey}}(n,n), K_n, \{\}, \{\})$ are 2-EXPSPACE-complete.

Open Problem 3 Show that $G_{Achieve-Ramsey}$ remains **PSPACE**-complete even if the achievement graph A is restricted to a meaningful subclass of graphs such as fixed, bipartite or degree-restricted graphs.

Open Problem 4 Show that Theorems 4–7 hold even if the game graph G is restricted to a meaningful subclass of graphs such as bipartite or degree-restricted graphs.

Further remarks

- Sim and Sim⁺: simple enough to analyze perfectly, yet far from trivial.
- Applications: competitive situations where opposing parties try to achieve or to avoid a certain pattern in the structure of their commitments, e.g., analysis of mobile Internet agent warfare (Thomsen & Thomsen 1998).
- Sim and Sim⁺ are to be integrated in a role-playing game ⇒ "cheats" will be made very difficult.
- Please try out our applet that plays Sim and Sim⁺ on

http://www.dbai.tuwien.ac.at/proj/ramsey/

so that it can continue to become even better.