
Towards Practical Feasibility of Core Computation
in Data Exchange

Reinhard Pichler

Vadim Savenkov

Vienna University of Technology

Abstract

Data exchange is concerned with the transfer of data from some source database
to some target database. Given a source instance, there may be many solutions,
i.e., target instances. The most compact solution is called the core. Gottlob
and Nash have recently presented a core computation algorithm which works
in polynomial time under very general conditions. In this paper, we present
an enhanced version of this algorithm. Moreover, we also report on a proof-
of-concept implementation of the enhanced algorithm and on the experience
gained from experiments with this implementation.

Key words: data exchange, data integration, core, universal solutions,
dependencies, chase, tractability, query evaluation

1. Introduction

Data exchange is concerned with the transfer of data between databases with
different schemas. While data integration usually deals with query translation
and query processing among multiple databases [10, 7], data exchange aims at
actually materializing a target database stemming from some source database
[5]. In order to make sure that the source data is accurately reflected by the
target data, the materialization of the data in the target schema is governed
by a set of source-to-target dependencies. Moreover, the target database may
also impose additional integrity constraints, called target dependencies. Fol-
lowing [5, 6], we confine ourselves to relational schemas and to dependencies
which may either be tuple generating dependencies (tgds) or equality generating
dependencies (egds) [2].

The source schema S and the target schema T together with the set Σst of
source-to-target dependencies and the set Σt of target dependencies constitute

Email addresses: pichler@dbai.tuwien.ac.at (Reinhard Pichler),
savenkov@dbai.tuwien.ac.at (Vadim Savenkov)

Preprint submitted to Elsevier September 4, 2009

the data exchange setting . The data exchange problem for a data exchange set-
ting (S,T,Σst,Σt) is the task of constructing a target instance J for a given
source instance I, s.t. all source-to-target dependencies Σst and target depen-
dencies Σt are satisfied. Such a J is called a solution to the data exchange
problem. Typically, the number of possible solutions to a data exchange prob-
lem is infinite.

Example 1.1. Suppose that the source instance consists of two relations Tu-
torial(course, tutor): {(’java’, ’Yves’)} and BasicUnit(course): {’java’}. More-
over, let the target schema have four relation symbols NeedsLab(id tutor,lab),
Tutor(idt,tutor), Teaches(id tutor, id course) and Course(idc,course). Now sup-
pose that we have the following source-to-target dependencies:

1. BasicUnit(C)→ Course(Idc, C).
2. Tutorial(C, T)→ Course(Idc, C),Tutor(Idt, T),Teaches(Idt, Itc).

and the target dependencies are given by the two tgds:

3. Course(Idc, C)→ Tutor(Idt, T),Teaches(Idt, Idc).
4. Teaches(Idt, Idc)→ NeedsLab(Idt, L).

Then the following instances are all valid solutions:
J = {Course(C1, ’java’), Tutor(T2,N), Teaches(T2,C1), NeedsLab(T2,L2),

Course(C2, ’java’), Tutor(T1,’Yves’), Teaches(T1,C2), NeedsLab(T1,L1)},
Jc = {Course(C1,’java’), Tutor(T1,’Yves’), Teaches(T1,C1), NeedsLab(T1,L1)},
J ′ = {Course(’java’,’java’),Tutor(T1,’Yves’), Teaches(T1,’java’), NeedsLab(T1,L1)}

A natural requirement (proposed in [5]) on the solutions is universality ,
that is, there should be a homomorphism from the materialized solution to any
other possible solution. Note that J ′ in Example 1.1 is not universal, since
there exists no homomorphism h : J ′ → J . Indeed, a homomorphism maps any
constant onto itself thus, the fact Course(’java’,’java’) cannot be mapped onto a
fact in J .

In general, a data exchange problem has several universal solutions, which
may significantly differ in size. However, there is – up to isomorphism – one
particular, universal solution, called the core [6], which is the most compact
one. For instance, solution Jc in Example 1.1 is a core.

Fagin et al. [6] gave convincing arguments that, in many cases, the core
should be the database to be materialized. Since then, it has been identified
as an essential concept for query answering in data exchange, in particular, for
aggregate queries [1] and for systematic treatment of incompleteness [11]. More-
over, Gottlob and Nash [8] showed that the core can be computed in polynomial
time under very general conditions. But nevertheless, core computation has not
yet been incorporated into existing data exchange tools like, e.g., Clio [9]. This
is mainly due to the following counter-arguments which have been put forward
against core computation: (1) Despite the theoretical tractability of core com-
putation, we are still far away from a practically efficient implementation of core
computation. In fact, no implementation at all of the algorithm in [8] exists. (2)

2

The core computation looks like a separate technology which cannot be easily
integrated into existing database technology.

The principal aim of this paper is to make a big step forward towards the
integration of core computation into data exchange systems. The starting point
of our work is the FindCore algorithm developed by Gottlob and Nash [8].
One of the specifics of FindCore is that egds in the target dependencies are
simulated by tgds. Moreover, this simulation of egds by the FindCore algo-
rithm is done in such a way that, in general, no intermediate results are solutions
to the data exchange problem. Only at the very end of the core computation,
when FindCore has reached the core, we can be sure that we have a solution
to the data exchange problem. In other words, the core computation becomes
an integral part of finding any solution to the data exchange problem. As we
shall point out in Section 5, the simulation of egds by tgds, in general, causes
a significant loss of performance. Moreover, there are other data exchange se-
mantics [11] that favor the materialization of canonical universal solutions (for a
definition, see Section 2) rather than cores. Hence, the core computation should
be treated as an optional service such that we first of all compute a solution to
a data exchange problem – no matter whether this solution is later reduced to
the core or not.
Results. The main contribution of this work is twofold:

(1) We present an enhanced version of the FindCore algorithm. The most
significant advantage of our algorithm (which we shall refer to as FindCoreE)
is that it avoids the simulation of egds by tgds. The activities of solving the
data exchange problem and of computing the core are thus largely uncoupled. In
fact, some additional information needed later by the core computation has to be
stored when the data-exchange problem is solved by the chase, e.g., the precise
chase sequence defined by the sequence of dependencies and the corresponding
variable instantiations is needed by the core computation. However, the core
computation as such is not required in order to arrive at a universal solution of
the data-exchange problem. Hence, the core computation can be considered as
an optional add-on feature of data exchange which may be omitted or deferred to
a later time (e.g., to periods of low database user activity). Moreover, the direct
treatment of egds leads to a performance improvement of an order of magnitude
as witnessed by our experiments. Another order of magnitude can be gained
by approximating the core. Our experimental results suggest that the partial
execution of the core computation may already yield a very good approximation
to the core. Since all intermediate instances computed by our FindCoreE

algorithm are universal solutions, one may stop the core computation at any
time and content oneself with an approximation to the core. This is in great
contrast to the FindCore algorithm from [8], where the intermediate results
of the core computation are, in general, not solutions (due to the simulation
of egds). Hence, if we stop the FindCore before its completion, we will not
get an approximation of the core since, in general, we will thus not even get a
solution to the data exchange problem.

(2) We also report on a proof-of-concept implementation of the enhanced

3

algorithm. It is built on top of a relational database system and mimics data
exchange-specific features by automatically generated views and SQL queries.
This gives the implementation a lot of flexibility and avoids rebuilding func-
tionality which is provided by any RDBMS anyway. Moreover, this shows that
the integration of core computation into existing database technology is clearly
feasible. The lessons learned from the experiments with this implementation
yield important hints concerning future improvements of core computation.
Structure of the paper. In Section 2, we recall some basic notions as well as
the FindCore algorithm. The FindCoreE algorithm is presented in Section
3. In Section 4, we outline a prototype implementation. First experimental
results are presented and discussed in Section 5. We conclude with Section 6.

2. Preliminaries

2.1. Basic concepts of data exchange
Data exchange problem. A schema σ = {R1, . . . , Rn} is a set of relation
symbols Ri each of a fixed arity. An instance over a schema σ consists of a
relation for each relation symbol in σ, s.t. both have the same arity. We only
consider finite instances. By slight abuse of notation, we sometimes identify a
relation with its relation symbol (and vice versa).

Tuples of the relations may contain two types of terms: constants and vari-
ables. The latter are also called labeled nulls. Two labeled nulls are equal iff
they have the same label. For every instance J , we write dom(J), var(J), and
const(J) to denote the set of terms, variables, and constants, respectively, of
J . Clearly, dom(J) = var(J) ∪ const(J) and var(J) ∩ const(J) = ∅. If a tu-
ple (x1, x2, . . . , xn) belongs to the relation R, we say that J contains the fact
R(x1, x2, . . . , xn). We also write ~x for a tuple (x1, x2, . . . , xn) and if xi ∈ X, for
every i, then we also write ~x ∈ X instead of ~x ∈ Xn. Likewise, we write r ∈ ~x
if r = xi for some i.

Let S = {S1, . . . , Sn} and T = {T1, . . . , Tm} be schemas with no relation
symbols in common. We call S the source schema and T the target schema.
We write (S,T) to denote the schema {S1, . . . , Sn, T1, . . . , Tm}. Instances over
S (resp. T) are called source instances (resp. target instances). If I is a source
instance and J a target instance, then their combination (I, J) is an instance of
the schema (S,T).

Embedded dependencies [4] over a schema σ are first-order formulae of the
form ∀~x (φ(~x)→ ∃~y ψ(~x, ~y)), where premise φ and conclusion ψ are conjunc-
tions of atomic formulas with relational symbols from σ or equalities, s.t. all
variables in ~x actually do occur in φ(~x). Throughout this paper, we shall omit
the universal quantifiers. By convention, all variables occurring in the premise
are universally quantified (over the entire formula). Moreover, we shall often
also omit the existential quantifiers, unless we want to emphasize them. By
convention, all variables occurring in the conclusion only are existentially quan-
tified over the conclusion. We shall thus use the notations φ(~x)→ ψ(~x, ~y) and
φ(~x) → ∃~y ψ(~x, ~y) interchangeably for the above formula. Let Σ be a set of

4

dependencies and I an instance. We write I |= Σ to denote that the instance I
satisfies Σ.

In the context of data exchange, we are mainly dealing with source-to-target
dependencies and target dependencies. In source-to-target dependencies, the
premise may only use relation symbols from the source schema while the con-
clusion may only use relation symbols from the target schema. In target de-
pendencies, both the premise and the conclusion may only use relation symbols
from the target schema. Note that source dependencies may be important for
deriving source-to-target dependencies (see [12]). However, they play no direct
role in data exchange, where we take the source instance to be given.

A data exchange setting is given by a quadruple (S,T,Σst, Σt) consist-
ing of the source schema S, the target schema T, the set of source-to-target
dependencies Σst and the set of target dependencies Σt. As source-to-target
dependencies, we only consider tuple generating dependencies here (tgds, see
definition below), which are referred to as st-tgds. The data exchange problem
associated with this setting is the following: Given a (ground) source instance
I, find a target instance J , s.t. (I, J) |= Σst and J |= Σt. Such a J is called a
solution for I or, simply, a solution if I is clear from the context.
TGDs and EGDs. Following [5, 6], we consider dependencies in Σst and
Σt of the following forms: Each source-to-target dependency in Σst is a tu-
ple generating dependency (tgd) of the form φS(~x) → ψT(~x, ~y), where φS(~x)
is a conjunction of atomic formulas over S and ψT(~x, ~y) is a conjunction of
atomic formulas over T. Each target dependency in Σt is either a tgd, of the
form φT(~x)→ ψT(~x, ~y) or an equality generating dependency (egd) of the form
φT(~x) → (xi = xj). In these dependencies, φT(~x) and ψT(~x, ~y) are conjunc-
tions of atomic formulas over T, and xi, xj are among the variables in ~x. The
special case of a tgd without (existentially quantified) variables ~y is called a full
tgd , i.e. we have φS(~x)→ ψT(~x) and φT(~x)→ ψT(~x), respectively.
Chase. The data exchange problem can be solved by the chase [2], which
iteratively introduces new facts or equates terms until all desired dependencies
are fulfilled. More precisely, let Σ contain a tgd τ : φ(~x)→ ψ(~x, ~y), s.t. I |= φ(~a)
for some assignment ~a on ~x and I 2 ∃~yψ(~a, ~y). Then we have to extend I with
facts corresponding to ψ(~a, ~z), where the elements of ~z are fresh labeled nulls.
Likewise, suppose that Σ contains an egd τ : φ(~x) → xi = xj , s.t. I |= φ(~a)
for some assignment ~a on ~x. This egd enforces the equality ai = aj . We thus
choose a variable v among ai, aj and replace every occurrence of v in I by the
other term; if ai, aj ∈ const(I) and ai 6= aj , the chase halts with failure. The
result of chasing I with dependencies Σ is denoted as IΣ.

A sufficient condition for termination of the chase is that the tgds be weakly
acyclic (see [3, 5]). This property is formalized as follows. For a dependency
set Σ, construct a dependency graph GD whose vertices are fields Ri where i
denotes a position (an “attribute”) of relation R. Let φ(~x)→ ψ(~x, ~y) be a tgd
in Σ and suppose that some variable x ∈ ~x occurs in the field Ri. Then the edge(
Ri, Sj

)
is present in GD if either (1) x also occurs in the field Sj in ψ(~x, ~y) or

(2) x occurs in some other field T k in ψ(~x, ~y) and there is a variable y ∈ ~y in

5

Figure 1: Dependency graph

the field Sj in ψ(~x, ~y). Edges resulting from rule (2) are called special .
A set of tgds is weakly acyclic if there is no cycle containing a special edge.

Obviously, the set of st-tgds is always weakly acyclic, since the dependency
graph contains only edges from fields in the source schema to fields in the target
schema, but not vice versa. In summary, we only consider data exchange settings
(S,T,Σst, Σt) where Σst is a set of tgds and Σt is a set of egds and weakly acyclic
tgds. Figure 1 shows the dependency graph for the target tgds in Example 1.1,
where special edges are dashed. Clearly, this graph has no cycle containing a
special edge (actually, it contains no cycle at all). Hence, these tgds are weakly
acyclic.
Remark. At this point it is important to note that in [8], the definition of
weakly acyclic tgds is slightly more restrictive than the original definition from
[3, 5] recalled above. More precisely, in [8], there is a special edge

(
Ri, Sj

)
in the dependency graph if x occurs in Ri and there is a variable y ∈ ~y in
the field Sj – even if x does not occur in some other field T k in ψ(~x, ~y). In
[8], the following simple example was given to illustrate the effect of this more
restrictive definition of weak acyclicity: Consider the set Σ of tgds consisting
of a single tgd R(x, y) → R(x, z). In the definition of [3, 5], there is no self-
loop on position R.2 since y does not occur on the right-hand side of the tgd.
Hence, Σ is weakly acyclic according to [3, 5]. In contrast, by the definition of
[8], this singleton Σ is not weakly acyclic since the dependency graph contains
a self-loop on position R.2. The entire core computation algorithm in [8] is
based on this more restrictive notion of weak acyclicity. We shall point of
below where in the algorithm this assumption is crucial. However, it is also
shown in [8] that the core computation problem for the notion of weak-acyclicity
according to [3, 5] can be easily reduced (in fact, in linear time) to the notion
of weak-acyclicity according to [8]: Suppose that Σ contains a tgd of the form
φ(~x, ~y) → ψ(~x, ~z), s.t. all variables in ~x do occur in ψ while the variables in
~y occur in φ only. Then one can replace this tgd by the following two tgds:
φ(~x, ~y)→ Q(~x) and Q(~x)→ ψ(~x, ~z), where Q is a fresh predicate symbol. For
the resulting set of tgds, the definition of weak-acyclicity in [3, 5] and in [8]
coincide. Moreover, core computation for Σ is equivalent to core computation
for Σ′ followed by the elimination of all atoms with leading symbol Q. At any
rate, we have decided to adhere to the “standard notion” of weak-acyclicity
since, for the actual implementation, the problem reduction sketched above
would incur an unnecessary, additional cost (even though this does of course
not matter if one primarily wants to prove the polynomial time upper bound
on core computation).
Universal solutions and core. Let I,I ′ be instances. A homomorphism
h : I → I ′ is a mapping dom(I) → dom(I ′), s.t. (1) whenever R(~x) ∈ I, then
R(h(~x)) ∈ I ′, and (2) for every constant c, h(c) = c. An endomorphism is
a homomorphism I → I, and a retraction is an idempotent endomorphism,

6

i.e. r ◦ r = r. The image r(I) under a retraction r is called a retract of I. An
endomorphism or a retraction is proper if it is not surjective (for finite instances,
this is equivalent to being not injective), i.e., if it “shrinks” the domain, so to
speak. An instance is called a core if it has no proper endomorphisms. A core
C of an instance I is an endomorphic image of I, s.t. C is a core. Cores of an
instance I are unique up to isomorphism. We can therefore speak about the
core of I.

Consider an arbitrary data exchange setting where Σst is a set of tgds and Σt

is a set of egds and weakly acyclic tgds. Then the solution to a source instance
S can be computed as follows: We start off with the instance (S, ∅), i.e., the
source instance is S and the target instance is initially empty. Chasing (S, ∅)
with Σst yields the instance (S, T), where T is called a preuniversal instance.
This chase always succeeds since Σst contains no egds. Then T is chased with
Σt. This chase may fail because of the egds in Σt. If the chase succeeds,
then we end up with U = TΣt , which is referred to as a canonical universal
solution. Both T and U can be computed in polynomial time w.r.t. the size of
the source instance [5]. Clearly, both the preuniversal instance and the canonical
universal solution depend on the chase order, i.e., the order in which the source-
to-target tgds respectively the target tgds and egds are applied. Moreover, even
if the chase order is fixed, the resulting instances are only unique up to variable
renaming. Nevertheless, by slight abuse of notation, we shall sometimes refer to
these instances as the preuniversal instance and the canonical universal solution,
respectively.
Depth, height, width, blocks. Let Σ be a set of dependencies with depen-
dency graph GD. The depth of a field Rj of a relation symbol R is the maximal
number of special edges in any path of GD that ends in Rj . The depth of Σ is
the maximal depth of any field in Σ. Given a dependency τ : φ(~x) → ψ(~x, ~y)
in Σ, we define the width of τ to be |~x|, and the height as |~y|. The width (resp.
the height) of Σ is the maximal width (resp. height) of the dependencies in Σ.

Our main topic here is the core computation, which is essentially a search
for appropriate homomorphisms. It was shown in [6], that the key complexity
factor when searching for homomorphisms is the block size, which is defined as
follows: The Gaifman graph G(I) of an instance I is an undirected graph whose
vertices are the variables of I and, whenever two variables v1 and v2 share a
tuple in I, there is an edge (v1, v2) in G(I). A block is a connected component of
G(I). Every variable v of I belongs exactly to one block, denoted as block(v, I).
The block size of instance I is the maximal number of variables in any of its
blocks. In [6], the following important results concerning the block size were
proved:

Theorem 2.1. [6] Let A and B be instances, and suppose that blocksize(A) ≤ c
holds. Then the check if a homomorphism h : A → B exists and, if so, the
computation of h can both be done in time O(|A| · |B|c).

Proof. (Sketch) The crucial observation is that, in order to search for a homo-
morphism h : A→ B, we may search for homomorphisms from every block of A

7

Procedure FindCore

Input: Source ground instance S
Output: Core of a universal solution for S

(1) Chase (S,∅) with Σst

to obtain (S, T) := (S, ∅)Σst ;
(2) Compute Σ̄t from Σt;
(3) Chase T with Σ̄t (using a nice order)

to get U := T Σ̄t ;
(4) for each x ∈ var(U), y ∈ dom(U), x 6= y do
(5) Compute Txy;
(6) Look for h : Txy → U s.t. h(x) = h(y);
(7) if there is such h then
(8) Extend h to an endomorphism h′ on U ;
(9) Transform h′ into a retraction r;
(10) Set U := r(U);
(11) return U.

onto B separately. Note that A has ≤ |A| blocks, each containing ≤ c variables.
Hence, from each block of A, we have to consider ≤ |B|c possible mappings. �

Theorem 2.2. [6] If Σst is a set of st-tgds of height e, S is ground, and (S, T) =
(S, ∅)Σst , then blocksize(T) ≤ e.

Sibling, parent, ancestor. Consider the chase of the preuniversal instance T
with target dependencies Σt and suppose that ~y is a tuple of variables created
by enforcing a tgd φ(~x)→ ψ(~x, ~y) in Σt, s.t. the precondition φ(~x) was satisfied
with a tuple ~a. Then the elements of ~y are siblings of each other; every variable
of ~a is a parent of every element of ~y; and the ancestor relation is the transitive
closure of the parent relation.

2.2. Core computation with FindCore
In this section, we recall the FindCore algorithm of [8]. To this end, we

briefly explain the main ideas underlying the steps (1) – (11) of this algorithm.
The chase. FindCore starts in (1) with the computation of the preuniversal
instance. But then, rather than directly computing the canonical universal
solution by chasing T with Σt, the egds in Σt are simulated by tgds. Hence, in
(2), the set Σt of egds and tgds over the target schema T is transformed into
the set Σ̄t of tgds over the schema T ∪ {E}, where E (encoding equality) is a
binary relation not present in T. The transformation proceeds as follows:

1. Replace all equations x = y with E(x, y), turning every egd into a tgd.

8

2. Add equality constraints (symmetry, transitivity, reflexivity): (i) E(x, y)→
E(y, x); (ii) E(x, y), E(y, z)→ E(x, z); and (iii) R(x1, . . . , xk)→ E(xi, xi)
for every R ∈ T and i ∈ {1, 2, . . . , k} where k is the arity of R.

3. Add consistency constraints: R(x1, . . . , xk), E(xi, y)→ R(x1, . . . , y, . . . , xk)
for every R ∈ T and i ∈ {1, 2, . . . , k}.

Even if Σt was weakly acyclic, Σ̄t may possibly be not. Hence, a special
nice chase order is defined in [8] which ensures termination of the chase by Σ̄t.
It should be noted that U computed in (3) is not a universal solution since, in
general, the egds of Σt are not satisfied. Their enforcement happens as part of
the core computation.
Retractions. The FindCore algorithm computes the core by iteratively com-
puting a succession of nested retracts. This is motivated by the fact that re-
tractions have the following favorable properties: (1) embedded dependencies
are closed under retractions and (2) any proper endomorphism can be efficiently
transformed into a retraction [8]:

Theorem 2.3. [8] Let r : A→ A be a retraction with B = r(A) and let Σ be a
set of embedded dependencies. If A |= Σ, then B |= Σ.

Theorem 2.4. [8] Given an endomorphism h : A → A such that h(x) = h(y)
for some x, y ∈ dom(A), there is a proper retraction r on A s.t. r(x) = r(y).
Such a retraction can be found in time O(|dom(A)|2).

Note that U after step (3) clearly satisfies the dependencies Σst and Σ̄t. Steps
(4) – (8), which will be explained below, search for a proper endomorphism h
on U . If this search is successful, we use Theorem 2.4 to turn h into a retraction
r in step (9) and replace U by r(U) in step (10). By Theorem 2.3 we know that
Σst and Σ̄t are still satisfied.
Searching for proper endomorphisms. At every step of the descent to
the core, the FindCore algorithm attempts to find a proper endomorphism
for the current instance U in the steps (5) – (8) of the algorithm. Given a
variable x and another domain element y, we try to find an endomorphism
which equates x and y. However, by Theorem 2.1, the time needed to find an
appropriate homomorphism may be exponential w.r.t. the block size. The key
idea in FindCore is, therefore, to split the search for a proper endomorphism
into two steps: For given x and y, there exists an instance Txy (defined below)
whose block size is bounded by a constant depending only on Σ. So we first
search for a homomorphism h : Txy → U with h(x) = h(y); and then h is
extended to a homomorphism h : U → U , s.t. h(x) = h(y) still holds. Hence,
h is still non-injective and, thus, h is a proper endomorphism, since we only
consider finite instances.

The properties of Txy and the existence of an extension h′ of h are governed
by the following results from [8]:

Lemma 2.1. [8] For every weakly acyclic set Σ of tgds, instance T and x, y ∈
dom(TΣ), there exist constants b, c which depend only on Σ and an instance Txy

satisfying

9

1. x, y ∈ dom(Txy),
2. T ⊆ Txy ⊆ TΣ,
3. dom(Txy) is closed under parents and siblings, and
4. |dom(Txy)| ≤ |dom(T)|+ b.

Moreover, Txy can be computed in time O(|dom(T)|c).

Recall our discussion on different notions of weakly acyclic tgds in Sec-
tion 2.1. In fact, the above lemma crucially depends on the more restrictive
definition of weak acyclicity given in [8], while it would not hold under the more
general definition of weak acyclicity according to [3, 5]. We shall come back
to this point in Example 3.5 below, when we present our modified notion of
siblings and parents (which guarantees that our analogue of Lemma 2.1 also
holds for the more general notion of weak acyclicity). But of course, as we have
already mentioned in Section 2.1, core computation under the more general no-
tion of weak acyclicity can be easily reduced to core computation under the
more restrictive one.

Theorem 2.5. (Lifting) [8] Let TΣ be a universal solution of a data exchange
problem obtained by chasing a preuniversal instance T with the weakly acyclic
set Σ of target tgds. If B and W are instances such that:

1. B |= Σ,
2. T ⊆W ⊆ TΣ, and
3. dom(W) is closed under parents and siblings,

then any homomorphism h : W → B can be extended in time O(|dom(T)|b) to
a homomorphism h′ : TΣ → B where b depends only on Σ.

Summary. Recall that the auxiliary predicate E is used to simulate equality.
Hence, if step (3) of the algorithm generates a fact E(ai, aj) for distinct con-
stants ai and aj then the data exchange problem has no solution and the core
computation should halt with failure. Otherwise, the loop in steps (4) – (10)
tries to successively shrink dom(U). When no further shrinking is possible, then
the core is reached. In fact, it is proved in [8] that such a minimal instance U
resulting from FindCore indeed satisfies all the egds. Hence, U minus all aux-
iliary facts with leading symbol E constitutes the core of a universal solution.
In total, we thus have:

Theorem 2.6. [8] Let (S,T,Σst,Σt) be a data exchange setting with st-tgds Σst

and target dependencies Σt. Moreover, let S be a ground instance of the source
schema S. If this data exchange problem has a solution, then FindCore cor-
rectly computes the core of a canonical universal solution in time O(|dom(S)|b)
for some b that depends only on Σst ∪ Σt.

10

3. Enhanced core computation

The crucial point of our enhanced algorithm FindCoreE is the direct treat-
ment of the egds, rather than simulating them by tgds. Hence, our algorithm
produces the canonical universal solution U first (or detects that no solution
exists), and then successively minimizes U to the core. On the surface, our
FindCoreE algorithm proceeds exactly as the FindCore algorithm from Sec-
tion 2.2 algorithm, i.e.:

• compute an instance Txy,
• search for a non-injective homomorphism h : Txy → U ,
• lift h to a proper endomorphism h′ : U → U , and
• construct a proper retraction r from h′.

Actually, the construction of a retraction r via Theorem 2.4 and the closure
of embedded dependencies w.r.t. retractions according to Theorem 2.3 are not
affected by the application of the egds. In contrast, the first 3 steps above
require significant adaptations in order to cope with egds, e.g.:

• Txy in Section 2.2 is obtained by considering only a small portion of the
target chase, thus producing a subinstance of U . Now that egds are in-
volved, the domain of U may no longer contain all elements that were
present in T or in some intermediate result of the chase. Hence, we will
need to define Txy differently.

• The computational cost of the search for a homomorphism h : Txy → U
depends on the block size of Txy which in turn depends on the block size of
the preuniversal instance T . egds have a positive effect in that they elim-
inate variables, thus reducing the size of a single block. Conversely, egds
may also have a negative effect in that they may merge different blocks of
the preuniversal instance T . Hence, without further measures, this would
destroy the tractability of the search for a homomorphism h : Txy → U .

• Since we have to define Txy differently from Section 2.2, also the lifting
of h : Txy → U to a proper endomorphism h′ : U → U will have to be
modified. Moreover, it will turn out that a completely new approach is
needed to prove the correctness of this lifting.

The details of the FindCoreE algorithm and of the required modifications
w.r.t. Section 2.2 are worked out below.

Introduction of an id. Chasing with egds results in the substitution of vari-
ables. Hence, the application of an egd to an instance J produces a syntactically
different instance J ′. However, we find it convenient to regard the instance J ′

after enforcement of an egd as a new version of the instance J rather than as
a completely new instance. In other words, the substitution of a variable pro-
duces new versions of facts that have held that variable, but the facts themselves
persist. We formalize this idea as follows.

11

Given a data exchange setting S = (S,T,Σst,Σt), we define an id-aware data
exchange setting Sid by augmenting each relation R ∈ T with an additional id
field inserted at position 0. Hence, in the atoms of the conclusions of st-tgds
and in all atoms occurring in target dependencies, we have to add a unique
existentially-quantified variable at position 0. For example, the source-to-target
tgd τ : S(x) → R(x, y) is transformed into τ id : S(x) → Rid(t, x, y) for fresh
variable t.

These changes neither have an effect on the chase nor on the core computa-
tion (apart from increasing the variable domains of target instances), as no rules
rely on values in the added columns. It is immediate that a fact R(x1, x2, . . . , xn)
is present in the target instance at some phase of solving the original data ex-
change problem iff the fact Rid(id, x1, x2, . . . , xn) is present at the same phase
of solving its id-aware version. These id’s allow us to refer to facts in an un-
ambiguous way no matter how the attribute values in a fact are altered by the
application of egds during the chase. The id’s are thus helpful for the discussion
in this paper and they are also important for the implementation of our core
computation algorithm.

During the chase, every fact of the target instance is assigned a unique id
variable, which is never substituted by an egd. We can therefore identify a fact
with this variable:

1. If Rid(t1, x1, . . . , xn) is a fact of a target instance T, then we refer to it as
fact t1.

2. When we say that a “fact A is present in some set W”, then we mean that
a fact with the same id as A is present in W .

3. However, when we explicitly write that two facts are equal then we actually
mean that they have the same attribute values.

We also define a position by means of the id of a fact plus a positive integer
indicating the place of this position inside the fact. Thus, if J is an instance
and R(idR, x1, x2, . . . , xn) is an id-aware version of R(x1, . . . , xn) ∈ J , then we
say that the term xi occurs at the position (idR, i) in J .

Source position and origin. By the above considerations, facts and positions
in an id-aware data exchange setting persist in the instance once they have
been created – in spite of possible modifications of the variables. New facts
and, therefore, new positions in the target instance are introduced by tgds. If a
position p = (idR, i) occurring in the fact R(idR, x1, . . . , xn) was created to hold
a fresh null, we call p native to its fact idR. Otherwise, if an already existing
variable was copied from some position p′ in the premise of the tgd to p, then we
say that p is foreign to its fact idR. Moreover, we call p′ the source position of
p. Note that there may be multiple choices for a source position. For instance,
in the case of the tgd R(y, x) ∧ S(x) → P (x): a term of P/1 may be copied
either from R/2 or from S/1. Any possibility can be taken in such a case: the
choice is don’t care non-deterministic.

Of course, a source position may itself be foreign to its fact. Tracing the
chain of source positions back until we reach a native position leads to the

12

Figure 2: Positions of the instance JΣ (foreign positions are dashed) (a) and the
dependency graph of Σ (b).

notion of origin position, which we define recursively as follows: If a position
p = (idR, i) is native to the fact R(idR, x1, . . . , xn), then its origin position is
p itself. Otherwise, if p is foreign, then the origin of p is the origin of a source
position of p.

The fact holding the origin position of p is referred to as the origin fact of
the position p. Finally, we define the origin fact of a variable x, denoted as
Originx, as the origin fact of one of the positions where it was first introduced
(again in a don’t care non-deterministic way).

Example 3.1. Let J = {S(idS1, x1, y1)} be a preuniversal instance, and con-
sider {S(idS , x, y) → P (idP , y, z);P (idP , y, z) → Q(idQ, y, v)} as the set of
target dependencies yielding the canonical universal solution JΣ shown in Fig-
ure 2: JΣ = {S(idS1, x1, y1), P (idP1, y1, z1), Q(idQ1, y1, v1)}. Every position of
J is native, being created by the source-to-target chase, which never copies la-
beled nulls. Thus the origin positions of (idS1, 1) and (idS1, 2) are these positions
themselves. The latter is also the origin position for the two foreign positions
(idP1, 1) and (idQ1, 1), introduced by the target chase. The remaining two posi-
tions of the facts idP1 and idQ1 are native. The origin positions of the variables
are: (idS1, 1) for x1, (idS1, 2) for y1, (idP1, 2) for z1, and (idQ1, 2) for v1.

Lemma 3.1. Let I be an instance. Moreover, let p be a position in I and op

its origin position. Then p and op always contain the same term.

Proof. If p is native to its fact, then p = op by definition. Hence, in this case,
p and op trivially hold the same term.

Otherwise, let p 6= op. Then there exists a chain p0, p1, . . . , pn of positions,
s.t. pi−1 is the source position of pi for every i ∈ {1, . . . , n} and p0 = op and
pn = p. We proceed by induction on i: Of course, p0 always contains the same
term as op, since p0 = op. Now suppose that, at any stage of the chase, pi−1

contains the same term as op. By definition, pi−1 is the source position of pi,
i.e.: When pi is created by firing a tgd, then the term contained in pi−1 is copied
to pi. Hence, pi will always contain the same term as pi−1, no matter which
egds are applied in the course of the chase. Thus, by the induction hypothesis,
it will always contain the same term as op. �

Normalization of tgds. Let τ : φ(~x) → ψ(~x, ~y) be a non-full tgd, i.e., ~y is
non-empty. Then we can set up the Gaifman graph G(τ) of the atoms in the
conclusion ψ(~x, ~y), considering only the new variables ~y, i.e., G(τ) contains as
vertices the variables in ~y. Moreover, two variables yi and yj are adjacent (by
slight abuse of notation, we identify vertices and variables), if they jointly occur
in some atom of ψ(~x, ~y). Let G(τ) contain the connected components ~y1, . . . , ~yn.

13

Then the conclusion is of the form

ψ(~x, ~y) = ψ0(~x) ∧ ψ1(~x, ~y1) ∧ · · · ∧ ψn(~x, ~yn),

where the subformula ψ0(~x) contains all atoms of ψ(~x, ~y) without variables from
~y and each subformula ψi(~x, ~yi) contains exactly the atoms of ψ(~x, ~y) containing
at least one variable from the connected component ~yi.

Now let the full tgd τ0 be defined as τ0 : φ(~x)→ ψ0(~x) and let the non-full
tgds τi with i ∈ {1, . . . , n} be defined as τi : φ(~x)→ ψi(~x, ~yi). Then τ is clearly
logically equivalent to the conjunction τ0 ∧ τ1 ∧ · · · ∧ τn. Hence, τ in the set Σt

of target dependencies may be replaced by τ0, τ1, . . . , τn.
We say that Σt is in normal form if every tgd τ in Σt is either full or

its Gaifman graph G(τ) has exactly 1 connected component. By the above
considerations, we will henceforth assume w.l.o.g., that Σt is in normal form.
The following example illustrates that the normal form may possibly lead to a
significantly smaller canonical universal instance than non-normalized tgds.

Example 3.2. Let Σ = {P (x1, x2), Q(x2, x3) → R(x1, y1), S(x3, y2)} and let
instance T = {P (1, 1), P (1, 2), . . . , P (1, n), Q(1, 1), Q(2, 2), . . . , Q(n, n)} for an
arbitrary integer n ≥ 1. Chasing T with Σ produces (among others) the new facts
R(1, u1), S(1, v1), R(1, u2), S(2, v2), . . . , R(1, un), S(n, vn), where R(1, u2), . . .,
R(1, un) are clearly redundant.

Now consider the normal form Σ′ of Σ with Σ′ = {P (x1, x2), Q(x2, x3) →
R(x1, y1);P (x1, x2), Q(x2, x3) → S(x3, y2)}. In this case, the chase no longer
produces the facts R(1, u2), . . . , R(1, un).

In the proof of Theorem 3.1, we will have to make sure that all facts on the
right-hand side of a non-full tgd are indeed created when the non-full tgd fires.
For this purpose, it would suffice that the right-hand side of non-full tgds con-
tains only atoms with at least one existentially quantified variable occurring in
them. Below, we use the normal form to establish a slightly stronger property
of dependencies in normal form.2

Lemma 3.2. Let the preuniversal instance J be chased with the set Σt of target
dependencies in normal form. Suppose that at some step in the chase, the non-
full tgd τ : φ(~x)→ ψ(~x, ~y) fires. Then τ introduces a new fact for every atom in
the conclusion ψ(~x, ~y). More precisely, suppose that τ fires with the assignment
~a on ~x and assignment ~z on ~y. Then all atoms in ψ(~a, ~z) are newly created by
this chase step.

Proof. Let J ′ denote the instance prior to this chase step. The tgd τ is only
fired if it introduces at least one new fact. Let ρ(~a, ~z) denote the subformula of
ψ(~a, ~z), s.t. all atoms in ρ(~a, ~z) are newly created by this chase step, while all

2Strictly speaking, in the presence of id’s, it is excluded anyway that some atom on the
right-hand side of some tgd contains no existentially quantified variable.

14

atoms in the remaining subformula ρ′(~a, ~z) of ψ(~a, ~z) already exist in J ′. We
have to show that ρ(~a, ~z) comprises all atoms of ψ(~a, ~z).

Suppose to the contrary that ρ(~a, ~z) is a proper subformula of ψ(~a, ~z). Since
this application of τ creates new facts for every atom in ρ(~a, ~z), the assignment
~z instantiates all variables in ~y occurring in ρ(~a, ~z) to fresh nulls. By the
normalization of τ , the Gaifman graph G(τ) has exactly 1 connected component.
Hence, there exists at least one atom A in ρ′(~a, ~y), s.t. A shares with ρ(~a, ~y)
a variable from ~y. Hence, the atom A[~y ← ~z] in ρ′(~a, ~z) contains at least one
fresh null. But this contradicts the assumption that A[~y ← ~z] already existed
in J ′. �

Example 3.3. The non-full tgd τ : S(x, y)→ (∃z, v)(P (x, z)∧R(x, y)∧Q(y, v))
is logically equivalent to the conjunction of the three tgds:

τ0 : S(x, y)→ R(x, y),
τ1 : S(x, y)→ ∃z P (x, z), and
τ2 : S(x, y)→ ∃v Q(y, v).

Clearly, these dependencies τ0, τ1, and τ2 are normalized in the sense above.

Extension of the parent and sibling relation to facts. Let I be an instance
after the jth chase step and suppose that in the next chase step, the non-full
tgd τ : φ(~x) → ψ(~x, ~y) is enforced, i.e.: I |= φ(~a) for some assignment ~a on ~x
and I 2 ∃~yψ(~a, ~y), s.t. the facts corresponding to ψ(~a, ~z), where the elements
of ~z are fresh labeled nulls, are added. Let t be a fact introduced by this chase
step, i.e., t is an atom of ψ(~a, ~z). Then all other facts introduced by the same
chase step (i.e., by Lemma 3.2, all other atoms of ψ(~a, ~z)) are the siblings of t.
Given a fact t, its parent set consists of the origin facts for any foreign position
in t or in any of its siblings. The ancestor relation on facts is the transitive
closure of the parent relation.

This definition of siblings and parents implies that facts introducing no fresh
nulls (since we are assuming the above normal form, these are the facts created
by a full tgd) can be neither parents nor siblings.

Recall that we identify facts by their ids rather than by their concrete values.
Hence, any substitutions of nulls that happen in the course of the chase do not
change the set of siblings, the set of parents, or the set of ancestors of a fact.

Example 3.4. Let us revisit the two tgds S(idS , x, y) → P (idP , y, z) and
P (idP , y, z) → Q(idQ, y, v) from Example 3.1, see also Figure 2. Although the
creation of the atom Q(y1, v1) was triggered by the atom P (y1, z1), the only
parent of Q(y1, v1) is the origin fact of y1, namely S(x1, y1).

Example 3.5. Consider the set Σ of tgds (we omit the id’s since, in the ab-
sence of egds, the attribute values suffice to uniquely identify the atoms) with Σ =
{A(x, y) → (∃u)R(u, x, y); R(u, x, y), R(v, y, z) → (∃w)R(w, x, z)}. Moreover,
for arbitrary integer n ≥ 1, let the instance In be defined as In = {A(1, 2), A(2, 3),
. . . , A(n− 1, n)}.

15

The chase of In with Σ introduces all facts of the form R(z, i, j), where z is a
variable not occurring anywhere else and i, j are integers with i < j. In partic-
ular, the following facts are introduced via the chase: R(u1, 1, 2), R(u2, 2, 3), . . .,
R(un−1, n− 1, n) as well as R(v1, 1, 3), R(v2, 1, 4), . . . , R(vn−2, 1, n).

Now consider the fact R(vn−2, 1, n) in IΣ
n . Our definition of parents (via

facts) traces back the origin of labelled nulls. However, the only labelled null in
the above fact (i.e., vn−2) is native to this fact. Hence, R(vn−2, 1, n) has no
parents and, therefore, no ancestors according to our fact-based definition.

In contrast, by the definition of parents and ancestors (via variables) in
[8], which we recalled in Section 2.1, the fresh variable vn−2 resulting from an
application of the second tgd in Σ has as parents vn−3, 1, n − 1, un−1, n − 1
and n. The variable un−2 only has the constants n − 2 and n − 1 as parents
while vn−3 again has six parents, namely vn−4, 1, n− 2, un−2, n− 2 and n− 1.
In total, all of the variables v1, . . . , vn−3 are ancestors of vn−2 according to the
(variable-based) definition in [8].

Clearly, in the above example, Lemma 2.1 does not allow us to derive a constant
upper bound on the number of ancestors (via variables). By the restrictive no-
tion of “weak acyclicity” applied in [8], such a case can never occur, since Σ is
clearly not weakly acyclic in the sense of [8]. On the other hand, Σ is weakly
acyclic according to the more general definition of weak acyclicity from [3, 5].
Recall that, in this paper, we adhere to the latter notion of weak acyclicity. In-
deed, with our definition of parents and sibling (via facts rather than variables),
we end up with constantly many ancestors (independently of n and, hence, of
the size of the instance In). In Lemma 3.3 below (which is the analogue of
Lemma 2.1) we shall show that such a constant upper bound on the number of
ancestors (defined via facts) can always be guaranteed.

Some useful notation. To reason about the effects of egds, it is convenient to
introduce some additional notation, following [6]. Let J be a canonical preuni-
versal instance and J ′ the canonical universal solution, resulting from chasing
J with a set of target dependencies Σt. Moreover, suppose that u is a term
which either exists in the domain of J or which is introduced in the course of
the chase. Then we write [u] to denote the term to which u is mapped by the
chase. More precisely, let t = S(u1, u2, . . . , us) be an arbitrary fact, which ei-
ther exists in J or which is introduced by the chase. Then the same fact t in
J ′ has the form S([u1], [u2], . . . , [us]). By Lemma 3.1, every [ui] is well-defined,
since it corresponds to the term produced by the chase in the corresponding
origin position. For any set Σt of target dependencies, constants are mapped
onto themselves: ∀c ∈ const(J) c = [c]. For u, v ∈ dom(J), we write u ∼ v if
[u] = [v], i.e. two terms have the same image in J ′. If Σt contains no egds, then
∀u ∈ dom(J)u = [u] holds. The following property of [·] is immediate:

Proposition 3.1. The mapping [·] : J → J ′ is a homomorphism.

We are now ready to prove the main results underlying the FindCoreE

algorithm, i.e.: Definition of Txy (Lemma 3.3), search for a homomorphism

16

h : Txy → U (Lemma 3.5 and Theorem 3.3), and lifting a homomorphism
h : Txy → U to a non-injective homomorphism TΣst → U (Lemma 3.4, The-
orem 3.1, and Theorem 3.2).

Lemma 3.3. For every weakly acyclic set Σ of tgds and egds, instance T , and
x, y ∈ dom(TΣ), there exist constants b, c which depend only on Σ and an in-
stance Txy satisfying

1. {Originx,Originy} ⊆ Txy,
2. all facts of T are in Txy, and Txy ⊆ TΣ,
3. every fact in W was either already present in T or it was introduced by the

application of a non-full tgd,
4. Txy is closed under parents and siblings over facts, and
5. |dom(Txy)| ≤ |dom(T)|+ b.

Moreover, Txy can be computed in time O(|dom(T)|c).

Proof. Let d denote the depth of Σ. Given variable z ∈ {x, y}, let the set Fz

(= the “family” of z) denote the set of facts as follows:

1. Initially, we set Fz := {Originz}.
2. For every fact A in Fz, we add all siblings of A to Fz.
3. For every foreign position (id, j) in Fz, we add the parent of (id, j) to Fz.

Steps 2 and 3 are iterated, until no further fact is added to Fz. We first show
that the number of iterations is bounded by the depth d of Σ: Suppose that we
apply Step 3 for the i-th time (with i ≥ 1). Let m denote the maximum depth
of those positions in the current set Fz for which the parent is not present in
Fz yet. Then the positions introduced by the i-th application of Step 3 and
by the i + 1-st application of Step 2 have depth at most m − 1. This follows
from the definition of parents which are obtained by tracing backward a chase
sequence including at least one special edge in the dependency graph. Hence,
the maximum depth of the positions added to Fz in each iteration of Step 3
followed by Step 2 strictly decreases. Thus, the number of iterations is indeed
bounded by the depth d of Σ.

Now let Txy := T ∪ Fx ∪ Fy. By the construction of Fx and Fy, the set Txy

contains Originx and Originy and Txy is closed under the parent and sibling
relations. Moreover, Txy contains only facts which are derived by the chase of
T with Σ (recall that we identify a fact with its id; hence, the id’s of the facts
in Txy are all present in TΣ, even though the values of the attributes in these
facts may have been changed by the application of egds.) Thus, Txy satisfies
the conditions 1–3.

Before we prove the desired upper bound on the domain size of Txy we show
that the number of facts in Fx is bounded by some constant depending on Σ:
Every fact has at most constantly many siblings with at most constantly many
positions each. Hence, each execution of Step 2 only adds constantly many
new positions to Fx. Likewise, every fact added to Fx has at most constantly

17

many foreign positions. Hence, only constantly many parents are added to Fx

whenever Step 3 is executed. Finally, the total number of iterations of Steps 2
and 3 is bounded by the depth d of Σ (which is considered as constant). Thus,
in total, the exhaustive application of Steps 2 and 3 of the definition of Fx and
Fy introduces only constantly many new facts and, therefore, only constantly
many new positions.

Clearly, also the number of new variables introduced whenever a new fact
is added to Fx or Fy is bounded by a constant of Σ. Moreover, egds cannot
augment the domain size of any set of facts, since they result only in replace-
ments of some variable u with some already present term v at all occurrences
of u. Hence, we get the desired inequality |dom(Txy)| ≤ |dom(T)|+ b. Finally,
the polynomial upper bound on the computation time needed to construct Txy

is clear, once we have the bound on the facts of Txy. �

Having a homomorphism h : Txy → U , we want to extend it to a homo-
morphism h′ : TΣst → U , analogously to Theorem 2.5. However, compared
with Lemma 2.1, we had to redefine the set Txy. Moreover, the unification of
variables caused by egds in the chase invalidates some essential assumptions
in the proof of the corresponding result in [8, Theorem 7]. At any rate, in
Theorem 3.1 below we show that also in our case, the lifting can be performed
efficiently. First, we define an important property of variables in a subset W of
the canonical universal instance and prove sufficient conditions for guaranteeing
this property.

Definition 3.1. Let TΣt be a universal solution of a data exchange problem
obtained by chasing a preuniversal instance T with the weakly acyclic set Σt

of tgds and egds. Suppose that TΣt is obtained from T by a chase sequence of
length n. Finally, let W be an instance, s.t. all facts of T are in W (i.e. W
contains facts with the same id’s) and W ⊆ TΣt .

We call a variable x ∈ dom(W) native to W if either x ∈ dom(T) or x is
introduced by a non-full tgd that generated only facts in W , i.e., there exists an
s ∈ {1, . . . , n}, s.t. in the s-th chase step, a non-full tgd φ(~x) → ψ(~x, ~y) fires
and the following conditions are fulfilled: (1) the tgd fires with assignment ~a on
~x and assignment ~z on ~y, where ~z consists of fresh variables; (2) all facts in
ψ(~a, ~z) are in W , and (3) x is among the variables ~z.

Lemma 3.4. Let TΣt be a universal solution of a data exchange problem ob-
tained by chasing a preuniversal instance T with the weakly acyclic set Σt of tgds
and egds. Suppose that TΣt is obtained from T by a chase sequence of length n.
Finally, let W be an instance, s.t. all facts of T are in W (i.e. W contains facts
with the same id’s) and W ⊆ TΣt . Moreover, W fulfills the following properties:

1. Every fact in W was either already present in T or it was introduced by the
application of a non-full tgd.

2. W is closed under parents and siblings (over facts).

Then there exists a variable renaming ρ on TΣt , s.t. all variables in the instance
ρ(W) ⊆ ρ(TΣt) are native to ρ(W). Moreover, ρ(TΣt) can be computed by a

18

chase sequence in such a way that, throughout the chase procedure, the facts in
ρ(W) (i.e., their id is in ρ(W) and hence in W ; the values may later change
due to the application of egds) contain only variables which are native to ρ(W)
(i.e., the condition that all variables in ρ(W) are native to ρ(W) holds for all
intermediate steps during the chase and not just at the end of the chase).

Proof. For 0 ≤ s ≤ n, let Ts denote the result after step s of the chase and let
∆ = (δ1, . . . , δn) denote the sequence of dependencies that is applied in order
to derive TΣt from T . Below, we modify the chase with the same dependencies
δ1, . . . , δn in such a way that the antecedent of each δs is mapped to the same
facts as in the original chase sequence ∆, but variable replacements enforced by
egds are possibly applied in the opposite direction, i.e., if, for any s ∈ {1, . . . , n},
δs is an egd that leads to the replacement of all occurrences of some variable
xi in Ts−1 by another variable xj , then the only modification allowed will be
to replace all occurrences of xj by the variable xi instead. Let T ′s denote the
result after step s of this modified chase. Then the canonical universal instance
T ′n can obviously be obtained via a variable renaming from TΣt .

For every s ∈ {0, . . . , n}, let W ′s ⊆ T ′s denote the set of those facts in W
which are contained in T ′s (note that the concrete attribute values of the facts
in W ′s may differ from the values in W due to the variable renaming which
distinguishes T ′s from Ts; but the id’s of these facts are not affected). We show
that there exists a sequence of instances T ′0 = T, T ′1, . . . , T

′
n obtained by a chase

which modifies the “original” chase leading to TΣt in the above described way,
s.t. for every s ∈ {0, . . . , n}, every variable in W ′s is native to W ′s. This claim is
proved by induction on s.

[induction begin.] By definition, W ′0 = W0 = T0 = T . Clearly, all variables
in W ′0 are in T and are, therefore, native to W ′0 by definition.

[induction step.] At step s of the chase, there are four types of dependencies
that can be enforced:

1. an egd,
2. a full tgd,
3. a non-full tgd, introducing facts not present in W , or
4. a non-full tgd, introducing facts present in W .

Note that these are indeed all cases that can occur. In particular, since W is
closed under siblings, it cannot happen that a part of the facts introduced by
a non-full tgd is in W while another part is not. The proof proceeds by a case
distinction over these four cases:

Case 1. Ts is obtained from Ts−1 via the egd φ(~x)→ xi = xj , where i, j ≤ |~x|
s.t. Ts−1 |= φ(~a). W.l.o.g., ai ∈ var(Ts−1) is a variable and Ts is obtained from
Ts−1 by replacing every occurrence of ai by aj .

T ′s−1 contains the same facts (i.e., with the same id’s) as Ts−1 but possibly
with attribute values changed by the variable renaming from Ts−1 to T ′s−1. Let
~a ′ denote the instantiation of ~x which maps each position in φ(~x) to the same
position in T ′s−1 as the instantiation ~a does when φ(~x) is mapped to Ts−1. Then

19

this egd application enforces in T ′s−1 the equality of a′i and a′j , where a′i is a
variable.

First consider the case that both a′i and a′j are variables and that a′i is native
to W ′s−1 while a′j is not. In this case, we reverse the sense of variable replacement
from the “original” chase, i.e., we produce T ′s by replacing every occurrence of
a′j in T ′s−1 by a′i. By the induction hypothesis, all variables in W ′s−1 are native
to W ′s−1 and, therefore, after the application of the egd in this reversed way, all
variables in W ′s are native to W ′s.

It remains to consider the case that one of the following conditions is fulfilled:
(1) a′j is a constant or (2) a′j is a variable that is native to W ′s−1, or (3) a′i is
not native to W ′s−1. In all these cases, we apply the egd analogously to the
“original” chase, i.e., all occurrences of a′i in T ′s−1 are replaced by a′j . By the
induction hypothesis, all variables in W ′s−1 are native to W ′s−1 and, therefore,
also after the application of the egd in this way, all variables in W ′s are native
to W ′s.

Case 2. Suppose that Ts is obtained from Ts−1 via a full tgd φ(~x)→ ψ(~x),
s.t. Ts−1 |= φ(~a). As in case 1, there exists an instantiation ~a ′ of ~x which maps
each position in φ(~x) to the same position in T ′s−1 as the instantiation ~a does
when φ(~x) is mapped to Ts−1. Then we produce T ′s from T ′s−1 by firing the
tgd with this instantiation ~a ′. By assumption, W contains no facts that are
generated by non-full tgds. Hence, W ′s = W ′s−1 and, therefore, all variables in
W ′s are native to W ′s by the induction hypothesis.

Case 3. Suppose that Ts is obtained from Ts−1 via a non-full tgd φ(~x) →
ψ(~x, ~y) with assignment ~a on ~x and assignment ~z on ~y. Moreover, all atoms in
ψ(~a, ~z) are outside W . Then we produce T ′s from T ′s−1 by firing this tgd with
the modified instantiation ~a ′ as in case 2. Since all facts in ψ(~a ′, ~z) are outside
W , we have W ′s = W ′s−1 and, therefore, all variables in W ′s are native to W ′s by
the induction hypothesis.

Case 4. Suppose that Ts is obtained from Ts−1 via a non-full tgd φ(~x) →
ψ(~x, ~y) with assignment ~a on ~x and assignment ~z on ~y. Moreover, all atoms
in ψ(~a, ~z) are in W . Then we produce T ′s from T ′s−1 by firing this tgd with
the modified instantiation ~a ′ as in the cases above. Now all facts in ψ(~a ′, ~z)
are new in W ′s compared with W ′s−1. By definition, the new variables in ~z are
native to W ′s. Thus, it only remains to show that all variables in ~a ′ are native
to W ′s.

Let v be an arbitrary variable in ~a ′, i.e., v occurs in some position in ψ(~a ′, ~z).
Since W is closed under parents and siblings, the origin of every position of
ψ(~a, ~z) is contained in W , by the definition of the parent relation over facts.
According to Lemma 3.1, a position p and its origin position op (which is either
contained in some fact in T or which was introduced previously at some chase
step k < s) are always occupied by the same term. Clearly, position op was
already contained in W ′s−1. Hence, by the induction hypothesis, the variable v
at this position must be native to W ′s−1 and, thus, also to to W ′s. �

Theorem 3.1. (Lifting) Let TΣ be a universal solution of a data exchange

20

problem obtained by chasing a preuniversal instance T with the set Σ of weakly
acyclic tgds and egds. Suppose that B and W are instances with the following
properties:

1. B |= Σ,
2. all facts of T are in W (i.e. W contains facts with the same id’s) and
W ⊆ TΣ,

3. every fact in W was either already present in T or it was introduced by the
application of a non-full tgd, and

4. W is closed under parents and siblings (over facts),

Then any homomorphism h : W → B can be transformed in time O(|dom(T)|b)
into a homomorphism h′ : TΣ → B, s.t. ∀x ∈ dom(h) : h(x) = h′(x), where b
depends only on Σ.

Proof. Suppose that the chase of a preuniversal instance T with Σ has length
n. Then we write Ts with 0 ≤ s ≤ n to denote the result after step s of
the chase. In particular, we have T0 = T and Tn = TΣ. W.l.o.g., we may
assume that all variables in W are native to W and that, throughout the chase
procedure, the facts in W (i.e., their id is in W ; the values may later change
due to the application of egds) contain only variables which are native to W .
Indeed, suppose that this were not the case. Then, by Lemma 3.4, there exists
a variable renaming ρ on TΣ, s.t. all variables in the instance ρ(W) ⊆ ρ(TΣ) are
native to ρ(W). Moreover, ρ(TΣ) can be computed by a chase sequence in such
a way that, throughout the chase procedure, the facts in ρ(W) contain only
variables which are native to ρ(W). We would then construct a homomorphism
h′ : ρ(TΣ)→ B, s.t. h′ ◦ ρ is the desired homomorphism from TΣ to B.

We now show that h : W → B can indeed be extended to a homomorphism
h′ : TΣ → B, s.t. ∀x ∈ dom(h) : h(x) = h′(x). For every s, we say that a
homomorphism hs : Ts → B is consistent with h if for all x ∈ dom(hs), s.t. x
is native to W , the equality hs(x) = h([x]) holds. Recall that we write [x] to
denote the term to which x is mapped by the chase. Moreover, a variable x is
called native to W either if x occurs in some fact in T or x occurs in ~z for some
fact P (~a, ~z) that is introduced into W by a non-full tgd. In both cases, [x] is in
dom(W) and, therefore, h([x]) is clearly defined.

We claim that for every s ∈ {0, . . . , n}, such a homomorphism hs consistent
with h exists. This claim is proved by induction on s.

[induction begin.] We define h0 : T = T0 → B by setting h0(x) = h([x]) for
all x ∈ dom(T). We first show that h0 is well-defined. Let x ∈ dom(T). Then
x occurs in some fact with id i in T . By condition 2 of the theorem, all facts of
T are in W ⊆ TΣ. Thus, [x] occurs in the fact with id i in W and, therefore,
h([x]) is indeed defined.

Moreover, h0 is consistent with h. This follows easily from the fact that
x = [x] holds for every variable in dom(T) ∩ dom(W). It remains to show that
h0 is a homomorphism. By condition 2 of the theorem, all facts of T are in W .
Hence, for every fact P (u1, . . . , uk) ∈ T0, we have P ([u1], . . . , [uk]) ∈ W and,

21

therefore, P (h(u1), . . . , h(uk)) = P (h([u1]), . . . , h([uk])) ∈ B. Hence h0 is the
desired homomorphism.

[induction step.] Let hs−1 : Ts−1 → B be a homomorphism, s.t. hs−1 is
consistent with h. At step s of the chase, there are four types of dependencies
that can be enforced:

1. an egd,
2. a full tgd,
3. a non-full tgd, introducing facts not present in W , or
4. a non-full tgd, introducing facts present in W .

Note that these are indeed all cases that can occur. In particular, since W is
closed under siblings, it cannot happen that a part of the facts introduced by a
non-full tgd is in W while another part is not.

Below we show that in each of these 4 cases, it is indeed possible to trans-
form hs−1 : Ts−1 → B into a homomorphism hs : Ts → B consistent with h.
The following simple fact is used throughout the proof: if there is an assign-
ment ~a ∈ dom(Ti) for some conjunction φ(~x) s.t. Ti |= φ(~a), and hi : Ti → B
is a homomorphism, then B |= φ(hi(~a)). This is the well-known fact that
conjunctive queries are closed under homomorphisms.

Case 1. Ts is obtained from Ts−1 via the egd φ(~x)→ xi = xj , where i, j ≤ |~x|
s.t. Ts−1 |= φ(~a). W.l.o.g., ai ∈ var(Ts−1) is a variable and Ts is obtained from
Ts−1 by replacing every occurrence of ai by aj . Clearly, dom(Ts) = dom(Ts−1)\
{ai}. We claim that hs = hs−1|dom(Ts) is the desired homomorphism, i.e. hs is
obtained from hs−1 simply by restricting its domain.

Let P (~b) be a fact in Ts. Then either P (~b) is also a fact in Ts−1 (not
containing the variable ai) or Ts−1 contains some fact P (~c), s.t. ~b = ~c [ai ← aj],
i.e., ~b is obtained from ~c by replacing all occurrences of ai with aj . In the former
case, we clearly have P (hs(~b)) = P (hs−1(~b)) ∈ B. It remains to consider
the latter case: We again have P (hs−1(~c)) ∈ B. In order to show that also
P (hs(~b)) = P (hs−1(~c)) ∈ B, it suffices to show that hs−1(ai) = hs−1(aj).
Indeed, we have Ts−1 |= φ(~a), since the egd φ(~x) → xi = xj fires with this
assignment in step s of the chase. Then B |= φ(hs−1(~a)), since hs−1 is a
homomorphism. By condition 1 of the Theorem, B |= Σ. In particular, the egd
φ(~x)→ xi = xj holds in B. But then hs−1(ai) = hs−1(aj).

Case 2. A full tgd φ(~x) → ψ(~x) leaves the domain unchanged. Thus, we
simply set hs = hs−1. Suppose that φ(~x) was satisfied by Ts−1 with some
assignment ~a. Hence, the only facts introduced by this chase step are atoms
ψ(~a). We have to show that ψ(hs(~a)) (which is identical to ψ(hs−1(~a))) holds
in B. We use the analogous argument as above: Ts−1 |= φ(~a) holds, since the
tgd τ fires with this assignment on ~x. Hence, B |= φ(hs−1(~a)), since hs−1 is a
homomorphism. Finally, since B |= Σ, also B |= ψ(hs−1(~a)) holds.

Case 3. Ts is obtained from Ts−1 via the non-full tgd φ(~x)→ ψ(~x, ~y) with
assignment ~a on ~x and assignment ~z on ~y. Moreover, all atoms in ψ(~a, ~z) are
outside W . As above, we have Ts−1 |= φ(~a) and B |= φ(hs−1(~a)). Moreover,
by B |= Σ, there exists a vector ~c of terms in dom(B), s.t. B |= ψ(hs−1(~a),~c).

22

By definition, all terms in ~z are fresh variables (not yet occurring in Ts−1). We
extend hs−1 to hs by setting hs(~z) := ~c. Then hs is a homomorphism, since
the image ψ(hs(~a), hs(~z)) = ψ(hs−1(~a),~c) of the new atoms ψ(~a, ~z) in Ts is
indeed in B.

It remains to show that hs is consistent with h. By the induction hypothesis,
hs−1 is consistent with h. Note that dom(Ts) \ dom(Ts−1) consists precisely of
the fresh variables ~z. Recall that we are assuming that all variables in W
are native to W , i.e., dom(W) contains no variable in ~z. By the induction
hypothesis, hs−1 is consistent with h. Moreover, since hs−1 differs from hs only
on variables ~z outside dom(W), also hs is consistent with h.

Case 4. Ts is obtained from Ts−1 via the non-full tgd φ(~x)→ ψ(~x, ~y) with
assignment ~a on ~x and assignment ~z on ~y. Moreover, W already contains a
fact for every atom in ψ(~a, ~z). Analogously to case 3, the vector ~z consists of
fresh variables. Moreover, since all atoms of ψ([~a], [~z]) are contained in W , the
homomorphism h : W → B is defined on all variables occurring in ψ([~a], [~z]).
Since h is a homomorphism, we have B |= ψ(h([~a]), h([~z])). We extend hs−1

to hs by setting hs(~z) := h([~z]) and hs(x) := hs−1(x) for all variables x ∈
dom(hs−1). In order to show that hs is a homomorphism, it remains to prove
that all atoms in ψ(hs(~a), hs(~z)) are contained in B. By definition, we have
hs(~z) = h([~z]). Hence, it suffices to show that hs−1(~a) = h([~a]) holds. This is
then also sufficient in order to prove that hs is consistent with h.

Recall that we are assuming that, throughout the chase procedure, the facts
in W (i.e., their id is in W ; the values may later change due to the application
of egds) contain only variables which are native to W . Hence, all variables in ~a
are native to W . Hence, by the induction hypothesis, hs−1(~a) = h([~a]) holds.

This concludes the induction. But then h′ = hn is the desired homomor-
phism. In order to actually construct the homomorphism h′ = hn, we may thus
simply replay the chase and construct hs for every s ∈ {0, . . . , n}. The length
n of the chase is polynomially bounded (cf. Section 2.1). The action required
to construct hs from hs−1 fits into polynomial time as well. We thus get the
desired upper bound on the time needed for the construction of h′. �

Remark. Let us briefly point out the main differences between the proof of Theo-
rem 3.1 and the proof of the lifting theorem (recalled in Theorem 2.5) according
to [8]. Obviously, the treatment of egds introduces additional complications,
which have to be handled in the above proof (see Case 1 in the induction).
However, technically, the most important difference between the two proofs is
due to the fact that we define parents and siblings w.r.t. positions and facts
rather than w.r.t. variables. In particular, the closure under parents is thus
used in completely different ways in the two proofs: In [8], the closure under
parents (of variables) is used to conclude that if the variables ~z introduced by a
non-full tgd are contained in W , then the corresponding facts ψ(~a, ~z) are con-
tained in W as well. In contrast, we get the property that all facts in ψ(~a, ~z) are
contained in W “for free” (see Case 4 in the proof above) since we also define
the notion of siblings via facts. On the other hand, we need the closure under
parents (w.r.t. facts!) in two places in the proof of our lifting theorem, where

23

this property is not needed in the corresponding place of the proof in [8]: In
Case 3 above, where the atoms in ψ(~a, ~z) are outside W , it is by no means trivial
that the variables in ~z are never propagated into W later on in the chase. This
is guaranteed by Lemma 3.4, which (in Case 4 of its proof) needs the closure
under parents w.r.t. facts. The second place in our proof of the lifting theorem,
where we need Lemma 3.4 and, therefore, the closure under parents w.r.t. facts,
is the very last step in Case 4 above: Only by Lemma 3.4, we are allowed to
assume that all variables in ~a are native to W , which enables us to conclude by
the induction hypothesis, that hs−1(~a) = h([~a]) holds. Actually, no analogue
of Lemma 3.4 is needed in [8].

Example 3.6. Consider a schema mapping with the following dependencies:
Source-to-target tgd:

σ : S(x, y)→ P (x,w, y)

Target constraints:

τ1 : P (x,w, y)→ ∃v∃r R(v, x, y, r)

τ2 : P (x,w, y)→ ∃z∃q R(x, z, w, q)

τ3 : R(x, y′, y′′, q)→ ∃p Q(x, q, p)

τ4 : Q(x, y′, y′′)→ ∃o T (x, o, x)

ε1 : P (x1, w1, y1) ∧ P (x2, w2, y2)→ w1 = w2

ε2 : R(x, y1, w1, z1) ∧R(y2, w2, x, z2)→ y1 = y2

For the source instance I = {S(1, 1), S(1, 2)}, a preuniversal instance J =
IΣst , a canonical universal solution JΣt and its core are depicted in Figure 3.

We illustrate how a proper endomorphism h′ on JΣt can be built, s.t. h′

sends q2 to q1. Lemma 3.3 says that one can construct an instance W (re-
ferred to as Tq1q2 in Lemma 3.3) satisfying the following conditions: W ⊆ JΣt ,
W contains the facts in J = IΣst as well as Originq1 = R(1, z1, w1, q1) and
Originq2 = R(1, z1, w1, q2). Moreover, W is closed under the ancestor and sib-
ling relations over facts. Clearly, W = {P (1, w1, 1), P (1, w1, 2), R(1, z1, w1, q1),
R(1, z1, w1, q2)} is such an instance (no atom in our example has siblings, and
the parent relation is shown in Figure 3(b) as thin arrows).

Consider the homomorphism h : W → JΣt , such that h(q2) = q1 and h is
the identity on all elements in var(W)\{q2}. We now use Theorem 3.1 to turn
h into the desired proper endomorphism h′ on JΣt . Consider a chase sequence
which first enforces all tgds and then the egds. It is not difficult to see that the
result of this procedure indeed satisfies all the dependencies. Figure 3(b) shows
the target database before the first egd ε1 has fired, and Figure 3(c) gives the
final state of the target database. Note that every variable in W is native in the
sense of Definition 3.1. We now show how h′ is constructed from h by the steps
described in the induction proof of Theorem 3.1.

24

1. Start with the preuniversal instance J = {P (1, w1, 1), P (1, w2, 2)}, and a
homomorphism h0, s.t. h0(w1) = h(w1) = w1 and h0(w2) = h([w2]) = w1.

2. “Replay” the chase step with τ1 firing on P (1, w1, 1) and add the vari-
ables v1 and r1 to the domain of h0. R(v1, 1, 1, r1) 6∈ W , hence h0 is
extended to a valid homomorphism h1 according to the Case 3 of the proof
of Theorem 3.1. The fact R(v1, 1, 1, r1) is introduced via the tgd τ1 by
matching the antecedent of τ1 with P (1, w1, 1). Note that P (1, w1, 1) is left
unchanged by h0. We know that τ1 is satisfied in JΣt . In particular, if
the antecedent of τ1 is matched with P (1, w1, 1), then we can match the
conclusion with R(z1, 1, 1, r1). Hence, h1 extends h0 to {v1, r1} in such a
way that R(v1, 1, 1, r1) is sent to R(z1, 1, 1, r1), i.e., we set h1(v1) = z1 and
h1(r1) = r1.

3. Likewise, we replay the next three chase steps introducing the remaining
tuples in the R-relation, extending h1 to h4 on the additional variables
{z1, q1, v2, r2, z2, q2}. We thus apply either Case 3 or Case 4 of the proof
of Theorem 3.1: By Case 4, we have h2(z1) = z1 and h2(q1) = q1. By
Case 3, we have h3(v2) = v2 and h1(r2) = r2. Finally, by Case 4, we have
h4(z2) = h([z2]) = h(z1) = z1 and h4(q2) = h([q2]) = h(q2) = q1.

4. We now extend h4 to h8 via Case 3 of Theorem 3.1 to cover the new
variables {p1, p2, p3, p4} when the tuples in the Q-table are introduced by
the chase: We clearly have h5(p1) = p1, h6(p2) = p2, and h7(p3) = p3.
Now h8 is obtained from h7 as follows: The fact Q(1, q2, p4) is introduced
via the tgd τ3 by matching the antecedent of τ3 with R(1, z2, w2, q2). Note
that R(1, z2, w2, q2) is sent to R(1, z1, w1, q1) ∈ JΣt by h7. Moreover,
τ3 is satisfied in JΣt . In particular, if the antecedent of τ3 is matched
with R(1, z1, w1, q1) then the conclusion of τ3 is matched with Q(1, q1, p2).
Hence, Q(1, q2, p4) must be sent to Q(1, q1, p2) by h8, i.e., we have h(p4) =
p2.

5. There are three more chase steps with tgds remaining. By Case 3 of The-
orem 3.1, we thus extend h8 to h11 by defining that h11 is the identity on
o1, o2 and o3.

6. Finally, the egds have to be replayed. By Case 1 of Theorem 3.1, this
simply means to restrict the domain of h11 to the domain of JΣt , i.e., we
eliminate the variables {v1, z2} from the domain of h11 to get the desired
endomorphism h′ on JΣt . In summary, we have h′(q2) = q1 and h′(p4) =
p2, while h′ is the identity on all other elements in dom(JΣt).

Figure 3: (a) Dependency graph (special edges are dashed), (b) the preuniversal in-
stance and the result of tgds chase, and (c) the canonical universal solution and the
core for the Example 3.6. Thin arrows show parent tuples.

Even though the proof of Theorem 3.1 directly yields an algorithm for
transforming a homomorphism h : W → B to an appropriate homomorphism
h′ : TΣt → B in polynomial time, it is slightly unsatisfactory. In fact, as in-
termediate steps, it may process variables which are not present any more in
dom(Ts). Naturally, it would be desirable to skip such unnecessary steps. We
therefore propose the following simplified procedure Extend, which allows us
to literally extend h to h′ : TΣt → B starting with W and considering only the
variables present in TΣt .

25

Procedure Extend

Input: Canonical universal solution TΣt

Input: Subinstance W ⊆ TΣt closed under parents and
siblings, s.t. W contains all facts of T

Input: Homomorphism h : W → B with B |= Σ
Output: Homomorphism h′ : TΣt → B such that

∀x ∈ dom(W) h′(x) = h(x)

(1) Set h′ := h;
(2) while exists a fact A ∈ TΣt \W , s.t. Parents(A) 6= ∅ and Parents(A) ⊆W
(3) Set P := Parents(A)
(4) Set S := {A} ∪ Siblings(A)
(5) Find homomorphism g : S ∪ P → B,

such that ∀x ∈ dom(g) ∩ dom(h′) : g(x) = h′(x);
(6) Set h′ := h′ ∪ g;
(7) Set W := W ∪ S;
(8) return h′.

In the procedure Extend, we use the following terminology: For a fact A, we
write Parents(A) and Siblings(A) to denote the set of all parents respectively
all siblings of A. Of course, only for facts generated by the application of
a non-full tgd, these sets are non-empty. For a homomorphism f , we write
dom(f) to denote those domain elements for which f is defined. Moreover, if
two homomorphisms g1 and g2 coincide on dom(g1)∪ dom(g2), we write g1 ∪ g2

to denote the combination of these two homomorphisms, i.e., (g1 ∪ g2)(x) is
defined as g1(x) if x ∈ dom(g1) and g2(x) otherwise.

The idea of procedure Extend is as follows: Our goal is to construct a
homomorphism h′ which is is defined on the entire domain dom(TΣt) and which
coincides with h on dom(h)∩ dom(h′). Initially, h′ = h. In the loop at lines (2)
– (8), we try to extend h′ to further facts in TΣt and, hence, to further domain
elements in TΣt . The facts on which h′ is already defined are accumulated in the
set W . In this extension of h to h′, we fully concentrate on facts which have been
introduced by non-full tgds (since only these facts contain new variables). Now
consider the facts that have been introduced by a non-full tgd φ(~x)→ ψ(~x, ~y)
with assignment ~a on ~x and assignment ~z on ~y. Moreover, suppose that some fact
A ∈ ψ(~a, ~z) has not yet been assigned a function value by the homomorphism
h′. By step (4) in the algorithm, we always extend h′ to all siblings of a new
fact. Hence, if h′ is not yet defined on A then it is not defined on its siblings
either. Following Case 3 in the proof of Theorem 3.1, we have to know h′([~a])
in order to extend h′ to ~z. Hence, in line (2) of the algorithm, we choose A in
such a way that its parents are already contained in the current set W . The
easiest way to achieve this is to follow the chase sequence by which TΣt was
produced. Then the facts S = {A}∪Siblings(A) processed by each iteration of

26

the while-loop are simply the facts introduced by the next non-full tgd in this
chase sequence. At the end of each iteration of the while-loop, h′ and W are
extended according to the homomorphism g, which is determined as in Case 3
in the proof of Theorem 3.1.

The correctness of the procedure Extend is the subject of the following
theorem.

Theorem 3.2. Let T , TΣt , B, W , and h : W → B be as in Theorem 3.1. Then
the procedure Extend extends h to a homomorphism h′ : TΣ → B.

Proof. Let Wj with j ≥ 1 denote the set W when the while-loop in the Extend
procedure is entered for the j-th time. It can be shown by induction on j that
Wj fulfills the following properties: Wj ⊆ TΣt , Wj contains all facts from T ,
Wj is closed under parents and siblings, and hj : Wj → B is a homomorphism
s.t. ∀x ∈ dom(Wj) : h′(x) = hj(x) holds:
[induction begin.] When the while-loop is entered for the first time, we have
W1 = W and the above properties are trivially fulfilled.
[induction step.] Suppose that the while-loop is entered for the (j + 1)-st time.
By the induction hypothesis, Wj together with the homomorphism hj : Wj → B
fulfills the assumptions on W in Theorem 3.1. Hence, hj can be extended to a
homomorphism h : TΣt → B, s.t. ∀x ∈ dom(hj) : h′(x) = hj(x). Then it is of
course also possible to extend hj to the homomorphism hj+1 : Wj+1 → B where
Wj+1 = W ∪ S ⊆ TΣt , s.t. S is a set of siblings whose parents are in Wj .

For every j, the transition from Wj to Wj+1 corresponds to the application of
a non-full tgd in the course of the target chase. Hence, the number of iterations
of the while-loop is bounded by the length n of the chase. �

Example 3.7. In Example 3.6, the construction of a proper endomorphism on
JΣt (Figure 3) via Theorem 3.1 was described: to this end, the whole chase
sequence was replayed starting with the preuniversal instance J = IΣst . In
particular, it was necessary to choose the images for the variables w2, v1 and z2,
although later on they were eliminated by egds. The procedure Extend allows us
to avoid this unnecessary activity, and consider only the elements in the domain
of JΣt . Moreover, all facts in W (and not just the ones in J) are covered by
the homomorphism h′ in the procedure Extend right from the beginning and
do not have to be reconsidered when the chase is replayed.

We start with h′ defined on all facts in W . We thus have h′ with h′(q2) = q1

and h′ is the identity on {w1, z1, q2}. The first chase step introduces the fact
R(z1, 1, 1, r1) (recall that we immediately take the values that these facts have
at the end of the chase) and we set h′(r1) = r1. The introduction of the fact
R(v2, 1, 2, r2) leads to the extension of h′ with h′(v2) = v2 and h′(r2) = r2.
Clearly, the second and fourth fact in the R-table are ignored by the procedure
Extend, since these facts are in W .

By considering all tuples in the Q-table and T -table of JΣt , we define h′ as
the identity on all variables in {p1, p2, p3, o1, o2, o3}. As far as the variable p4 is

27

concerned, we proceed analogously to the extension of h7 to h8 in Example 3.6
and set h′(p4) = p2.

The only ingredient missing for our FindCoreE algorithm is an efficient
search for a homomorphism h : Txy → U with U ⊆ TΣt . By the construction
of Txy according to Lemma 3.3, the domain size of Txy as well as the number
of facts in it are only by a constant larger than those of the corresponding
preuniversal instance T . By Theorem 2.1, the complexity of searching for a
homomorphism is determined by the block size. The problem with egds in the
target chase is that they may destroy the block structure of T by equating
variables from different blocks of T . However, we show below that the search
for a homomorphism on Txy may still use the blocks of TΣst computed before
the target chase. To achieve this, we adapt the Rigidity Lemma from [6].

Definition 3.2. Let K be an instance whose elements are constants and vari-
ables. Let y be some element of K. We say that y is rigid if h(y) = y for every
endomorphism h on K. In particular, all constants of K are rigid.

The original Rigidity Lemma was formulated for sets of target dependencies
consisting of egds only. A close inspection of the proof in [6] reveals that it
remains valid when tgds are added.

Lemma 3.5. (Rigidity) Assume a data exchange setting where Σst is a set
of tgds and Σt is a set of egds and weakly-acyclic tgds. Let J be the canonical
preuniversal instance and let J ′ = JΣt be the canonical universal instance. Let
x and y be variables of J s.t. x v y (i.e., [x] = [y]) and s.t. [x] is a nonrigid
null of J ′. Then x and y are in the same block of J .

Proof. (Sketch) (cf. [6]) Unifications performed while chasing egds are logically
forced, i.e., given the formula τ : φ→ x = y where φ is a diagram of the instance
J (that is, the conjunction of all facts in J , where all domain elements of J are
now treated as first-order variables), Σt |= τ holds. Moreover, since J ′ satisfies
Σt, it follows that J ′ satisfies τ .

Assume that x and y are variables in different blocks of J with x v y.
Moreover, let h be an arbitrary homomorphism on J ′. We have to show that
then x is rigid, i.e.: h([x]) = [x].

We construct a valuation V for the terms of φ as follows: Let V (z) = [z] if
z occurs in the block B of x and V (z) = h([z]) otherwise. Let R(u1, . . . , un)
be a fact in J (and, therefore, a conjunct in φ). Then the fact R([u1], . . . , [un])
is in J ′ by the definition of [·]. Moreover, it can be shown (by exactly the
same arguments as in [6]), that V (ui) = h([ui]) holds for every element ui ∈
dom(J). Hence, R(V (u1), . . . , V (un)) = R(h([u1]), . . . , h([un])). The latter
tuple is contained in J ′, since h is an endomorphism. Hence, V is a valid
assignment for φ in J ′. Thus, V (x) = V (y), since J ′ satisfies τ . Now V (x) =
h([x]) and V (y) = [y] by definition of V . So h([x]) = V (x) = V (y) = [y]. By
x v y, we have [x] = [y] and, therefore, in total h([x]) = [y] = [x]. �

Next, we formalize the idea of considering the blocks of J when searching
for a homomorphism of J ′.

28

Definition 3.3. We define the non-rigid Gaifman graph G′(I) of an instance
I as the usual Gaifman graph but restricted to vertices corresponding to non-
rigid variables. We define non-rigid blocks of an instance I as the connected
components of the non-rigid Gaifman graph G′(I).

Theorem 3.3. Let T be a preuniversal instance obtained via the st-tgds Σst.
Let Σt be a set of weakly acyclic tgds and egds, and let U be a retract of TΣt .
Moreover, let x, y ∈ dom(TΣt) and let Txy ⊆ TΣt be constructed according to
Lemma 3.3. Then we can check if there exists a homomorphism h : Txy → U , s.t.
h(x) = h(y) in time O(|dom(U)|c) for some c depending only on Σ = Σst ∪Σt.

Proof. First, we prove that the rigid variables of TΣt are also rigid in Txy.
Assume to the contrary that x ∈ var(Txy) is rigid in TΣt and that there exists
a homomorphism h : Txy → U s.t. h(x) 6= x. By Theorem 3.1, h can be trans-
formed into an endomorphism h′ : TΣ → U , s.t. ∀x ∈ dom(h) : h(x) = h′(x).
Thus, we get h′(x) = h(x) 6= x, which contradicts the assumption that x is rigid
in TΣ.

Hence, the search for a homomorphism h : Txy → U proceeds by checking
all possible homomorphisms on the non-rigid blocks of Txy individually. This
is justified by the following observation: Let B1, . . . , Bn denote the non-rigid
blocks of Txy. Moreover, for every i ∈ {1, . . . , n}, let hi : Bi → U be a homo-
morphism. Then the mapping h : Txy → U defined as follows is well-defined and
a homomorphism: For every z ∈ Bi, we set h(z) := hi(z) and for all z outside
all Bi (i.e, z is rigid), we set h(z) := [z].

Recall from Lemma 3.3 that Txy has only constantly many variables in ad-
dition to T . By Theorem 2.2, the block size of T depends only on Σst. Hence,
also the non-rigid block size of Txy is bounded by a constant depending only
on Σ. In principle, we thus get, analogously to Theorem 2.1, the upper bound
O(n · |dom(U)|c), where n is the number of (non-rigid) blocks. However, we
are dealing with the situation that U is a retract of TΣt , i.e., we already have
a retraction r : TΣ → U . Hence, in order to search for a homomorphism h
with h(x) = h(y), it suffices to inspect the blocks containing x and y and to
set h(z) = r(z) for the variables of all other blocks. This allows us to eliminate
the factor n from the above upper bound, and the claim of the theorem follows
immediately. �

Example 3.8. Let us revisit Example 3.6. We start building a proper en-
domorphism h′ on JΣt by constructing a homomorphism h : W → JΣt with
W = {P (1, w1, 1), P (1, w1, 2), R(1, z1, q1), R(1, z1, q2)}. The variables in W fall
into two blocks, namely {w1} and {z1, q1, q2}.

Now consider the preuniversal instance J , which has the following blocks:
{w1}, {w2}, {v1, r1, p1, o1}, {z1, q1, p2}, {v2, r2, p3, o3}, {z2, q2, p4}, {o2}. The
egd ε1 enforces the equality w1 = w2; the egd ε2 enforces the equalities z1 =
v1 = z2. In J , w1 and w2 are in different blocks. Likewise, z1, v1, and z2 are
all in different blocks. Hence, the variables w1 and z1 in W are rigid. Thus, we
only search for homomorphisms h : W → JΣt with h(w1) = w1 and h(z1) = z1.

29

Procedure FindCoreE

Input: Source ground instance S

Output: Core of a universal solution for S

(1) Chase (S,∅) with Σst to obtain (S, T) := (S, ∅)Σst ;
(2) Chase T with Σt to obtain U := TΣt ;
(3) for each x ∈ var(U), y ∈ dom(U), x 6= y do
(4) Compute Txy;
(5) Look for h : Txy → U s.t. h(x) = h(y);
(6) if there is such h then
(7) Extend h to an endomorphism h′ on U

by calling the procedure Extend;
(8) Transform h′ into a retraction r;
(9) Set U := r(U);
(10) return U.

The non-rigid blocks of W are {q1} and {q2}. The search for a homomorphism
is thus reduced to finding the image of q1 and of q2.

Actually, if we consider all of JΣt (rather than just W), then the blocks
{v1, r1, p1, o1}, {z1, q1, p2}, and {z2, q2, p4} of J collapse to a single block {r1, p1,
o1, z1, q1, p2, q2, p4} (note that v1 and z2 have disappeared due to the egd-applica-
tions). This block is considerably bigger than the original ones in the preuniver-
sal instance. However, since z1 is a rigid variable, this block can be split into
the non-rigid blocks {r1, p1, o1}, {q1, p2}, and {q2, p4}, which even have smaller
size than the original blocks.

Putting all these pieces together, we get the FindCoreE algorithm. It has
basically the same overall structure as the FindCore algorithm of [8], which
we recalled in Section 2.2. Of course, the correctness of our algorithm and its
polynomial time upper bound are now based on the new results proved in this
section. In particular, step (4) is based on Lemma 3.3, step (5) is based on
Lemma 3.5 and Theorem 3.3, and step (7) is based on Lemma 3.4 as well as
Theorems 3.1 and 3.2. Analogously to Theorem 2.6, we thus get

Theorem 3.4. Let (S,T,Σst,Σt) be a data exchange setting with st-tgds Σst

and target dependencies Σt. Moreover, let S be a ground instance of the target
schema S. If this data exchange problem has a solution, then FindCoreE cor-
rectly computes the core of a canonical universal solution in time O(|dom(S)|b)
for some b that depends only on Σst ∪ Σt.

30

4. Implementation

We have implemented a prototype system based on the FindCoreE al-
gorithm presented in Section 3, relying on a DBMS back-end. Its principal
architecture is shown in Figure 4(a). This approach allowed us to delegate the
storage and querying of relational data to the systems best suited for that and
concentrate on the core computation itself. Currently, the implementation works
with Oracle 11g as well as with the freely available HSQLDB and PostgreSQL.
Of course, it can be easily adapted to any other RDBMS.

For specifying data exchange scenarios, we use XML configuration files. The
schema of the source and target DB as well as the st-tgds and target dependen-
cies are thus cleanly separated from the scenario-independent Java code. The
XML configuration data is passed to the Java program, which uses XSLT tem-
plates to automatically generate those code parts which depend on the concrete
scenario — in particular, the SQL statements for managing the target database
(creating tables and views, transferring data between tables etc.).

None of the common DBMSs to-date support labeled nulls. Therefore, to
implement this feature, we had to augment every target relation (i.e., table)
with additional columns, storing null labels. For instance, for a column tutor
of the Tutor table, a column tutor var is created to store the labels for nulls of
tutor. To simulate homomorphisms, we use a table called Map storing variable
mappings, and views that substitute labeled nulls in the data tables with their
images given by a homomorphism. Figure 4(b) gives a flavor of what this part
of the database looks like.

The target database contains many more auxiliary tables for maintaining the
relevant information of the core computation like information on variables (e.g.,
are they rigid or not) and blocks of the preuniversal instance, information on
sibling and parent relations, a log of non-full tgd applications (which is needed
by the Extend procedure), etc.

A great deal of the core computation is delegated to the target DBMS via
SQL commands. Profiling the test runs with our implementation shows that
about 90% of the entire time is spent by the database system on SQL processing.
Of course, the chase lends itself naturally to an SQL-realization, bearing in
mind that the premise and conclusion of dependencies are basically conjunctive
queries. But also the various steps of the FindCoreE algorithm make heavy use
of SQL. For instance, the homomorphism computation in step 5 of FindCoreE

is performed in the following way. Let a variable x and a term y be selected at
step 3 of the algorithm, and let the set Txy be computed at step 4. We want
to build a homomorphism h : Txy → U , s.t. h(x) = h(y). To do so, we need
to inspect all possible mappings from the block of x and from the block of y.
Each of these steps boils down to generating and executing a database query

Figure 4: Overview of the implementation (a) and modelling labeled nulls (b).

31

that fetches all possible substitutions for the variables in each block. Extending
the homomorphism h to an endomorphism h′ requires finding images for the yet
unmapped variables – consistent with the already found mappings. This task is
also accomplished by a series of SQL commands.

Example 4.1. Let us revisit the data exchange setting from Example 1.1. Sup-
pose that the canonical solution is

J = {Course(C1,’java’), Tutor(T2,N), Teaches(T2,C1),
NeedsLab(T2,L2), Course(C2,’java’), Tutor(T1,’Yves’),
Teaches(T1,C2), NeedsLab(T1,L1)}

Suppose that we look for a proper endomorphism h′ on J . Step 4 of FindCoreE

might, for instance, yield the set TN,′Yves′ = {Tutor(T2,N),Teaches(T2,C1),
Course(C1,’java’)}.

At step 5, a homomorphism h : Txy → J (with x = N and y =′ Yves′), s.t.
h(N) = ′Yves′ has to be found. In the absence of egds, non-rigid blocks are
the same as usual blocks, and the block of N in TN,′Yves′ is {N,T2, C1}. The
following SQL query returns all possible instantiations of the variables {T2, C1}
compatible with the mapping h(N) = ′Yves′:

SELECT Tutor.idt var AS T2, Course.idc var AS C1
FROM Tutor JOIN Teaches ON Tutor.idt var = Teaches.id tutor var JOIN

Course ON Teaches.id course var = Course.idc var
WHERE Tutor.tutor=’Yves’ AND Course.course=’java’

In our example, the result is {T2 ← T1, C1 ← C2}. In order to extend
h : TN,′Yves′ → J with var(TN,′Yves′) = {N,C1, T2} to an endomorphism h′ on J ,
we have to find images of one variable after the other in J \ TN,′Yves′ . For in-
stance, the following SQL query finds an image for variable L2 (generated by the
non-full tgd #4) consistent with the previously found mappings for N,C1, T2:
SELECT NeedsLab.lab var AS L2
FROM NeedsLab JOIN Teaches ON NeedsLab.id tutor var = Teaches.id tutor var
WHERE Teaches.id tutor var=’T1’ AND Teaches.id course var=’C2’

The query returns L1, as expected, i.e., h(L2) = L1.

At every iteration, the algorithm tries to find an endomorphism, that would
map a variable on some other term. Since all the variables are distributed among
the facts by the chase, we may analyze the dependencies to prune impossible
substitutions, e.g., in our running example, it makes no sense to try to unify a
variable from the id tutor column with any term from id course. We capture
this with the notion of field partitions, i.e., sets of fields that possibly share
terms. Two fields f1 and f2 belong to the same partition, if there is (i) a
variable shared between f1 in the premise and f2 in the conclusion of the same
tgd, (ii) a variable shared by f1 and f2 in the conclusion of a tgd, or (ii) an egd
unifying two variables occurring at fields f1 and f2 in its premise.

32

Figure 5: The TPC-H based schema, adapted from [13]

Back to the Example 1.1, the target field partitions are {Course.course},
{Tutor.tutor}, {NeedsLab.lab}, {Course.idc, Teaches.id course}, and
{Tutor.idt, Teaches.id tutor, NeedsLab.id tutor}.

Partitions not only reduce the search space for endomorphism computation,
but also allow to optimize the storage schema for evaluation of joins. Since,
under arbitrary schema mapping, both nulls and constants can occur in every
column including the key one, neither column can be defined as unique, and each
join condition col1 = col2 must be rewritten as col1 = col2 OR col1 var
= col2 var, which considerably hinders query performance. To overcome this,
during the chase we compute the domain of each partition, and store the domain
identifier of each database value in the auxiliary columns in the target tables.
Now, if col1 and col2 belong to the same partition, the join condition can
be rewritten as col1 domid = col2 domid, where prefix “ domid” marks such
auxiliary columns.

5. Experiments and Discussion

So far, neither core computation nor labeled nulls are featured in any DBMS
resp., data integration tool, and, to the best of our knowledge, no established
benchmark for testing such a functionality exists. To conduct our experiments,
we synthesized several test cases reflecting common schema transformations:
normalization/denormalization, and enforcement of additional functional and
inclusion dependencies. By adding redundant target tgds and, failing to specify
necessary egds, we were able to vary the amount of minimization effort for the
core computation algorithm from mere checking the optimality of the instance
to removing approximately a half of the tuples generated by the chase.

We have run experiments with our prototype implementation on several
scenarios with varying size of the schema (5–10 target relations), of the depen-
dencies (5–15 constraints), and of the actual source data. The runtimes reported
in this section were obtained by tests on a workstation running Suse Linux with
2 QuadCore processors (2.3 GHz) and 16 GB RAM. Oracle 11g was used as
database system.

Test scenario. The tests were carried out with the following scenario, based
on the TPC-H database schema [13] (see Figure 5).3 The schema depicted in
Figure 5 is chosen as the target schema. Hence, the foreign key constraints (de-
picted as arrows in Figure 5) and key constraints (e.g., on columns n nationkey,
p partkey and others) give rise to the following target tgds and egds:

3Note that no database size requirements of the TPC-H test are met here. The motivation
for our choice is solely to use a well-known database schema for illustration. Furthermore, we
omitted the “Comment” fields present in each table in the original schema [13].

33

• LineItem(OrdKey, . . .)→ Order(OrdKey, . . .),

• LineItem(. . . , SuppKey, . . .)→ Supplier(SuppKey, . . .), etc.: similar tgds are
used for each foreign key in the schema.

• Nation(Key, N1, R1)∧Nation(Key, N2, R2)→ N1 = N2∧R1 = R2 — primary
key constraint on the Nation relation; other PKs are defined in the same way.

Here, by three dots inside an atom, we abbreviate a list of variables that
occur only once in a formula thus being irrelevant for evaluating the precondition
of a dependency, or – in case of conclusion variables – serving as placeholders
for distinct fresh nulls introduced in the course of the chase.

Now, for the source schema and the source-to-target dependencies, we con-
sider the following scenario: Suppose that the database was accidentally dropped
and needs to be recovered using a number of sources, each containing some part
of the original data, namely:

— Sales database containing the extracts OrderSALE and CustomerSALE from
the original tables Order and Customer, and the LineItemSALE table, extracted
from LineItem, with the difference that the fields l partkey and l suppkey are
substituted by the pair l partname, l suppname containing the names of a part
resp. a supplier. The following st-tgd brings the data from Sales back into the
original schema:

OrderSALE(OK, CK, S, TPr, Dt, OPri, Cl, SPri)
∧ CustomerSALE(CK, CN, Addr, Nat, Ph, ActB, Seg)
∧ LineItemSALE(OK, PN, SN, Num, Q, EP, Dc, Tax, RFg, LS, SDt, CDt, RDt, ShI, ShM)

→ Order(OK, CK, S, TPr, Dt, OPri, Cl, SPri)
∧ Customer(CK, CN, Addr, Nat, Ph, ActB, Seg)
∧ Lineitem(OK, PK, SK, Num, Q, EP, Dc, Tax, RFg, LS, SDt, CDt, RDt, ShI, ShM)
∧ PartSupp(PK, SK, . . .) ∧ Part(PK, PN, . . .) ∧ Supplier(SK, SN, . . .)

Here, the existentially-quantified variables are either shown underlined (e.g.
the keys of the Supplier and Part tables have to be invented anew) or skipped
(in case they occur only once in the formula).

— The Supplies database contains the suppliers, parts, and ordered items
in the tables SupplierSUP , PartSUP , PartSuppSUP , and LineItemSUP . The
following st-tgd allows us to reimport the data from this schema:

SupplierSUP (SK, CN, Addr, Nat, Ph, ActB)
∧ PartSUP (PK, PN, MfG, B, Typ, Sz, Cnt, RP)
∧ PartSuppSUP (PK, SK, AQty, SC)
∧ LineItemSUP (PK, SK, Num, Q, EP, Dc, Tax, RFg, LS, SDt, CDt, RDt, ShI, ShM)

→ Supplier(CK, CN, Addr, Nat, Ph, ActB, Seg)
∧ Part(PK, PN, MfG, B, Typ, Sz, Cnt, RP)
∧ PartSupp(PK, SK, AQty, SC)
∧ Lineitem(OK, PK, SK, Num, Q, EP, Dc, Tax, RFg, LS, SDt, CDt, RDt, ShI, ShM)

Note that the above source-to-target tgds are not normalized (cf. the tgd in the
Example 3.3) for the sake of brevity of notation: e.g., normalizing the second
dependency leads to four tgds with a single atom in the conclusion each.

34

— Finally, suppose that the source schema contains yet another database, called
Sample, such that Sample conforms to the original full TPC-H schema, but
contains only an extract of the original data. One immediately makes use of it
by copying its contents into the database being recovered, applying the source-
to-target tgds of the form RSAMPLE(~x) → R(~x) to each relation R in the
schema.

Due to the data in Sample, some tuples from the Sales or Supplies
databases may become redundant. We have exploited this observation for our
tests in that it allowed us to control the rate of redundancy in the target
database by properly populating the source databases. Additionally, we also
experimented with slight modifications of the target tgds presented above in
order produce further redundancy in the target database. For instance, turning
an inclusion dependency on the Nation table:

Nation(NK, RK, NName)→ Region(RK, RName)

into

Nation(NK, RK, NName)→ Region(RK, RName), Region(RK1, RName)

and so forth. Such modifications of tgds produce logically equivalent tgds,
which generate further redundant target facts that can be eliminated by the
core computation.

Performance of core computation. In a setting where the canonical solution
had about 50% more nulls than the core, our system managed to compute the
core for a target DB with about 6,000 labeled nulls in almost 180 min (solid
curve with square symbols on Figure 6,a). In contrast, the core of an instance
with about 20,000 nulls was computed in similar time (solid curve with triangles)
when only 10% of the variables were redundant.

Figure 6: Performance (a) and the typical progress (b) of core computation.

We have also implemented the FindCore algorithm of [8] in order to com-
pare its performance with our algorithm. The left-most curve in Figure 6(a)
corresponds to a run of FindCore on an instance with approximately 10% of
variables being redundant. The runtime is comparable to (in fact, worse than)
the most problematic case with over 50% redundancy for the FindCoreE al-
gorithm. Actually, this is not surprising: One of the principal advantages of
FindCoreE is that it enforces egds as part of the chase rather than in the
course of the core computation. The negative effect of simulating the egds by
tgds is illustrated by the following simple example:

Example 5.1. Let J = {R(x, y), P (y, x)} be a preuniversal instance, and a
single egd R(z, v), P (v, z) → z = v constitute Σt. In order to simulate this egd
by tgds, the following set of dependencies Σ̄t has to be constructed according to
the algorithm in [8]:

P (x, y)→ E(x, x) E(x, y)→ E(y, x)
P (x, y)→ E(y, y) E(x, y), E(y, z)→ E(x, z) P (x, y), E(x, z)→ P (z, y)
R(x, y)→ E(x, x) R(x, y), E(x, z)→ R(z, y) P (x, y), E(y, z)→ P (x, z)
R(x, y)→ E(y, y) R(x, y), E(y, z)→ R(x, z) R(z, v), P (v, z)→ E(z, v)

35

where E is an auxiliary predicate representing equality. Chasing J with Σ̄t (in a
nice order), yields the instance J Σ̄t = {R(x, y), R(x, x), R(y, x), R(y, y), P (y, x),
P (y, y), P (x, y), P (x, x), E(x, x), E(x, y), E(y, x), E(y, y)}4. The core computa-
tion applied to J Σ̄t produces the instance {R(x, x), P (x, x)} or {R(y, y), P (y, y)}.
On the other hand, if egds were directly enforced by the target chase, then the
chase would end with the canonical universal solution JΣt = {R(x, x), P (x, x)}.

Another interesting observation is that, in many cases, the result of applying
just a small number of endomorphisms already leads to a significant elimina-
tion of redundant nulls (i.e., nulls present in the canonical solution but not in
the core) from the target database and that further iterations of this procedure
are much less effective with respect to the number of nulls eliminated vs. time
required. A typical situation is shown in Figure 6(b): The solid line shows
the number of redundant nulls remaining after i iterations (i.e., i nested endo-
morphisms) while the dashed line shows the total time required for the first i
iterations. To achieve this, we used several heuristics to choose the best homo-
morphisms. The following hints proved quite useful: (i) prefer constants over
variables, (ii) prefer terms already used as substitutions, and (iii) avoid mapping
a variable onto itself.

As was already mentioned in Section 3, every intermediate database instance
of the FindCoreE algorithm is a universal solution to the data exchange prob-
lem. Hence, our prototype implementation also allows the user to restrict the
number of nested endomorphisms to be constructed, thus computing an approx-
imation of the core rather than the core itself. The dashed curves in Figure 6(a)
corresponds to a “partial” core computation, with only 1 iteration of the while-
loop in FindCoreE . In both scenarios, even a single endomorphism allowed us
to eliminate over 85% of all redundant nulls.

Effect on query answering. We also carried out tests to shed light on the
negative effect of redundant tuples in the target database on the performance of
query answering. Consider, for instance, the following query, retrieving the links
between customers and suppliers residing in the same country and processing
similar parts.

SELECT DISTINCT c name, s name, p1.p partname
FROM Customer

JOIN LineItem ON l orderkey = o orderkey
JOIN PartSupp ps1 ON l partkey = ps1.ps partkey

AND l suppkey = ps1.ps suppkey
JOIN Part p1 ON ps1.ps partkey = p1.p partkey
JOIN Part p2 ON p1.p partname = p2.p partname
JOIN PartSupp ps2 ON p2.p partkey = ps2.ps partkey
JOIN Supplier ON ps2.ps suppkey = s suppkey

WHERE s nationkey = c nationkey

4Note that, if a fact contains k occurrences of any of the two terms that have to be unified
(in our case, the variables x and y), then the chase produces 2k variants of this fact.

36

Note that, of course, such a query could not be run “as is” on our database
simulating labeled nulls: the join conditions must be defined either disjunctively
on the pair of columns representing constants and variables, or on the domain
identifiers columns (see the end of Section 4). To keep the notation simple, we
opted to avoid these technical details here.

The chart in Figure 7 juxtaposes the execution time of one iteration of
FindCoreE and the performance gain for the above query, when one such it-
eration of FindCoreE has been carried out. In these tests, the core of the
target instance was kept fixed, while ever increasing portions of redundant tu-
ples were inserted at every stage of the experiment. First, the query was run
against the database with redundant tuples, after which a single iteration of
the FindCoreE was executed, and the query was evaluated again on the re-
sulting, shrunk database. Under “performance gain” the difference of the query
evaluation times before and after core approximation is understood.

Figure 7: Performance gain of the conjunctive query evaluation vs. core approximation
time

This example demonstrates a situation where the effect of core approxima-
tion is significant even for a sinlge execution of a conjunctive query. Moreover,
one has to keep in mind that the core approximation has to be carried out only
once while the performance gain in query answering is achieved every time a
(sufficiently complex) query has to be executed by the database system.

Lessons learned. Our experiments have demonstrated that redundancy elim-
ination by core computation (or at least by an approximation to the core) can
have a significant effect on query answering. As far as the performance of core
computation is concerned, our experiments have clearly revealed the importance
of carefully designing target egds. In some sense, they play a similar role as the
core computation in that they lead to an elimination of nulls. However, the
egds do it much more efficiently. Another observation is that it is well worth
considering to content oneself with an approximation of the core since, in gen-
eral, a small number of iterations of our algorithm already leads to a significant
reduction of nulls. Finally, the experience gained with our experiments gives us
several hints for future performance improvements. We just give four examples:

(i) Above all, further heuristics have to be incorporated concerning the search
for an endomorphism which maps a labeled null onto some other domain ele-
ment. So far, we have identified and implemented only the most straightforward,
yet quite effective, rules. Apparently, additional measures are needed to further
prune the search space.

(ii) We have already mentioned the potential of approximating the core by a
small number of endomorphisms. Again, we need further heuristics concerning
the search for the most effective endomorphisms. Moreover, it would be de-
sirable to add an estimation of the redundancy in the instance, measuring the
remaining ”distance” to the core.

(iii) Some phases of the endomorphism search allow for concurrent imple-
mentation. This potential of parallelization, which has not been exploited so
far, clearly has to be leveraged in future versions of our implementation.

(iv) Profiling has revealed that currently most of the execution time (about
90%) is spent in the RDBMS when executing the SQL-commands. So far, no

37

efforts of database tuning or SQL tuning (like de-normalization of auxiliary
structures) have been made. This is clearly required next.

6. Conclusion

In this paper we have revisited the core computation in data exchange and
we have come up with an enhanced version of the FindCore algorithm from
[8], which avoids the simulation of egds by tgds. The algorithms FindCore and
FindCoreE look similar in structure and have essentially the same asymptotic
worst-case behavior (see Theorem 2.6 and 3.4). Nevertheless, there are some
fundamental differences between them, as has been detailed in Section 5. In
particular, our approach allows us to strictly separate the search for a solution
of a data exchange problem from the core computation and to consider the
latter as an optional service. Moreover, the direct treatment of egds has led
to a performance improvement of an order of magnitude as witnessed by our
experiments (see also Example 5.1 for an illustration of the negative effect of
simulating the egds). Another order of magnitude can be gained by contenting
ourselves with an approximation to the core, which has been made possible with
our new approach.

We have also presented a prototype implementation of our algorithm, which
delegates most of its work to the underlying RDBMS via SQL. It has thus been
demonstrated that core computation fits well into existing database technology
and is clearly not a separate technology. Although the data exchange scenarios
tackled so far are not industrial size examples, we expect that there is ample
space for performance improvements. The experience gained with our prototype
gives valuable hints for directions of future work.

Acknowledgement. This work was supported by the Vienna Science and Tech-
nology Fund (WWTF), project ICT08-032. Additionally, V. Savenkov receives
a scholarship from the European program “Erasmus Mundus External Cooper-
ation Window”. We are also very grateful to the anonymous referees as well
as to Georg Gottlob for their valuable comments on previous versions of this
article.

References

[1] F. Afrati and Ph. G. Kolaitis. Answering aggregate queries in data ex-
change. Proc. PODS’08, pages 129–138. ACM, 2008

[2] C. Beeri and M. Y. Vardi. A proof procedure for data dependencies. J.
ACM, 31(4):718–741, 1984.

[3] A. Deutsch and V. Tannen. Reformulation of XML queries and constraints.
In Proc. ICDT’03, volume 2572 of LNCS, pages 225–241. Springer, 2002.

[4] R. Fagin. Horn clauses and database dependencies. J. ACM, 29(4):952–985,
1982.

38

[5] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: seman-
tics and query answering. Theor. Comput. Sci., 336(1):89–124, 2005.

[6] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange: getting to the core.
ACM Trans. Database Syst., 30(1):174–210, 2005.

[7] G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. On reconciling
data exchange, data integration, and peer data management. In Proc.
PODS’07, pages 133–142. ACM, 2007.

[8] G. Gottlob and A. Nash. Efficient Core Computation in Data Exchange.
J. ACM, 55(2):1–49, 2008.

[9] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio grows
up: from research prototype to industrial tool. In Proc. SIGMOD’05, pages
805–810. ACM, 2005.

[10] M. Lenzerini. Data integration: A theoretical perspective. In Proc.
PODS’02, pages 233–246. ACM, 2002.

[11] L. Libkin. Data exchange and incomplete information. In Proc. PODS’06,
pages 60–69. ACM Press, 2006.

[12] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and R. Fagin. Trans-
lating web data. In Proc. VLDB’02, pages 598–609. Morgan Kaufmann,
2002.

[13] TPC Benchmark H, Standard Specification, Revision 2.8.0. Available at
http://tpc.org/tpch/spec/tpch2.8.0.pdf, as of August 2009.

List of figures

• Figure 1: Dependency graph.

• Figure 2: Positions of the instance JΣ (foreign positions are dashed) (a)
and the dependency graph of Σ (b).

• Figure 3: (a) Dependency graph (special edges are dashed), (b) the preuni-
versal instance and the result of tgds chase, and (c) the universal solution
and the core for the Example 3.6. Thin arrows show parent tuples.

• Figure 4: Overview of the implementation (a) and modelling labeled nulls
(b).

• Figure 5: The TPC-H based schema used for experiments, adapted from
[13].

• Figure 6: Performance (a) and the progress (b) of core computation.

• Figure 7: Performance gain of the conjunctive query evaluation vs. core
approximation time

39

