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Abstract. Core computation in data exchange is concerned with mate-
rializing the minimal target database for a given source database. Gottlob
and Nash have recently shown that the core can be computed in polyno-
mial time under very general conditions. Nevertheless, core computation
has not yet been incorporated into existing data exchange tools. The
principal aim of this paper is to make a big step forward towards the
practical feasibility of core computation in data exchange by developing
an improved algorithm and by presenting a prototype implementation of
our new algorithm.

1 Introduction

Data exchange is concerned with the transfer of data between databases with
different schemas. This transfer should be performed so that the source-to-
target dependencies (STDs) establishing a mapping between the two schemas are
satisfied. Moreover, the target database may also impose additional integrity
constraints, called target dependencies (TDs). As STDs and TDs, we consider
so-called embedded dependencies [1], which are first-order formulae of the form
∀x (φ(x) → ∃y ψ(x, y)) where φ and ψ are conjunctions of atomic formulas or
equalities, and all variables in x do occur in φ(x). Throughout this paper, we
shall omit the universal quantifiers. By convention, all variables occurring in the
premise are universally quantified. Moreover, we shall often also omit the exis-
tential quantifiers. By convention, all variables occurring in the conclusion only
are existentially quantified over the conclusion. We shall thus use the notations
φ(x) → ψ(x, y) and φ(x) → ∃y ψ(x, y) interchangeably for the above formula.

The source schema S and the target schema T together with the set Σst of
STDs and the set Σt of TDs constitute the data exchange setting (S,T, Σst, Σt).
Following [2,3], we consider dependencies of the following forms: Each STD is
a tuple generating dependency (TGD) [4] of the form φS(x) → ψT(x, y), where
φS(x) is a conjunction of atomic formulas over S and ψT(x, y) is a conjunction of
atomic formulas over T. Each TD is either a TGD, of the form φT(x) → ψT(x, y)
or an equality generating dependency (EGD) [4] of the form φT(x) → (xi = xj).
In these dependencies, φT(x) and ψT(x, y) are conjunctions of atomic formulas
over T, and xi, xj are among the variables in x. An important special case of
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TGDs are full TGDs, which have no (existentially quantified) variables y, i.e.
we have φS(x) → ψT(x) and φT(x) → ψT(x), respectively.

The data exchange problem for a data exchange setting (S,T, Σst, Σt) is the
task of constructing a target instance J for a given source instance I, s.t. all
STDs Σst and TDs Σt are satisfied. Such a J is called a solution. Typically, the
number of possible solutions to a data exchange problem is infinite.

Example 1. Suppose that the source instance consists of two relations Tuto-
rial(course, tutor): {(’java’, ’Yves’)} and BasicUnit(course): {’java’}. Moreover,
let the target schema have four relation symbols NeedsLab(id tutor,lab), Tu-
tor(idt,tutor), Teaches(id tutor, id course) and Course(idc,course). Now suppose
that we have the following STDs:

1. BasicUnit(C) → Course(Idc, C).
2. Tutorial(C, T ) → Course(Idc, C), Tutor(Idt, T ), Teaches(Idt, Itc).

and suppose that the TDs are given by the two TGDs:

3. Course(Idc, C) → Tutor(Idt, T ), Teaches(Idt, Idc).
4. Teaches(Idt, Idc) → NeedsLab(Idt, L).

Then the following instances are all valid solutions:
J = {Course(C1, ’java’), Tutor(T2,N), Teaches(T2,C1), NeedsLab(T2,L2),

Course(C2, ’java’), Tutor(T1,’Yves’), Teaches(T1,C2), NeedsLab(T1,L1)},
Jc = {Course(C1,’java’), Tutor(T1,’Yves’), Teaches(T1,C1), NeedsLab(T1,L1)},
J ′={Course(’java’,’java’), Tutor(T1,’Yves’), Teaches(T1,’java’), NeedsLab(T1,L1)}

A natural requirement (proposed in [2]) on the solutions is universality, that
is, there should be a homomorphism from the materialized solution to any other
possible solution. Note that J ′ in Example 1 is not universal, since there exists
no homomorphism h : J ′ → J . Indeed, a homomorphism maps any constant onto
itself; thus, the fact Course(’java’,’java’) cannot be mapped onto a fact in J .

In general, a data exchange problem has several universal solutions, which
may significantly differ in size. However, there is – up to isomorphism – one
particular, universal solution, called the core [3], which is the most compact
one. For instance, solution Jc in Example 1 is a core.

Fagin et al. [3] gave convincing arguments that the core should be the data-
base to be materialized. In general, computing the core of a graph or a structure
is NP-complete [5]. However, Gottlob and Nash [6] showed that the core of the
target database in data exchange can be computed in polynomial time under very
general conditions. Despite this favorable complexity result, core computation
has not yet been incorporated into existing data exchange tools. This is mainly
due to the following reasons: (1) Despite the theoretical tractability of core
computation, we are still far away from a practically efficient implementation
of core computation. In fact, no implementation at all has been reported so far.
(2) The core computation looks like a separate technology which cannot be easily
integrated into existing database technology.
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Results. The main contribution of this work is twofold:

(1) We present an enhanced version of the FindCore algorithm, which we
shall refer to as FindCore

E . One of the specifics of FindCore is that EGDs
in the target dependencies are simulated by TGDs. As a consequence, the core
computation becomes an integral part of finding any solution to the data ex-
change problem. The most significant advantage of our FindCore

E algorithm
is that it avoids the simulation of EGDs by TGDs. The activities of solving
the data exchange problem and of computing the core are thus fully uncoupled.
The core computation can then be considered as an optional add-on feature of
data exchange which may be omitted or deferred to a later time (e.g., to pe-
riods of low database user activity). Moreover, the direct treatment of EGDs
leads to a performance improvement of an order of magnitude. Another order of
magnitude can be gained by approximating the core. Our experimental results
suggest that the partial execution of the core computation may already yield a
very good approximation to the core. Since all intermediate instances computed
by our FindCore

E algorithm are universal solutions, one may stop the core
computation at any time and content oneself with an approximation to the core.

(2) We also report on a proof-of-concept implementation of our enhanced
algorithm. It is built on top of a relational database system and mimics data
exchange-specific features by automatically generated views and SQL queries.
This shows that the integration of core computation into existing database tech-
nology is clearly feasible. The lessons learned from the experiments with this
implementation yield important hints concerning future improvements.

Due to lack of space, most proofs are sketched or even omitted in this paper.
For full proofs, we refer to [7].

2 Preliminaries

2.1 Basic Notions

Schemas and instances. A schema σ = {R1, . . . , Rn} is a set of relation
symbols Ri with fixed arities. An instance over a schema σ consists of a relation
for each relation symbol in σ, s.t. both have the same arity. Tuples of the relations
may contain two types of terms : constants and variables . The latter are also
called labeled nulls. Two labeled nulls are equal iff they have the same label.
For every instance J , we write dom(J), var(J), and const(J) to denote the
set of terms, variables, and constants, respectively, of J . Clearly, dom(J) =
var(J) ∪ const(J) and var(J) ∩ const(J) = ∅. If a tuple (x1, x2, . . . , xn) belongs
to the relation R, we say that J contains the fact R(x1, x2, . . . , xn). We write x
for a tuple (x1, x2, . . . , xn) and if xi ∈ X , for every i, then we also write x ∈ X
instead of x ∈ Xn. Likewise, we write r ∈ x if r = xi for some i. Let Σ be an
arbitrary set of dependencies and J an instance. We write J |= Σ to denote that
the instance J satisfies Σ. In a data exchange setting (S,T, Σst, Σt), the source
schema S and the target schema T have no relation symbols in common. In a
source instance I, no variables are allowed, i.e., dom(I) = const(I).
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Chase. The data exchange problem can be solved by the chase [4], which iter-
atively introduces new facts or equates terms until all desired dependencies are
fulfilled. More precisely, let Σ contain a TGD τ : φ(x) → ψ(x, y), s.t. I |= φ(a)
for some assignment a on x and I � ∃yψ(a, y). Then we have to extend I with
facts corresponding to ψ(a, z), where the elements of z are fresh labeled nulls.
Likewise, suppose that Σ contains an EGD τ : φ(x) → xi = xj , s.t. I |= φ(a)
for some assignment a on x. This EGD enforces the equality ai = aj . We thus
choose a variable v among ai, aj and replace every occurrence of v in I by the
other term; if ai, aj ∈ const(I) and ai 	= aj , the chase halts with failure. The
result of chasing I with dependencies Σ is denoted as IΣ .

A sufficient condition for the termination of the chase is that the TGDs be
weakly acyclic (see [8,2]). This property is formalized as follows. For a depen-
dency set Σ, construct a dependency graph GD whose vertices are fields Ri

where i denotes a position (an “attribute”) of relation R. Let φ(x) → ψ(x, y) be
a TGD in Σ and suppose that some variable x ∈ x occurs in the field Ri. Then
the edge

(
Ri, Sj

)
is present in GD if either (1) x also occurs in the field Sj in

ψ(x, y) or (2) x occurs in some other field T k in ψ(x, y) and there is a variable
y ∈ y in the field Sj in ψ(x, y). Edges resulting from rule (2) are called special .

A set of TGDs is weakly acyclic if there is no cycle containing a special edge.
Obviously, the set of STDs is always weakly acyclic, since the dependency graph
contains only edges from fields in the source schema to fields in the target schema.
We thus consider data exchange settings (S,T, Σst, Σt) where Σst is a set of
TGDs and Σt is a set of EGDs and weakly acyclic TGDs.

Figure 1 shows the dependency graph for the target TGDs in Example 1.
Special edges are marked with *. Source-to-target TGDs are omitted, since they
can never produce a cycle. Figure 1 contains two kinds of vertices: the ovals, la-
belled by attributes of target relations, are the actual vertices of the dependency
graph. The rectangles, labelled by relation names, were inserted to improve the
readability. Rather than adding the relation names to the attributes in the labels
of the oval vertices, we have connected each attribute to the rectangular vertex
with the corresponding relation name. Clearly, this dependency graph has no
cycle containing a special edge. Hence, these TGDs are weakly acyclic.

Universal solutions and core. Let I,I ′ be instances. A homomorphism h : I →
I ′ is a mapping dom(I) → dom(I ′), s.t. (1) whenever R(x) ∈ I, then R(h(x)) ∈
I ′, and (2) for every constant c, h(c) = c. An endomorphism is a homomorphism
I → I, and a retraction r is an idempotent endomorphism, i.e. r ◦ r = r. An
endomorphism or a retraction is proper if it is not surjective (for finite instances,
this is equivalent to being not injective). The image r(I) under a retraction r is
called a retract of I. An instance is called a core if it has no proper retractions.
A core C of an instance I is a retract of I, s.t. C is a core. Cores of an instance
I are unique up to isomorphism. We can therefore speak about the core of I.

Consider a data exchange setting where Σst is a set of TGDs and Σt is a
set of EGDs and weakly acyclic TGDs. Then the solution to a source instance
S can be computed as follows: We start off with the instance (S, ∅), i.e., the
source instance is S and the target instance is initially empty. Chasing (S, ∅)
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with Σst yields the instance (S, T ), where T is called the preuniversal instance.
This chase always succeeds since Σst contains no EGDs. Then T is chased with
Σt. This chase may fail because of the EGDs in Σt. If the chase succeeds, then
we end up with U = T Σt, which is referred to as the canonical universal solution.
Both T and U can be computed in polynomial time w.r.t. the size of the source
instance [2].

Tutortutor

idt

Course

course

idc
Teaches

id_tutor

id_course

NeedsLab

id_tutor

lab

**
  * *

Fig. 1. Dependency graph

Depth, height, width, blocks.
Let Σ be a set of dependencies
with dependency graph GD. The
depth of a field Rj of a relation
symbol R is the maximal num-
ber of special edges in any path
of GD that ends in Rj . The depth
of Σ is the maximal depth of any
field in Σ. Given a dependency τ :

φ(x) → ψ(x, y) in Σ, we define the width of τ to be |x|, and the height as |y|.
The width (resp. the height) of Σ is the maximal width (resp. height) of the
dependencies in Σ.

Core computation is essentially a search for appropriate homomorphisms,
whose key complexity factor is the block size [3]. It is defined as follows: The
Gaifman graph G(I) of an instance I is an undirected graph whose vertices are
the variables of I and, whenever two variables v1 and v2 share a tuple in I, there
is an edge (v1, v2) in G(I). A block is a connected component of G(I). Every
variable v of I belongs exactly to one block, denoted as block(v, I). The block
size of instance I is the maximal number of variables in any of its blocks.

Theorem 1. [3] Let A and B be instances, and suppose that blocksize(A) ≤ c
holds. Then the check if a homomorphism h : A → B exists and, if so, the
computation of h can both be done in time O(|A| · |B|c).

Theorem 2. [3] If Σst is a set of STDs of height e, S is ground, and (S, T ) =
(S, ∅)Σst, then blocksize(T ) ≤ e.

Sibling, parent, ancestor. Consider the chase of the preuniversal instance T
with TDs Σt and suppose that y is a tuple of variables created by enforcing a
TGD φ(x) → ψ(x, y) in Σt, s.t. the precondition φ(x) was satisfied with a tuple
a. Then the elements of y are siblings of each other; every variable of a is a
parent of every element of y; and the ancestor relation is the transitive closure
of the parent relation.

2.2 Core Computation with FindCore

In this section, we recall the FindCore algorithm of [6]. To this end, we briefly
explain the main ideas underlying the steps (1) – (11) of this algorithm.

The chase. FindCore starts in (1) with the computation of the preuniversal
instance. But then, rather than directly computing the canonical universal so-
lution by chasing T with Σt, the EGDs in Σt are simulated by TGDs. Hence,
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in (2), the set Σt of EGDs and TGDs over the signature τ is transformed into
the set Σ̄t of TGDs over the signature τ ∪ E, where E (encoding equality) is a
binary relation not present in τ . The transformation proceeds as follows:
1. Replace all equations x = y with E(x, y), turning every EGD into a TGD.
2. Add equality constraints (symmetry, transitivity, reflexivity): (i) E(x, y) →

E(y, x); (ii) E(x, y), E(y, z) → E(x, z); and (iii) R(x1, . . . , xk) → E(xi, xi)
for every R ∈ τ and i ∈ {1, 2, . . . , k} where k is the arity of R.

3. Add consistency constraints: R(x1, . . . , xk), E(xi, y) → R(x1, . . . , y, . . . , xk)
for every R ∈ τ and i ∈ {1, 2, . . . , k}.

Procedure FindCore

Input: Source ground instance S
Output: Core of a universal solution for S

(1) Chase (S,∅) with Σst

to obtain (S, T ) := (S, ∅)Σst ;
(2) Compute Σ̄t from Σt;
(3) Chase T with Σ̄t (using a nice order)

to get U := T Σ̄t ;
(4) for each x ∈ var(U), y ∈ dom(U), x �= y do
(5) Compute Txy;
(6) Look for h : Txy → U s.t. h(x) = h(y);
(7) if there is such h then
(8) Extend h to an endomorphism h′ on U ;
(9) Transform h′ into a retraction r;
(10) Set U := r(U);
(11) return U.

Even if Σt was weakly acyclic, Σ̄t

may possibly not be so. Hence, a
special nice chase order is defined
in [6] which ensures termination
of the chase by Σ̄t. It should be
noted that U computed in (3) is
not a universal solution since, in
general, the EGDs of Σt are not
satisfied. Their enforcement hap-
pens as part of the core computa-
tion.

Retractions. The FindCore al-
gorithm computes the core by
computing nested retracts. This is

motivated by the following properties of retractions: (1) embedded dependencies
are closed under retractions and (2) any proper endomorphism can be efficiently
transformed into a retraction [6]:

Theorem 3. [6] Let r : A → A be a retraction with B = r(A) and let Σ be a
set of embedded dependencies. If A |= Σ, then B |= Σ.

Theorem 4. [6] Given an endomorphism h : A → A such that h(x) = h(y) for
some x, y ∈ dom(A), there is a proper retraction r on A s.t. r(x) = r(y). Such
a retraction can be found in time O(|dom(A)|2).

Note that U after step (3) clearly satisfies the dependencies Σst and Σ̄t. Steps
(4) – (8), which will be explained below, search for a proper endomorphism h
on U . If this search is successful, we use Theorem 4 to turn h into a retraction
r in step (9) and replace U by r(U) in step (10). By Theorem 3 we know that
Σst and Σ̄t are still satisfied.

Searching for proper endomorphisms. At every step of the descent to the
core, the FindCore algorithm attempts to find a proper endomorphism for the
current instance U in the steps (5) – (8) of the algorithm. Given a variable x
and another domain element y, we try to find an endomorphism which equates
x and y. However, by Theorem 1, the time needed to find an appropriate homo-
morphism may be exponential w.r.t. the block size. The key idea in FindCore
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is, therefore, to split the search for a proper endomorphism into two steps: For
given x and y, there exists an instance Txy (defined below) whose block size
is bounded by a constant depending only on Σst ∪ Σt. So we first search for
a homomorphism h : Txy → U with h(x) = h(y); and then h is extended to a
homomorphism h : U → U , s.t. h(x) = h(y) still holds. Hence, h is still non-
injective and, thus, h is a proper endomorphism, since we only consider finite
instances. The properties of Txy and the existence of an extension h′ of h are
governed by the following results from [6]:

Lemma 1. [6] For every weakly acyclic set Σ of TGDs, instance T and x, y ∈
dom(T Σ), there exist constants b, c which depend only on Σ and an instance Txy

satisfying (1) x, y ∈ dom(Txy), (2) T ⊆ Txy ⊆ T Σ, (3) dom(Txy) is closed under
parents and siblings, and (4) |dom(Txy)| ≤ |dom(T )| + b. Moreover, Txy can be
computed in time O(|dom(T )|c).

Theorem 5. (Lifting) [6] Let T Σ be a universal solution of a data exchange
problem obtained by chasing a preuniversal instance T with the weakly acyclic
set Σ of target TGDs. If B and W are instances such that: (1) B |= Σ, (2)
T ⊆ W ⊆ T Σ, and (3) dom(W ) is closed under ancestors and siblings, then
any homomorphism h : W → B can be extended in time O(|dom(T )|b) to a
homomorphism h′ : T Σ → B where b depends only on Σ.

Summary. Recall that the predicate E simulates equality. Hence, if step (3) of
the algorithm generates a fact E(ai, aj) with ai 	= aj then the data exchange
problem has no solution. Otherwise, the loop in steps (4) – (10) tries to suc-
cessively shrink dom(U). When no further shrinking is possible, then the core
is reached. In fact, it is proved in [6] that such a minimal instance U resulting
from FindCore indeed satisfies all the EGDs. Hence, U minus all auxiliary facts
with leading symbol E constitutes the core of a universal solution. Moreover, it
is proved in [6] that the entire computation fits into O(|dom(S)|b) time for some
constant b which depends only on the dependencies Σst ∪ Σt.

3 Enhanced Core Computation

The crucial point of our enhanced algorithm FindCore
E is the direct treatment

of the EGDs, rather than simulating them by TGDs. Hence, our algorithm pro-
duces the canonical universal solution U first (or detects that no solution exists),
and then successively minimizes U to the core. On the surface, our FindCore

E

algorithm proceeds exactly as the FindCore algorithm from Section 2.2 algo-
rithm, i.e.: (i) compute an instance Txy; (ii) search for a non-injective homo-
morphism h : Txy → U ; (iii) lift h to a proper endomorphism h′ : U → U ; and
(iv) construct a proper retraction r from h′.

Actually, the construction of a retraction r via Theorem 4 and the closure
of embedded dependencies w.r.t. retractions according to Theorem 3 are not
affected by the application of the EGDs. In contrast, the first 3 steps above
require significant adaptations in order to cope with EGDs:
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(i) Txy in Section 2.2 is obtained by considering only a small portion of the
target chase, thus producing a subinstance of U . Now that EGDs are involved,
the domain of U may no longer contain all elements that were present in T or in
some intermediate result of the chase. Hence, we need to define Txy differently.

(ii) The computational cost of the search for a homomorphism h : Txy → U
depends on the block size of Txy which in turn depends on the block size of
the preuniversal instance T . EGDs have a positive effect in that they eliminate
variables, thus reducing the size of a single block. However, EGDs may also merge
different blocks of T . Hence, without further measures, this would destroy the
tractability of the search for a homomorphism h : Txy → U .

(iii) Since Txy is defined differently from Section 2.2, also the lifting of
h : Txy → U to a proper endomorphism h′ : U → U has to be modified. Moreover,
it will turn out that a completely new approach is needed to prove the correctness
of this lifting. The details of the FindCore

E algorithm are worked out below.

Introduction of an id. Chasing with EGDs results in the substitution of vari-
ables. Hence, the application of an EGD to an instance J produces a syntactically
different instance J ′. However, we find it convenient to regard the instance J ′

after enforcement of an EGD as a new version of the instance J rather than
as a completely new instance. In other words, the substitution of a variable
produces new versions of facts that have held that variable, but the facts them-
selves persist. We formalize this idea as follows: Given a data exchange setting
S = (S,T, Σst, Σt), we define an id-aware data exchange setting Sid by aug-
menting each relation R ∈ T with an additional id field inserted at position
0. Hence, in the atoms of the conclusions of STDs and in all atoms occurring
in TDs, we have to add a unique existentially-quantified variable at position 0.
For example, the source-to-target TGD τ : S(x) → R(x, y) is transformed into
τ id : S(x) → Rid(t, x, y) for some fresh variable t.

These changes neither have an effect on the chase nor on the core computation,
as no rules rely on values in the added columns. It is immediate that a fact
R(x1, x2, . . . , xn) is present in the target instance at some phase of solving the
original data exchange problem iff the fact Rid(id, x1, x2, . . . , xn) is present at
the same phase of solving its id-aware version. In fact, this modification does
not even need to be implemented – we just introduce it to allow the discussion
about facts in an unambiguous way.

During the chase, every fact of the target instance is assigned a unique id
variable, which is never substituted by an EGD. We can therefore identify a fact
with this variable: (1) if Rid(t1, x1, . . . , xn) is a fact of a target instance T, then
we refer to it as fact t1; (2) we define equality on facts as equality between their
id terms: Rid(t1, x1, . . . , xn) = Rid(t2, y1, . . . , yn) iff t1 = t2.

We also define a position by means of the id of a fact plus a positive integer
indicating the place of this position inside the fact. Thus, if J is an instance and
R(idR, x1, x2, . . . , xn) is an id-aware version of R(x1, . . . , xn) ∈ J , then we say
that the term xi occurs at the position (idR, i) in J .

Source position and origin. By the above considerations, facts and positions
in an id-aware data exchange setting, persist in the instance once they have
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been created – in spite of possible modifications of the variables. New facts and,
therefore, new positions in the target instance are introduced by TGDs. If a
position p = (idR, i) occurring in the fact R(idR, x1, . . . , xn) was created to hold
a fresh variable, we call p native to its fact idR. Otherwise, if an already existing
variable was copied from some position p′ in the premise of the TGD to p, then
we say that p is foreign to its fact idR. Moreover, we call p′ the source position
of p. Note that there may be multiple choices for a source position. For instance,
in the case of the TGD R(y, x) ∧ S(x) → P (x): a term of P/1 may be copied
either from R/2 or from S/1. Any possibility can be taken in such a case: the
choice is don’t care non-deterministic.

Of course, a source position may itself be foreign to its fact. Tracing the chain
of source positions back until we reach a native position leads to the notion of
origin position, which we define recursively as follows: If a position p = (idR, i) is
native to the fact R(idR, x1, . . . , xn), then its origin position is p itself. Otherwise,
if p is foreign, then the origin of p is the origin of a source position of p.

The fact holding the origin position of p is referred to as the origin fact of the
position p. Finally, we define the origin fact of a variable x, denoted as Originx,
as the origin fact of one of the positions where it was first introduced (again in
a don’t care non-deterministic way).

Example 2. Let J = {S(idS1, x1, y1)} be a preuniversal instance, and consider
the TDs {S(idS, x, y) → P (idP , y, z); P (idP , y, z) → Q(idQ, y, v)} yielding the
canonical solution JΣ = {S(idS1, x1, y1), P (idP1, y1, z1), Q(idQ1, y1, v1)} in Fig-
ure 2. Every position of J is native, being created by the source-to-target chase,
which never copies labeled nulls. Thus the origin positions of (idS1, 1) and
(idS1, 2) are these positions themselves. The latter is also the origin position
for the two foreign positions (idP1, 1) and (idQ1, 1), introduced by the target
chase (foreign positions are dashed in the figure). The remaining two positions
of the facts idP1 and idQ1 are native. The origin positions of the variables are:
(idS1, 1) for x1, (idS1, 2) for y1, (idP1, 2) for z1, and (idQ1, 2) for v1.

Lemma 2. Let I be an instance. Moreover, let p be a position in I and op its
origin position. Then p and op always contain the same term.

Normalization of TGDs. Let τ : φ(x) → ψ(x, y) be a non-full TGD, i.e.,
y is non-empty. Then we can set up the Gaifman graph G(τ) of the atoms in
the conclusion ψ(x, y), considering only the new variables y, i.e., G(τ) contains
as vertices the variables in y. Moreover, two variables yi and yj are adjacent

ZY Y V

S(X,Y) Z. P(Y,Z) P(Y,Z) V. Q(Y,V)

X Y S.a

S.b P.b Q.b

P.a Q.a

*
*

S.a S.b P.a P.b Q.a Q.b
(a) (b)

source & origin source

origin

1 1 1 1 1 1

Fig. 2. Positions of the instance JΣ (a) and the dependency graph of Σ (b)
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(by slight abuse of notation, we identify vertices and variables), if they jointly
occur in some atom of ψ(x, y). Let G(τ) contain the connected components
y1, . . . , yn. Then the conclusion is of the form ψ(x, y ) = ψ0(x ) ∧ ψ1(x, y1) ∧
· · ·∧ψn(x, yn), where the subformula ψ0(x) contains all atoms of ψ(x, y) without
variables from y and each subformula ψi(x, yi) contains exactly the atoms of
ψ(x, y) containing at least one variable from the connected component yi.

Now let the full TGD τ0 be defined as τ0 : φ(x) → ψ0(x) and let the non-
full TGDs τi with i ∈ {1, . . . , n} be defined as τi : φ(x ) → ψi(x, yi). Then τ is
clearly logically equivalent to the conjunction τ0 ∧ τ1 ∧ · · · ∧ τn. Hence, τ in the
set Σt of target dependencies may be replaced by τ0, τ1, . . . , τn.

We say that Σt is in normal form if every TGD τ in Σt is either full or its
Gaifman graph G(τ) has exactly 1 connected component. By the above consid-
erations, we will henceforth assume w.l.o.g., that Σt is in normal form.

Example 3. The non-full TGD τ : S(x, y) → ∃z, v(P (x, z) ∧ R(x, y) ∧ Q(y, v)) is
logically equivalent to the conjunction of the three TGDs: τ0 : S(x, y) → R(x, y),
τ1 : S(x, y) → ∃z P (x, z), and τ2 : S(x, y) → ∃v Q(y, v). Clearly, these depen-
dencies τ0, τ1, and τ2 are normalized in the above sense.

Extension of the parent and sibling relation to facts. Let I be an instance
after the jth chase step and suppose that in the next chase step, the non-full
TGD τ : φ(x) → ψ(x, y) is enforced, i.e.: I |= φ(a) for some assignment a on x
and I � ∃yψ(a, y), s.t. the facts corresponding to ψ(a, z), where the elements
of z are fresh labeled nulls, are added. Let t be a fact introduced by this chase
step, i.e., t is an atom of ψ(a, z). Then all other facts introduced by the same
chase step (i.e., all other atoms of ψ(a, z)) are the siblings of t. The parent set
of a fact t consists of the origin facts for any foreign position in t or in any of
its siblings. The ancestor relation on facts is the transitive closure of the parent
relation. This definition of siblings and parents implies that facts introducing no
fresh nulls (since we are assuming the above normal form, these are the facts
created by a full TGD) can be neither parents nor siblings.

Recall that we identify facts by their ids rather than by their concrete values.
Hence, any substitutions of nulls that happen in the course of the chase do not
change the set of siblings, the set of parents, or the set of ancestors of a fact.

Example 4. Let us revisit the two TGDs S(idS, x, y) → P (idP , y, z) and P (idP ,
y, z) → Q(idQ, y, v) from Example 2, see also Figure 2. Although the creation
of the atom Q(y1, v1) was triggered by the atom P (y1, z1), the only parent of
Q(y1, v1) is the origin fact of y1, namely S(x1, y1).

Some useful notation. To reason about the effects of EGDs, it is convenient
to introduce some additional notation, following [3]. Let J be a canonical preuni-
versal instance and J ′ the canonical universal solution, resulting from chasing J
with a set of target dependencies Σt. Moreover, suppose that u is a term which
either exists in the domain of J or which is introduced in the course of the chase.
Then we write [u] to denote the term to which u is mapped by the chase. More
precisely, let t = S(u1, u2, . . . , us) be an arbitrary fact, which either exists in J
or which is introduced by the chase. Then the same fact t in J ′ has the form
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S([u1], [u2], . . . , [us]). By Lemma 2, every [ui] is well-defined, since it corresponds
to the term produced by the chase in the corresponding origin position. For any
set Σt of TDs, constants are mapped onto themselves: ∀c ∈ const(J) c = [c]. For
u, v ∈ dom(J), we write u ∼ v if [u] = [v], i.e. two terms have the same image
in J ′. If Σt contains no EGDs, then u = [u] holds for all u ∈ dom(J). Clearly,
the mapping [·] : J → J ′ is a homomorphism.

The following lemma is the basis for constructing a homomorphism h′ :
T Σst → U , analogously to Theorem 5 by extending a homomorphism h : Txy → U .

Lemma 3. For every weakly acyclic set Σt of TGDs and EGDs, instance T , and
x, y ∈ dom(T Σt), there exist constants b, c which depend only on Σ = Σst ∪ Σt

and an instance Txy satisfying (1) Originx,Originy ⊆ Txy, (2) all facts of T

are in Txy, and Txy ⊆ T Σt, (3) Txy is closed under parents and siblings over
facts, and (4) |dom(Txy)| ≤ |dom(T )| + b. Moreover, Txy can be computed in
time O(|dom(T )|c).

Compared with Lemma 1, we had to redefine the set Txy. Moreover, the uni-
fication of variables caused by EGDs in the chase invalidates some essential
assumptions in the proof of the corresponding result in [6, Theorem 7]. At any
rate, also in our case, the lifting can be performed efficiently:

Theorem 6. (Lifting) Let T Σt be a universal solution of a data exchange
problem obtained by chasing a preuniversal instance T with the weakly acyclic
set Σt of TGDs and EGDs. If B and W are instances such that: (1) B |= Σ with
Σ = Σst ∪ Σt; (2) all facts of T are in W (i.e. W contains facts with the same
ids) and W ⊆ T Σt, and (3) W is closed under ancestors and siblings (over facts),
then any homomorphism h : W → B can be transformed in time O(|dom(T )|b)
into a homomorphism h′ : T Σt → B, s.t. ∀x ∈ dom(h) : h(x) = h′(x), where b
depends only on Σ.

Proof. Although every fact of T is in W , there may of course be variables in
dom(T ) which are not in dom(W ), because of the EGDs. Hence, ∀x ∈ dom(T ) \
dom(W ) : x 	= [x], and ∀x ∈ dom(T ) ∩ dom(W ) : x = [x].

Suppose that the chase of a preuniversal instance T with Σt has length n.
Then we write Ts with 0 ≤ s ≤ n to denote the result after step s of the
chase. In particular, we have T0 = T and Tn = T Σt. For every s, we say that
a homomorphism hs : Ts → B is consistent with h if ∀x ∈ dom(hs), such that
[x] ∈ dom(h), hs(x) = h([x]) holds. We claim that for every s ∈ {0, . . . , n},
such a homomorphism hs consistent with h exists. Then h′ = hn is the desired
homomorphism. This claim can be proved by induction on s.

In order to actually construct the homomorphism h′ = hn, we may thus
simply replay the chase and construct hs for every s ∈ {0, . . . , n}. The length n
of the chase is polynomially bounded (cf. Section 2.1). The action required to
construct hs from hs−1 fits into polynomial time as well. We thus get the desired
upper bound on the time needed for the construction of h′. �
The only ingredient missing for our FindCore

E algorithm is an efficient search
for a homomorphism h : Txy → U with U ⊆ T Σt.
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Procedure FindCoreE

Input: Source ground instance S
Output: Core of a universal solution for S

(1) Chase (S,∅) with Σst to obtain (S, T ) := (S, ∅)Σst ;
(2) Chase T with Σt to obtain U := TΣt ;
(3) for each x ∈ var(U), y ∈ dom(U), x �= y do
(4) Compute Txy;
(5) Look for h : Txy → U s.t. h(x) = h(y);
(6) if there is such h then
(7) Extend h to an endomorphism h′ on U ;
(8) Transform h′ into a retraction r;
(9) Set U := r(U);
(10) return U.

By the construction of Txy ac-
cording to Lemma 3, the domain
size of Txy as well as the number
of facts in it are only by a con-
stant larger than those of the cor-
responding preuniversal instance
T . By Theorem 1, the complex-
ity of searching for a homomor-
phism is determined by the block
size. The problem with EGDs in
the target chase is that they may
destroy the block structure of T
by equating variables from differ-

ent blocks of T . However, we show below that the search for a homomorphism
on Txy may still use the blocks of T Σst computed before the target chase. To
achieve this, we adapt the Rigidity Lemma from [3]. The original Rigidity Lemma
was formulated for sets of target dependencies consisting of EGDs only. A close
inspection of the proof in [3] reveals that it remains valid when TGDs are added.

Definition 1. Let K be an instance whose elements are constants and nulls.
Let y be some element of K. We say that y is rigid if h(y) = y for every
endomorphism h on K. In particular, all constants of K are rigid.

Lemma 4. (Rigidity) Assume a data exchange setting where Σst is a set of
TGDs and Σt is a set of EGDs and TGDs. Let J be the canonical preuniversal
instance and let J ′ = JΣt be the canonical universal instance. Let x and y be
nulls of J s.t. x � y (i.e., [x] = [y]) and s.t. [x] is a nonrigid null of J ′. Then x
and y are in the same block of J .

Next, we formalize the idea of considering the blocks of the preuniversal instance
when searching for a homomorphism on the universal instance.

Definition 2. We define the non-rigid Gaifman graph G′(I) of an instance I
as the usual Gaifman graph but restricted to vertices corresponding to non-rigid
variables. We define non-rigid blocks of an instance I as the connected compo-
nents of the non-rigid Gaifman graph G′(I).

Theorem 7. Let T be a preuniversal instance obtained via the STDs Σst. Let
Σt be a set of weakly acyclic TGDs and EGDs, and let U be a retract of T Σt.
Moreover, let x, y ∈ dom(T Σt) and let Txy ⊆ T Σt be constructed according to
Lemma 3. Then we can check if there exists a homomorphism h : Txy → U , s.t.
h(x) = h(y) in time O(|dom(U)|c) for some c depending only on Σ = Σst ∪ Σt.

Proof. First, it can be easily shown that the rigid variables of T Σt are also rigid
in Txy. The key observation to achieve the O(|dom(U)|c) upper bound on the
complexity is that the search for a homomorphism h : Txy → U proceeds by
inspecting the non-rigid blocks of Txy individually. Moreover, since we already
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have a retraction r : T Σ → U , we may search for a homomorphism h with h(x) =
h(y) by inspecting only the blocks containing x and y and to set h(z) = r(z) for
the variables of all other blocks. �

Putting all these pieces together, we get the FindCore
E algorithm. It has ba-

sically the same overall structure as the FindCore algorithm of [6], which we
recalled in Section 2.2. Of course, the correctness of our algorithm and its polyno-
mial time upper bound are now based on the new results proved in this section.
In particular, step (4) is based on Lemma 3, step (5) is based on Lemma 4 and
Theorem 7, and step (7) is based on Theorem 6.

Theorem 8. Let (S,T, Σst, Σt) be a data exchange setting with STDs Σst and
TDs Σt. Moreover, let S be a ground instance of the target schema S. If this data
exchange problem has a solution, then FindCore

E correctly computes the core
of a canonical universal solution in time O(|dom(S)|b) for some b that depends
only on Σst ∪ Σt.

4 Implementation and Experimental Results

Implementation. We have implemented the FindCore
E algorithm presented

in Section 3 in a prototype system. Its principal architecture is shown in Fig-
ure 3(a). For specifying data exchange scenarios, we use XML configuration files.
The schema of the source and target database as well as the STDs and TDs are
thus cleanly separated from the scenario-independent Java code. The XML con-
figuration data is passed to the Java program, which uses XSLT templates to
automatically generate those code parts which depend on the concrete scenario
– in particular, the SQL-statements for managing the target database (creating
tables and views, transferring data between tables etc.).

None of the common DBMSs to-date support labeled nulls. Therefore, to
implement this feature, we had to augment every target relation (i.e., table)
with additional columns, storing null labels. For instance, for a column tutor of
the Tutor table, a column tutor var is created to store the labels for nulls of
tutor. To simulate homomorphisms, we use a table called Map storing variable
mappings, and views that substitute labeled nulls in the data tables with their
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images given by a homomorphism. Figure 3(b) gives a flavor of what this part
of the database looks like. The target database contains many more auxiliary
tables for maintaining the relevant information of the core computation.

A great deal of the core computation is delegated to the target DBMS via
SQL commands. For instance, the homomorphism computation in step 5 of
FindCore

E is performed in the following way. Let a variable x and a term
y be selected at step 3 of the algorithm, and let the set Txy be computed at step
4. We want to build a homomorphism h : Txy → U , s.t. h(x) = h(y). To do so, we
need to inspect all possible mappings from the block of x and from the block of
y. Each of these steps boils down to generating and executing a database query
that fetches all possible substitutions for the variables in each block.

Example 5. Let us revisit the data exchange setting from Example 1. Suppose
that the canonical universal solution is
J = {Course(C1,’java’), Tutor(T2,N), Teaches(T2,C1), NeedsLab(T2,L2),

Course(C2,’java’), Tutor(T1,’Yves’), Teaches(T1,C2), NeedsLab(T1,L1)}

Suppose that we look for a proper endomorphism h′ on J and suppose that
step 4 of FindCore

E yields the set TN,′Yves′ = {Tutor(T2,N),Teaches(T2,C1),

Course(C1,’java’)}. At step 5, a homomorphism h : Txy → J (with x = N
and y =′ Yves′), s.t. h(N) = ′Yves′ has to be found. In the absence of EGDs,
non-rigid blocks are the same as usual blocks, and the block of N in TN,′Yves′ is
{N, T2, C1}. The following SQL query returns all possible instantiations of the
variables {T2, C1} compatible with the mapping h(N) = ′Yves′:

SELECT Tutor.idt var AS T2, Course.idc var AS C1 FROM Tutor JOIN Teaches ON Tu-
tor.idt var = Teaches.id tutor var JOIN Course ON Teaches.id course var = Course.idc var
WHERE Tutor.tutor=’Yves’ AND Course.course=’java’

In our example, the result is {T2 ← T1, C1 ← C2}.

Experiments. We have run experiments with our prototype implementation
on several scenarios with varying size of the schema (5–10 target relations), of
the dependencies (5–15 constraints), and of the actual source data. Since there
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are no established benchmarks for core computation algorithms, we constructed
our own test cases by appropriately extending the data exchange scenario from
Example 1. Typical runtimes are displayed in Figure 4. They were obtained by
tests on a workstation running Suse Linux with 2 QuadCore processors (2.3
GHz) and 16 GB RAM. Oracle 11g was used as database system.

We had to synthesize the scenarios ourselves since no benchmark for core
computation exists currently, and we needed means to adjust the dependencies
and the source data in order to manage redundancy in the target database. When
the target EGDs were deliberately “badly designed”, the canonical solution had
about 50% more nulls than the core. In this case, our system handled only
about 7,000 nulls in the target DB in 120 min (2nd solid curve from the left).
In contrast, when the target EGDs were “carefully designed”, the canonical
solution had only 10% more nulls than the core. In this case, about 22,000 nulls
were handled in similar time (3rd solid curve).

We have also implemented the FindCore algorithm of [6] in order to com-
pare its performance with our algorithm. The left-most curve in Figure 4(a)
corresponds to a run of FindCore on the “well-designed” data exchange prob-
lem. The runtime is comparable to FindCore

E in case of “badly designed”
dependencies. Actually, this is not surprising: One of the principal advantages of
the FindCore

E algorithm is that it enforces EGDs as part of the chase rather
than in the course of the core computation. The negative effect of simulating the
EGDs by TGDs is illustrated by the following simple example:

Example 6. Let J = {R(x, y), P (y, x)} be a preuniversal instance, and let a
single EGD R(z, v), P (v, z) → z = v constitute Σt. To simulate this EGD by
TGDs in [6], the following set of dependencies Σ̄t has to be constructed:

P (x, y) → E(x, x) E(x, y) → E(y, x)
P (x, y) → E(y, y) E(x, y), E(y, z) → E(x, z) P (x, y), E(x, z) → P (z, y)
R(x, y) → E(x, x) R(x, y), E(x, z) → R(z, y) P (x, y), E(y, z) → P (x, z)
R(x, y) → E(y, y) R(x, y), E(y, z) → R(x, z) R(z, v), P (v, z) → E(z, v)

where E is the auxiliary predicate representing equality. Chasing J with Σ̄t (in a
nice order), yields the instance J Σ̄t = {R(x, y), R(x, x), R(y, x), R(y, y), P (y, x),
P (y, y), P (x, y), P (x, x), E(x, x), E(x, y), E(y, x), E(y, y)}. The core computa-
tion applied to J Σ̄t produces the instance {R(x, x), P (x, x)} or {R(y, y), P (y, y)}.
On the other hand, if EGDs were directly enforced by the target chase, then the
chase would end with the canonical universal solution JΣt = {R(x, x), P (x, x)}.

Another interesting observation is that, in many cases, the result of applying
just a few endomorphisms already leads to a significant elimination of redundant
nulls (i.e., nulls present in the canonical solution but not in the core) from
the target database and that further iterations of this procedure are much less
effective concerning the number of nulls eliminated vs. time required. A typical
situation is shown in Figure 4(b): The solid line shows the number of redundant
nulls remaining after i iterations (i.e., i nested endomorphisms) while the dotted
line shows the total time required for the first i iterations. To achieve this, we
used several heuristics to choose the best homomorphisms. The following hints
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proved quite useful: (i) prefer constants over variables, (ii) prefer terms already
used as substitutions, and (iii) avoid mapping a variable onto itself.

Every intermediate database instance produced by FindCore
E is a univer-

sal solution to the data exchange problem. Hence, our prototype implementation
also allows the user to restrict the number of nested endomorphisms to be con-
structed, thus computing an approximation of the core rather than the core itself.
The dotted curves in Figure 4(a) corresponds to a “partial” core computation,
with only 1 iteration of the while-loop in FindCore

E . In both scenarios, even
a single endomorphism allowed us to eliminate over 85% of all redundant nulls.
Lessons learned. Our experiments have clearly revealed the importance of care-
fully designing target EGDs. In some sense, they play a similar role as the core
computation in that they lead to an elimination of nulls. However, the EGDs do
it much more efficiently. Another observation is that it is well worth considering
to content oneself with an approximation of the core since, in general, a small
number of iterations of our algorithm already leads to a significant reduction of
nulls. Finally, the experience gained with our experiments gives us several hints
for future performance improvements. We just give three examples: (i) Above
all, further heuristics have to be incorporated concerning the search for an en-
domorphism which maps a labeled null onto some other domain element. So far,
we have identified and implemented only the most straightforward, yet quite
effective, rules. Apparently, additional measures are needed to further prune the
search space. (ii) We have already mentioned the potential of approximating
the core by a small number of endomorphisms. Again, we need further heuristics
concerning the search for the most effective endomorphisms. (iii) Some phases
of the search for an endomorphism allow for concurrent implementation. This
potential of parallelization, which has not been exploited so far, clearly has to
be leveraged in future versions of our implementation.

5 Conclusion

In this paper we have revisited the core computation in data exchange and we
have come up with an enhanced version of the FindCore algorithm from [6],
which avoids the simulation of EGDs by TGDs. The algorithms FindCore and
FindCore

E look similar in structure and have essentially the same asymptotic
worst-case behavior. More precisely, both algorithms are exponential w.r.t. some
constant b which depends on the dependencies Σst ∪ Σt of the data exchange
setting. Actually, in [9] it was shown that the core computation for a given target
instance J is fixed-parameter intractable w.r.t. its block size. Hence, a significant
reduction of the worst-case complexity is not likely to be achievable. At any rate,
as we have discussed in Section 4, our new approach clearly outperforms the
previous one under realistic assumptions.

We have also presented a prototype implementation of our algorithm, which
delegates most of its work to the underlying DBMS via SQL. It has thus been
demonstrated that core computation fits well into existing database technology
and is clearly not a separate technology. Although the data exchange scenarios
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tackled so far are not industrial size examples, we expect that there is ample
space for performance improvements. The experience gained with our prototype
gives valuable hints for directions of future work.
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