
Relaxed Notions of
Schema Mapping Equivalence Revisited∗

Reinhard Pichler
TU Vienna

pichler@dbai.tuwien.ac.at

Emanuel Sallinger
TU Vienna

sallinger@dbai.tuwien.ac.at

Vadim Savenkov
TU Vienna

savenkov@dbai.tuwien.ac.at

ABSTRACT
Recently, two relaxed notions of equivalence of schema mappings
have been introduced, which provide more potential of optimizing
schema mappings than logical equivalence: data exchange (DE)
equivalence and conjunctive query (CQ) equivalence. In this work,
we systematically investigate these notions of equivalence for map-
pings consisting of s-t tgds and target egds and/or target tgds. We
prove that both CQ- and DE-equivalence are undecidable and so are
some important optimization tasks (like detecting if some depen-
dency is redundant). However, we also identify an important dif-
ference between the two notions of equivalence: CQ-equivalence
remains undecidable even if the schema mappings consist of s-t
tgds and target dependencies in the form of key dependencies only.
In contrast, DE-equivalence is decidable for schema mappings with
s-t tgds and target dependencies in the form of functional and in-
clusion dependencies with terminating chase property.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Relational databases;
H.2.5 [Database Management]: Heterogeneous Databases—Data
translation

1. INTRODUCTION
Schema mappings play an important role in several areas of data-

base research – above all in data integration [16] and data exchange
[9]. An important line of research has been concerned with alge-
braic operations [5, 21] on schema mappings like computing in-
verses [13, 3, 2] and composing schema mappings [18, 12, 22, 1].
The question of schema mapping optimization has been raised only
recently. In [10], Fagin et al. laid the foundation for schema map-
ping optimization by introducing new concepts of “equivalence”
between two schema mappings, namely data exchange equivalence
(DE-equivalence) and conjunctive query equivalence (CQ-equiva-
lence). These are natural relaxations of logical equivalence. In

∗This work is funded by the Vienna Science and Technology Fund
(WWTF), project ICT08-032. Savenkov is supported by the Euro-
pean program “Erasmus Mundus External Cooperation Window”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2011, March 21–23, 2011, Uppsala, Sweden
Copyright 2011 ACM 978-1-4503-0529-7/11/0003 ...$10.00.

total, we are thus dealing with three notions of equivalence, which
are defined as follows: LetM1 andM2 be two schema mappings.
We say thatM1 andM2 are

• logically equivalent (denotedM1 ≡ M2) iffM1 andM2

are satisfied by precisely the same pairs 〈I, J〉 of source and
target instances.

• DE-equivalent (denotedM1 ≡DE M2) iff, for every source
instance I , the universal solutions under the mappings M1

andM2 coincide.

• CQ-equivalent (denotedM1 ≡CQM2) iff, for every source
instance I , any conjunctive query posed against the target
schema yields the same certain answers for the mappings
M1 andM2. In [10], also an alternative criterion was proved,
namely: M1 ≡CQ M2 iff, for every source instance I , ei-
ther both M1 and M2 have no solution or they both have
the same core of the universal solutions.

Formal definitions of the (universal) solutions and of the core will
be recalled in Section 2. In [10], the implications (M1 ≡M2)⇒
(M1 ≡DE M2) ⇒ (M1 ≡CQ M2) were proved. In general,
the converse of neither implication is true.

In this paper, we restrict our attention to schema mappings con-
sisting of source-to-target tuple-generating dependencies (s-t tgds)
as well as target dependencies in the form of equality-generating
dependencies (target egds) and/or tuple-generating dependencies
(target tgds). The following example illustrates that for such map-
pings, the three notions of equivalence are indeed different and pro-
vide different power for detecting the redundancy of dependencies.

EXAMPLE 1.1. Consider the schema mappingsM = (S, T,Σ),
M1 = (S, T,Σ1) and M2 = (S, T,Σ2) with source schema
S = {P}, target schema T = {Q,R}, and sets of dependencies
Σ = {τ}, Σ1 = {τ, τ1}, Σ2 = {τ, τ2}, s.t. τ , τ1 and τ2 are defined
as follows:

τ = P (x1, x2)→ Q(x1, x1)
τ1 = R(x1, x2)→ R(x1, x1)
τ2 = Q(x1, x2)→ Q(x1, x1)

For M1, the equivalence M1 ≡DE M holds (and hence also
M1 ≡CQ M). Intuitively, this is due to the fact that τ1 has
no effect on the universal solutions. On the other hand, we have
M1 6≡ M since, for instance, (I, J) with I = {P (a, b)} and
J = {Q(a, a), R(a, b)} satisfies the mappingM but notM1.

ForM2, we haveM2 ≡CQ M butM2 6≡DE M (and hence
M2 6≡ M). Indeed, for any source instance I , the tgd τ2 has no
effect on the core J∗ = {Q(a, a) | (∃b)P (a, b) ∈ I} of the univer-
sal solutions of I . However, for I = {P (a, b)}, the target instance
J = {Q(a, a), Q(y1, y2)} where y1, y2 are distinct variables, is a
universal solution under mappingM but not underM2. 2

90

Fagin et al. proved several important properties of CQ-equiva-
lence [10]: On the one hand, the authors presented sufficient crite-
ria under which mappings consisting of Second-Order tgds [12] or
mappings consisting of s-t tgds and target tgds can be replaced by
CQ-equivalent mappings consisting of s-t tgds only. On the other
hand, by a straightforward reduction from the equivalence of data-
log programs, the authors proved that CQ-equivalence is undecid-
able for mappings consisting of s-t tgds and full target tgds. In
contrast, DE-equivalence has been left largely unexplored to date.
In particular, it is unclear if DE-equivalence is also undecidable
in those cases where CQ-equivalence is undecidable and if DE-
equivalence has any potential application to schema mapping opti-
mization. Moreover, so far, neither CQ-equivalence nor DE-equi-
valence has been considered for mappings containing target egds.

The goal of this work is a systematic investigation of the above
recalled relaxed notions of equivalence applied to schema map-
pings consisting of s-t tgds and target dependencies in the form
of egds and/or tgds. Above all, we want to clarify the decidabil-
ity/undecidability of the relaxed notions of equivalence themselves
and of fundamental optimization tasks under these notions of equiv-
alence. We thus first revisit the undecidability proof [10] of CQ-
equivalence of mappings with s-t tgds and full target tgds and show
that this proof idea can be easily extended to mappings with s-t
tgds and target egds. Moreover, also the undecidability of some
basic optimization tasks (like detecting if some dependency is re-
dundant) can be easily covered by this approach. However, there
are also limits to this approach. In particular, it is unclear how it
can be extended to DE-equivalence or how it can be used to estab-
lish the decidability/undecidability of important special cases like
mappings whose target dependencies are key dependencies only.

We therefore present a different approach to proving the undecid-
ability of these equivalence problems and optimization problems.
To this end, we show how one can mimic the computations of a Tur-
ing machine by schema mappings and an appropriately chosen se-
quence of source instances. This will allow us to reduce the Halting
problem of Turing machines to the co-problem of DE-equivalence.
Actually, this reduction also works for CQ-equivalence. Moreover,
this reduction can be extended so as to prove that also further op-
timization tasks (like deciding if a set of dependencies can be re-
placed by an equivalent one of smaller cardinality) under both DE-
equivalence and CQ-equivalence are undecidable.

We then turn our attention to important special cases of the map-
pings considered here. This will allow us to identify a significant
difference between CQ-equivalence and DE-equivalence. Indeed,
by further extending our proof technique via Turing machines, we
can prove the undecidability of CQ-equivalence for a very restricted
class of schema mappings, namely those consisting of s-t tgds and
target key dependencies. In contrast, we show that DE-equivalence
is decidable even for a bigger class of mappings, namely map-
pings consisting of s-t tgds and target dependencies in the form
of functional and inclusion dependencies with terminating chase
property. Consequently, DE-equivalence is well suited for optimiz-
ing such mappings (by detecting redundant dependencies) while
CQ-equivalence is not. To the best of our knowledge, this is the
first result that underlines the usefulness of DE-equivalence, since
all previous approaches to schema mapping optimization were ei-
ther based on CQ-equivalence [10] or logical equivalence [15].

An inspection of all undecidability proofs in this paper reveals
that the undecidability is mainly due to the target dependencies.
That is, DE- and CQ-equivalence of two mappings M1 and M2

remains undecidable even ifM1 andM2 coincide on the s-t tgds
(and only differ on the target dependencies). Likewise, the opti-
mization tasks mentioned above are undecidable even if we only

want to simplify the target dependencies. Now what happens if we
only want to simplify the s-t tgds? There are essentially two ques-
tions to be answered: First, do the relaxed notions of equivalence
provide us with additional power (compared with logical equiva-
lence) for natural optimization problems like subset-minimality or
cardinality-minimality of the set of s-t tgds? And what about the
decidability of the relaxed notions of equivalence of two mappings
M1 andM2 ifM1 andM2 coincide on the target dependencies
(and only differ on the s-t tgds)? Clearly, for mappings consisting
of s-t tgds only, no additional simplifications are possible since (as
was shown in [10]) DE- and CQ-equivalence coincide with logical
equivalence in this case. Of course, for mappings containing also
target egds and/or tgds, the situation might change. However, we
show that also in the presence of target dependencies, the relaxation
of equivalence does not provide us with additional possibilities of
simplifying the s-t tgds. Moreover, we show that the DE- and CQ-
equivalence of two mappings M1 and M2 becomes decidable if
M1 andM2 coincide on the target dependencies.
Organization of the paper and summary of results. In Section 2,
we recall some basic notions. A conclusion and an outlook to fu-
ture work are given in Section 8. Our main results are detailed in
the Sections 3 – 7, namely:

• CQ-equivalence revisited. In [10], it was shown that CQ-equiva-
lence is undecidable for mappings consisting of s-t tgds and full
target tgds. In Section 3, we extend this proof idea so as to show
the undecidability of CQ-equivalence for mappings consisting of
s-t tgds and target egds. Moreover, we prove the undecidability for
some basic optimization tasks under CQ-equivalence.

• Undecidability via the Halting problem. In Section 4, we prove
also the undecidability of DE-equivalence. The proof is based on
a reduction from the Halting problem. This proof idea will then
be used in the subsequent sections to derive further undecidability
results – both for DE-equivalence and CQ-equivalence.

• Undecidability of optimization tasks. Example 1.1 has illus-
trated that DE- and CQ-equivalence give us additional power (com-
pared with logical equivalence) for natural optimization problems
like subset-minimality or cardinality-minimality. In Section 5, we
prove the undecidability of these problems.

• Optimization of the s-t tgds. In Section 6, we study mappings
where the target dependencies are considered as fixed and only the
s-t tgds are allowed to vary. We prove the decidability of DE- and
CQ-equivalence if the mappings only differ on the s-t tgds. How-
ever, we also show that for a broad class of optimization problems,
DE- and CQ-equivalence do not give us additional power (com-
pared with logical equivalence).

• Special cases. In Section 7, we identify an important difference
between DE- and CQ-equivalence: We show that DE-equivalence
is decidable if the schema mappings consist of s-t tgds and target
dependencies in the form of functional and inclusion dependen-
cies and possess the terminating chase property. In contrast, CQ-
equivalence is undecidable even for schema mappings consisting
of s-t tgds and target key dependencies.
Due to space limitations, most proofs are only sketched or even
omitted. Detailed proofs will be provided in the full paper.

2. PRELIMINARIES
A schema R = {R1, . . . , Rn} is a set of relation symbols Ri

each of a fixed arity. An instance I over a schema R consists of a
relation for each relation symbol in R, s.t. both have the same arity.
For a relation symbol R, we write IR to denote the relation of R in
I . We only consider finite instances here.

91

Tuples of the relations may contain two types of terms: constants
and variables. The latter are also called marked nulls or labelled
nulls. Two labelled nulls are equal iff they have the same label.
For every instance J , we write dom(J), var(J), and Const(J)
to denote the set of terms, variables, and constants, respectively,
of J . Clearly, dom(J) = var(J) ∪ Const(J) and var(J) ∩
Const(J) = ∅. If we have no particular instance J in mind, we
write Const to denote the set of all possible constants. We write ~x
for a tuple (x1, x2, . . . , xn). However, by slight abuse of notation,
we also refer to the set {x1, . . . , xn} as ~x. Hence, we may use
expressions like xi ∈ x̄ or ~x ⊆ X , etc.

Let S = {S1, . . . , Sn} and T = {T1, . . . , Tm} be schemas
with no relation symbols in common. We call S the source schema
and T the target schema. We write 〈S,T〉 to denote the schema
{S1, . . . , Sn, T1, . . . , Tm}. Instances over S (resp. T) are called
source (resp. target) instances. If I is a source instance and J a
target instance, then 〈I, J〉 is an instance of the schema 〈S,T〉.

Homomorphisms and substitutions. Let I , I ′ be instances. A
homomorphism h : I → I ′ is a mapping dom(I)→ dom(I ′), s.t.
(1) whenever R(x̄) ∈ I , then R(h(x̄)) ∈ I ′, and (2) for every
constant c, h(c) = c. If such h exists, we write I → I ′. Moreover,
if I ↔ I ′ then we say that I and I ′ are homomorphically equiva-
lent. In contrast, if I → I ′ but not vice versa, we say that I is more
general than I ′, and I ′ is more specific than I .

If h : I → I ′ is invertible, s.t. h−1 is a homomorphism from
I ′ to I , then h is called an isomorphism, denoted I ∼= I ′. An
endomorphism is a homomorphism I → I . An endomorphism is
proper if it is not surjective (for finite instances, this is equivalent
to being not injective), i.e., if it reduces the domain of I .

If I is an instance, and I ′ ⊆ I is such that I → I ′ holds but for
no other I ′′ ⊂ I ′ : I → I ′′ (that is, I ′ cannot be further “shrunk”
by a proper endomorphism), then I ′ is called a core of I . The core
is unique up to isomorphism. Hence, we may speak about the core
of I . Cores have the following important property: for arbitrary
instances J and J ′, J ↔ J ′ iff core(J) ∼= core(J ′).

A substitution σ is a mapping which sends variables to other do-
main elements (i.e., variables or constants). We write σ = {x1 ←
a1, . . . , xn ← an} if σ maps each xi to ai and σ is the identity
outside {x1, . . . , xn}. The application of a substitution is usually
denoted in postfix notation, e.g.: xσ denotes the image of x under
σ. For an expression ϕ(x̄) (e.g., a conjunctive query with variables
in ~x), we write ϕ(x̄σ) to denote the result of replacing every oc-
currence of every variable x ∈ x̄ by xσ.

Schema Mappings and Data Exchange. A schema mapping is
given by a tripleM = (S,T,Σ) where S is the source schema, T
is the target schema, and Σ is a set of dependencies expressing the
relationship between S and T and possibly also local constraints
on S resp. T. The data exchange problem associated with M is
the following: Given a (ground) source instance I , find a target in-
stance J , s.t. 〈I, J〉 |= Σ. Such a J is called a solution for I or,
simply, a solution if I is clear from the context. The set of all solu-
tions for I underM is denoted by Sol(I,M). If J ∈ Sol(I,M)
is such that J → J ′ holds for any other solution J ′ ∈ Sol(I,M),
then J is called a universal solution. Since the universal solutions
for a source instance I are homomorphically equivalent, the core
of the universal solutions for I is unique up to isomorphism. It is
the smallest universal solution [11]. We write UnivSol(I,M) to
denote the set of universal solutions for I under mappingM and
we write core(I,M) to denote the core of the universal solutions.

In the following, we will often identify a schema mappingM =
(S,T,Σ) with the set of dependencies Σ, without explicitly men-
tioning the schemas, for the sake of brevity.

Embedded dependencies. Embedded dependencies [8] over a re-
lational schema R are first-order formulae of the form ∀x̄(ϕ(x̄)→
∃ȳ ψ(x̄, ȳ)). If ~y is empty, then the dependency is called full.
In case of tuple-generating dependencies (tgds), both antecedent
ϕ and conclusion ψ are conjunctive queries (CQs) over the rela-
tion symbols from R s.t. all variables in ~x actually do occur in
ϕ(x̄). Equality-generating dependencies (egds) are of the form
∀x̄ (ϕ(x̄)→ xi = xj) with xi, xj ∈ x̄. Throughout this paper, we
shall omit the universal quantifiers: By convention, all variables oc-
curring in the antecedent are universally quantified over the entire
formula. As a further notational convention, we shall write under-
scores “_” to denote unspecified, fresh variables. For a conjunctive
query χ (in the antecedent or the conclusion of some dependency),
we write At(χ) to denote the set of atoms of this CQ.

In the context of data exchange, we are mainly dealing with
source-to-target dependencies consisting of tuple-generating de-
pendencies (s-t tgds) over the schema 〈S,T〉 (the antecedent is a
CQ over S, the conclusion over T) and target dependencies in the
form of tgds and egds over the schema T. Moreover, in Section 6,
we shall also consider source dependencies consisting of egds over
the schema S (referred to as “source egds”).

Chase. The data exchange problem can be solved by the chase
[4], a sequence of steps, each enforcing a single constraint within
some limited set of tuples. More precisely, let Σ contain a tgd
τ : ϕ(x̄) → (∃ȳ)ψ(x̄, ȳ), s.t. I |= ϕ(ā) for some assignment ~a
on ~x and suppose that I 2 ∃ȳψ(ā, ȳ). Then we extend I with the
atoms in At(ψ(ā, z̄)), where the elements of ~z are fresh labelled
nulls. For the chase with s-t tgds, we stipulate that the new facts
are added even if I � ∃ȳψ(ā, ȳ) is already fulfilled. This kind of
chase is referred to as oblivious [17] chase.

It is undecidable if the chase with a given set of target tgds
terminates [6]. However, there are some broad classes of target
tgds known to produce only finite chase sequences. Perhaps, the
simplest such class is formed by full tgds, most general currently
known classes being the super-weakly-acyclic tgds [19], or those
in the hierarchy of inductively-restricted tgds [20]. In this paper,
we only consider target tgds causing finite chase sequences, and
corresponding mappings with terminating chase property.

Now suppose that Σ contains an egd ε : ϕ(x̄) → xi = xj , s.t.
I |= ϕ(ā) for some assignment ~a on ~x. This egd enforces the
equality ai = aj . We thus choose a null a′ among {ai, aj} and
replace every occurrence of a′ in I by the other term; if ai, aj ∈
Const(I) and ai 6= aj , the chase halts with failure. We write
chase(I,Σ) to denote the result of chasing I with the dependen-
cies Σ. By slight abuse of notation, we shall also write chase(I,Σ)
to refer to the application of the chase procedure with the depen-
dencies Σ to I .

Consider an arbitrary schema mapping Σ = Σst∪Σt where Σst
is a set of source-to-target tgds and Σt is a set of target egds and
tgds. Then the solution to a source instance I can be computed as
follows: We start off with the instance 〈I, ∅〉, i.e., the source in-
stance is I and the target instance is initially empty. Chasing 〈I, ∅〉
with Σst yields the instance 〈I, J〉, where J is called the preuni-
versal instance. This chase always succeeds since Σst contains no
egds. Then J is chased with Σt. This chase may fail on an attempt
to unify distinct constants. If the chase terminates and succeeds,
we end up with U = chase(J,Σt), which is referred to as the
canonical universal solution of I w.r.t. Σ.
Equivalence of schema mappings. Different notions of equiva-
lence of schema mappings have been recently proposed in [10].

DEFINITION 2.1. [10] Let M = (S,T,Σ) and M′ = (S,
T,Σ′) be two schema mappings.

92

M andM′ are logically equivalent (denoted asM ≡ M′) if,
for every source instance I and target instance J , the equivalence
〈I, J〉 |= Σ ⇔ 〈I, J〉 |= Σ′ holds. In this case, the equality
Sol(I,M) = Sol(I,M′) holds for every source instance I .
M and M′ are DE-equivalent (denoted as M ≡DE M′) if,

for every source instance I , the universal solutions coincide, i.e.:
the equality UnivSol(I,M) = UnivSol(I,M′) holds for every
source instance I .
M andM′ are CQ-equivalent (denoted asM≡CQM′) if, for

every source instance I , either Sol(I,M) = ∅ = Sol(I,M′) or
core(I,M) = core(I,M′).

Remark. The original definition ofM ≡CQ M′ is that, for every
source instance I , any conjunctive query posed against the target
schema yields the same certain answers for the mappingsM1 and
M2. The above characterization via the core was proved to be
equivalent in [10].
By [4], we can use the chase to decide logical implication (and,
hence, logical equivalence) of schema mappings consisting of em-
bedded dependencies with terminating chase property.

LEMMA 2.1. [4] Let Σ be the union of a set of egds and a set
of tgds possessing terminating chase property. Moreover, let δ be
either a tgd or an egd. Let ϕ(x̄) denote the antecedent of δ and
let T denote the database obtained by chasing At(ϕ(x̄)) with Σ.
The variables in ~x are considered as labelled nulls. Then Σ |= δ iff
T |= δ holds.

Turing machines. A Turing machine is a tuple TM = (Q,A, δ, s)
given by a finite set of states Q, a finite set of symbols A called the
alphabet, the transition function δ and an initial state s. For sim-
plicity, Q and A are represented by integers 0, 1, The alphabet
A contains at least the tape start symbol 1 (marking the left end of
the tape) and the blank symbol 0. The set of states Q contains at
least the initial state s = 0 and the halting state 1. The transition
function δ is of the type Q×A→ Q×A× {←,→}.

A computation C of TM is a sequence (c1, . . . , cn) of configu-
rations ct. For each configuration ct, there is an associated state
qTM(t), for each position l a tape symbol aTM(t, l) and a predicate
indicating whether the cursor is currently at that location cTM(t, l).

W.l.o.g., we may restrict the instances of the Halting problem to
instances of the following form: The Turing machine TM takes no
input. Moreover, TM never returns to the initial state 0 and never
moves the cursor off the left end of the tape.

3. CQ-EQUIVALENCE REVISITED
In [10], Fagin et al. showed that CQ-equivalence of schema map-

pings containing full s-t tgds and full target tgds is undecidable.
This was accomplished by reduction from the undecidability of dat-
alog equivalence [23].

THEOREM 3.1. [10] CQ-equivalence is undecidable for schema
mappings based on full s-t tgds and full target tgds.

In essence, the idea is to identify datalog programs with full tar-
get tgds. In this section, we want to show that the same idea can be
easily extended to prove further undecidability results concerning
CQ-equivalence: On the one hand, we thus show the undecidabil-
ity of CQ-equivalence of schema mappings containing s-t tgds and
target egds. On the other hand, we also show the undecidability of
various basic optimization tasks under CQ-equivalence.

THEOREM 3.2. CQ-equivalence is undecidable for schema map-
pings based on s-t tgds and target egds.

PROOF. (Sketch). Let (M1,M2) be an arbitrary instance of
CQ-equivalence for mappings based on full s-t tgds and full target
tgds. From this we construct an equivalent instance (M′1,M′2) of
CQ-equivalence for mappings based on s-t tgds and target egds.

We replace each original full s-t tgd ϕ(x̄)→ Q(x̄) by

• ϕ(x̄)→ ∃y Q(x̄, y, y)

Furthermore, for each original target relationQ of arity n, and each
possible combination of n attributes over (not necessarily distinct)
original source relations P1, . . . , Pn, we add the following s-t tgd
(thus materializing all relevant tuples in the target).

• P1(. . . , x1, . . .) ∧ . . . ∧ Pn(. . . , xn, . . .)→ ∃y Q(x̄, y, y′)

Finally, we replace each original full target tgd, which is of the
form R1(x̄1) ∧ . . . ∧Rn(x̄n)→ R(x̄) by

• R1(x̄1, y1, y1) ∧ . . . ∧Rn(x̄n, yn, yn) ∧
R(x̄, y, y′)→ y = y′

Intuitively, the two variables y, y′ indicate through y = y′ that
the specific tuple ~x is actually present. It is now easy to see that the
two problem instances are equivalent.

Theorems 3.1 and 3.2 hold even if restricted to single target de-
pendencies. To show this, we make use of a result of Gottlob and
Papadimitriou [14], who showed that for every datalog program,
one can find an (essentially) equivalent datalog program which con-
sists of a single rule (called sirup). Using this approach, it is easy to
show that detecting a redundant target tgd is undecidable for CQ-
equivalence.

THEOREM 3.3. CQ-equivalence is undecidable for schema map-
pings based on full s-t tgds and a single full target tgd, or s-t tgds
and a single target egd.

PROOF. (Sketch). Putting together the undecidability proof in
[10] (which generates one full target tgd per datalog rule) and the
sirup construction from [14] (which produces a single full target
tgd from any number of full target tgds), we end up with a single
full target tgd. Using the technique introduced in Theorem 3.2, the
result can be carried over to target egds.

The main motivation for Fagin et al. to introduce the relaxed
notions of equivalence [10] was the close connection between op-
timization and equivalence. Indeed, any optimization of schema
mappings ultimately comes down to the replacement of a schema
mapping by a simpler but equivalent one. A natural criterion for
the simplification of schema mappings is the deletion of redundant
dependencies. In [15], Gottlob et al. presented further criteria for
simplifying a set of dependencies (with respect to logical equiv-
alence) like subset-minimality and cardinality-minimality. In this
paper, we thus want to study the following properties which are
closely related to the optimization of schema mappings:

DEFINITION 3.1. Let M = (S,T,Σ) be a schema mapping
and let x ∈ {DE,CQ}.

1. We call a dependency τ ∈ Σ redundant w.r.t. x-equivalence,
if Σ ≡x Σ \ {τ}.

2. The set Σ is called subset-minimal w.r.t. x-equivalence, if
there exists no proper subset Σ′ ⊂ Σ, s.t. Σ ≡x Σ′ (i.e., Σ
contains no redundant dependency).

3. The set Σ is called cardinality-minimal w.r.t. x-equivalence,
if there does not exist a set Σ′ of dependencies, s.t. |Σ′| < |Σ|
and Σ ≡x Σ′. 2

93

Below, we shall extend the above undecidability proofs to the
first two properties in Definition 3.1, i.e.: detecting the redundancy
of a concrete dependency and recognizing the subset-minimality of
a set of dependencies w.r.t. CQ-equivalence.

THEOREM 3.4. Detecting if a target dependency is redundant
w.r.t. CQ-equivalence is undecidable for mappings based on full s-t
tgds and two full target tgds, or s-t tgds and two target egds.

PROOF. (Sketch). Let (M1,M2) be an arbitrary instance of
CQ-equivalence for mappings based on s-t tgds and a single full
target tgd. We construct two instances (M, σ1) and (M, σ2) of
detecting redundancy of σ1 resp. σ2 inM under CQ-equivalence.
ThenM1 ≡CQ M2 iff both of the following holds: σ1 is redun-
dant inM and σ2 is redundant inM.

To avoid interference, letM′1 (resp.M′′2) be obtained by replac-
ing all occurrences of target relation symbols R by new ones R′

(resp. R′′). Now letM consist of the s-t tgds ofM′1 andM′′2 as
well as σ1 and σ2 given as follows: Construct the sirup σ1 from

1. the single target tgd τ ′1 ofM′1 and
2. the single target tgd τ ′′2 ofM′′2 and
3. target tgds R′(x̄) → R(x̄) for each target relation symbol
R′ occurring inM′1.

Likewise, construct the sirup σ2 based on R′′ andM′′2 . The idea
is that the transfer of all tuples from R′ to R (via the tgds accord-
ing to 3. above) is only necessary if it is not already covered by
the transfer from R′′ to R (and vice versa). It is now clear that
M1 ≡CQ M2 iff σ1 is redundant in M and σ2 is redundant in
M. Again, this result can be easily carried over to target egds.

Based on this technique, we can also show the undecidability
of subset-minimality w.r.t. CQ-equivalence. The case for detecting
redundant s-t tgds will be covered in Section 6.

THEOREM 3.5. Subset-minimality w.r.t. CQ-equivalence is un-
decidable for schema mappings based on full s-t tgds and two full
target tgds, or s-t tgds and two target egds.

The proof technique based on the correspondence between data-
log programs and full target tgds allowed us to give very short and
straightforward proofs of several undecidability results in this sec-
tion. However, we now reach at a limit of this technique. Note that
in the proofs presented so far, we have very limited control over the
precise form of the target dependencies. Hence, it is not clear, how
this technique can be applied to the analysis of other properties of
mappings (like cardinality-minimality proposed in Definition 3.1)
or to restricted forms of mappings (like mappings whose target de-
pendencies are functional dependencies or even key dependencies).

More importantly, we have only covered CQ-equivalence so far,
while DE-equivalence has not been touched yet. As we have seen in
Example 1.1, CQ- and DE-equivalence are distinct even for simple
target constraints. So what is the situation for DE-equivalence? It
does not seem as if the approach used in this section can be used
to investigate DE-equivalence. Therefore, we present a completely
different approach to these problems in the next sections.

4. DE-EQUIVALENCE
In this section, we consider schema mappings based on s-t tgds

and either full target tgds or target egds. We will show that, in both
cases, DE-equivalence is undecidable. This will be shown by re-
ducing the Halting problem of Turing machines to the co-problem
of DE-equivalence of such schema mappings. The principle of
this reduction is very general and will be subsequently adapted to

CQ- and DE-equivalence of various optimization problems (in Sec-
tion 5) and to restricted forms of mappings (in Section 7). There-
fore, we introduce a construction that works for both CQ- and DE-
equivalence at the same time. The reduction is technically intricate,
so we start by presenting the main ideas.

Principle. The general idea is to construct, for a Turing machine
TM, two schema mappingsM andM′ such that

TM halts iff M 6≡DE M′

Reformulated in terms of the behaviour of the schema mappings,
this means that

• If TM halts, then for at least one source instance I , the differ-
ence betweenM andM′ must become apparent (in terms of
differing universal solutions).

• If TM does not halt, then for all source instances,M andM′
must yield identical universal solutions. 2

This construction is implemented through the following ideas:

Idea 1. For every Turing machine, there is a schema mapping using
the target relations

state(·, ·) tape(·, ·, ·) cursor(·, ·, ·)

that can simulate a Turing machine computation of some specific
length given an appropriate source instance. This can be done by
just using s-t tgds and full target tgds (or target egds). We will call
this a simulation mapping. 2

Idea 2. There is an appropriate source instance to simulate all Tur-
ing machine computations of length n. It has the form

rootS(1) ∧ chainS(1, 2) ∧ chainS(2, 3) ∧ . . . ∧ chainS(n− 1, n)

over the source schema

rootS(·) chainS(·, ·)

It will be called the driving source instance of length n. Through
an infinite sequence of such instances, one can drive the simulation
of all (arbitrarily long) terminating computations of TM. 2

Idea 3. The reduction has to deal with arbitrary source instances.
One can control the source instance in a way such that

• All unintended source instance properties that the Turing ma-
chine simulation cannot handle are detected.

• The remaining unintended properties can be dealt with in the
Turing machine simulation.

This can be accomplished using just target egds through what we
will call source-guarding dependencies. 2

Idea 4. There is one dependency, which we call the halting detec-
tion dependency τ .

state(_, 1)→ halt()

where 1 denotes the halting state. It is the only difference between
the schema mappingsM andM′, i.e.

M′ =M∪ {τ}

This dependency τ only makes a difference iff TM halts. Notably,
this construction works for both DE- and CQ-equivalence. 2

94

4.1 Construction
We now outline the implementation of these general ideas by a

schema mapping MTM = (S,T,Σst ∪ Σt) consisting of full s-
t tgds Σst and target dependencies Σt containing full target tgds
and target egds. MTM will be referred to as the simulation map-
ping. Later we will show that the target tgds in this mapping can be
replaced by target egds and vice versa.

We thus first define the source and target schemas S and T, and
the driving source instances In. Finally, the set of dependencies Σ
will be presented.

Schemas. As discussed before, the source schema S contains atoms
chainS(·, ·), intended to describe a linear order starting at rootS(·).

rootS(r) chainS(px, x)

As a notational convention, we use the variable name px (and later
also nx) to refer to the previous (resp. next) value relative to x in
the chain structure.

In the target schema T , we hold a copy of this chain in

root(r) chain(px, x)

We also have in the target schema three relations

state(t, q) tape(t, l, a) cursor(t, l, c)

describing the state q, tape symbol a and cursor status c (i.e. if the
cursor is present or not). The values for q, a and c are introduced
by our dependencies. For easier presentation, we use constants (but
this is not essential, as we will see later). The values for time t
and tape location l will be taken from chain tuples in the source
instance. Furthermore, we have the target relation

halt()

to denote a halting Turing machine.

Source Instances. As illustrated before (in Idea 2), we need spe-
cific source instances to drive our simulation. We now define such
source instances In, which drive the simulation of TM-computat-
ions of length n.

DEFINITION 4.1. The driving source instance In of length n ≥
1 is given by the following relations over the domain {1, . . . , n}

rootInS = {(1)}, chainInS = {(i− 1, i) | 2 ≤ i ≤ n}
Moreover, for n = 0, we set In = ∅.

In particular, if TM halts then one of these In will be the witness
for differing universal solutions.

Source-to-target tgds. The first set of tgds are the initialization
tgds. They establish the state, tape and cursor atoms for the initial
time point. We refer to the tape starting symbol as 1 and to the
blank symbol as 0. Moreover, the initial state is denoted by 0 and
the halting state is denoted by 1.

• rootS(r)→ state(r, 0)
• rootS(r)→ tape(r, r, 1)
• rootS(r)→ cursor(r, r, 1)
• rootS(r) ∧ chainS(_, x)→ tape(r, x, 0)
• rootS(r) ∧ chainS(_, x)→ cursor(r, x, 0)

Here, the second and third tgd initialize the first tape position and
the last two tgds initialize the subsequent tape positions. Addition-
ally, we use the following copy tgds to transfer the chain from the
source to the target.

• rootS(r)→ root(r)
• chainS(px, x)→ chain(px, x)

Simulation full target tgds. We first construct a common left-hand
side ϕ for all following dependencies. It matches the current state
q, symbol a, and cursor position of the Turing machine:

ϕ := state(t, q) ∧ tape(t, l, a) ∧ cursor(t, l, 1)

where 1 denotes that the cursor is present at that location.
We now construct transition tgds which compute the next state,
symbol and cursor position. For each transition δ(q, a) = (q′, a′, d)
of TM, we add the following dependencies to Σt.

• ϕ ∧ chain(t, t′)→ state(t′, q′)
• ϕ ∧ chain(t, t′)→ tape(t′, l, a′)

Depending on the cursor movement, we add one of the following
two dependencies. If the transition encodes a cursor movement to
the left (d = ←), add the first dependency, otherwise (d = →) add
the second one.

• ϕ ∧ chain(t, t′) ∧ chain(pl, l)→ cursor(t′, pl, 1)
• ϕ ∧ chain(t, t′) ∧ chain(l, nl)→ cursor(t′, nl, 1)

In addition to maintaining where the cursor is located, we also keep
track of where the cursor is not located using parity tgds. The fol-
lowing tgd handles locations which are more than one move away
from the current cursor position.

• cursor(t, pl, 0) ∧ cursor(t, l, 0) ∧ cursor(t, nl, 0) ∧
chain(pl, l) ∧ chain(l, nl) ∧
chain(t, t′)→ cursor(t′, l, 0)

If the cursor is at most one move away from the current cursor
position, we again add tgds for each transition δ(q, a) = (q′, a′, d)
of TM. The first tgd below encodes that the cursor never stays at
the same place. The second one is added if d = ← and the third
one if d = →.

• ϕ ∧ chain(t, t′)→ cursor(t′, l, 0)
• ϕ ∧ chain(t, t′) ∧ chain(l, nl)→ cursor(t′, nl, 0)
• ϕ ∧ chain(t, t′) ∧ chain(pl, l)→ cursor(t′, pl, 0)

The reason for keeping track of locations where the cursor is not
positioned is that for such locations, the tape symbol remains un-
changed. This fact is expressed by the following inertia tgd.

• tape(t, l, a) ∧ cursor(t, l, 0) ∧
chain(t, t′)→ tape(t′, l, a)

Source-guarding dependencies. The dependencies defined so far
are intended to work on driving source instances In. However, our
reduction has to deal with arbitrary source instances. Below, we
define additional source-guarding dependencies in order to either
exclude certain unintended source instances or to control the effect
of such source instances on the result of the chase.

The following egds check that there is at most one root(_) and at
most one predecessor and successor of a chain(_, _) atom. These
egds indicate a violation of an intended structure by chase failure.
We call them no branching egds.

• root(r) ∧ root(r′)→ r = r′

• chain(px, x) ∧ chain(px, x′)→ x = x′

• chain(px, x) ∧ chain(px′, x)→ px = px′

Further deviations from the intended layout of source instances
are not indicated by failure, but by notification. We implement this
notification by indicating halt().

• chainS(x, x)→ halt()
• rootS(r) ∧ chainS(_, r)→ halt()

This completes the definition of the simulation mappingMTM =
(S,T,Σst ∪ Σt) of a Turing machine TM.

95

4.2 Reduction
We are now going to show how the above construction indeed

yields the undecidability of DE-equivalence. We thus first estab-
lish some key properties of the construction. After that, we illus-
trate a way to overcome the limited power of target dependencies
to control the properties of the source instance. Finally, we give the
undecidability proofs and extend them to important special cases.

DEFINITION 4.2. Let J be a target instance containing the fol-
lowing atoms (where ei denote pairwise distinct constants)

root(e1) ∧ chain(e1, e2) ∧ chain(e2, e3) . . . ∧ chain(en−1, en),

where e1, . . . , en are pairwise distinct constants. We say that the
computationC of length n of Turing machine TM corresponds to J ,
written C ≈ J iff the following holds for all t, l ∈ {1, . . . , n}:
qTM(t) = q ⇔ stateJ(et, q) ¬cTM(t, l)⇔ cursorJ(et, el, 0)
aTM(t, l) = a⇔ tapeJ(et, el, a) cTM(t, l)⇔ cursorJ(et, el, 1)

We now establish important properties of the construction from
Section 4.1.
Let TM be a Turing machine andMTM = (S,T,Σ) its simulation
mapping. Let C denote a computation of TM of length n. Let In be
the driving source instance and Jn = chase(In,Σ).

LEMMA 4.1. For each t ∈ dom(In), there is exactly one atom
state(t, _) and for each t ∈ dom(In) and l ∈ dom(In), there is
exactly one atom tape(t, l, _) and cursor(t, l, _) in Jn.

LEMMA 4.2. The chase Jn = chase(In,Σ) will terminate and
not trigger any source-guarding dependency. In particular, it will
not fail and it will produce the same result as chasing In without
the source-guarding dependencies.

LEMMA 4.3. The correspondence C ≈ Jn (according to Defi-
nition 4.2) holds. 2

The active chain. The source-guarding dependencies do not detect
all unintended properties of a source instance. The instance I may
contain no atom root(_) or there may be several “chains”, e.g. let
rootI = {(t1)} and

chainI = {(t1, t2), (t2, t3), (t3, t4), (s1, s2), (s2, s3)}
Then I contains two “chains” so to speak, namely t1, t2, t3, t4 and
s1, s2, s3. Clearly, only the first one is connected to the root. When
not connected to the root, it is even possible that there is a cycle,
e.g. let rootI

′
= {(t1)} and

chainI
′

= {(u1, u2), (u2, u3), (u3, u1)}
For the chain connected to the root, this is ruled out by the source-
guarding dependencies.
In the simulation mapping, the initial state is based on root and
chain atoms connected to the root. Furthermore, dependencies in
the simulation mapping only follow along the chain connected to
the root. Therefore, while there may be several “chain”-like con-
structs, we are only interested in the one connected to the root.
Below we define the active chain to formalize this intuition.

DEFINITION 4.3. Let I be a source instance over the schema S
of a simulation mapping. The active chain Ia is the minimal set of
atoms that fulfills the following conditions.

• (∀x) root(x) ∈ I ⇒ root(x) ∈ Ia
• (∀px, x) root(px) ∈ I ∧

chain(px, x) ∈ I ⇒ chain(px, x) ∈ Ia
• (∀px, x, nx) chain(px, x) ∈ Ia ∧

chain(x, nx) ∈ I ⇒ chain(x, nx) ∈ Ia

We now establish crucial properties of the active chain.
Let TM be a Turing machine andMTM = (S,T,Σ) its simulation
mapping. For an arbitrary source instance I , let Ia be the active
chain. Let J = chase(I,Σ) and Ja = chase(Ia,Σ). Suppose
that the chase of I with Σ does not trigger any source-guarding
dependencies.

LEMMA 4.4. The active chain Ia is isomorphic to the driving
source instance In of length n = |Ia|.

LEMMA 4.5. All atoms derived by the target chase of J are
already generated by the target chase of Ja. 2

THEOREM 4.6. DE- and CQ-equivalence are undecidable for
mappings based on full s-t tgds, full target tgds and target egds.

PROOF. We proceed by reducing the Halting problem to the co-
problem of DE- resp. CQ-equivalence. Let TM be an arbitrary
instance of Halting. Then we define the two schema mappings
M = (S,T,Σ) andM′ = (S,T,Σ∪{τ}), whereM =MTM is
the simulation mapping for TM and τ is defined as state(_, 1) →
halt(). It remains to show that TM halts iff M 6≡CQ M′ resp.
M 6≡DE M′.
The proof is given in three claims:

CLAIM 1. If TM halts thenM 6≡CQM′
CLAIM 2. IfM 6≡CQM′ then TM halts
CLAIM 3.M 6≡DE M′ impliesM 6≡CQM′

Moreover, for arbitrary schema mappings we have the reverse di-
rection of Claim 3,M 6≡CQM′ impliesM 6≡DE M′. With that,
it is clear that TM halts iffM 6≡CQM′ resp.M 6≡DE M′.

We now show that undecidability even holds if the target depen-
dencies are restricted to egds only or to full tgds only. Note that
for full target tgds only, it suffices to consider full s-t tgds, but for
target egds only, we need to consider non-full s-t tgds.

THEOREM 4.7. DE- and CQ-equivalence are undecidable for
schema mappings based on s-t tgds and target egds.

PROOF. (Sketch). We start with the simulation mapping as in-
troduced for Theorem 4.6. This mapping uses only full tgds and
egds. Therefore we encode the full tgds into egds using the tech-
nique introduced in Theorem 3.2.

THEOREM 4.8. DE- and CQ-equivalence are undecidable for
schema mappings based on full s-t tgds and full target tgds.

PROOF. (Sketch). We again start with the simulation mapping
as introduced for Theorem 4.6. We eliminate all egds from the
mapping by adapting a technique used in [7]. This is done by in-
troducing a relation symbol E(·, ·) denoting equality.

5. UNDECIDABILITY OF OPTIMIZATION
We now extend the above undecidability results to several natu-

ral optimization tasks. More precisely, we show that all properties
presented in Definition 3.1 are undecidable both for DE- and CQ-
equivalence. We only give proofs for the case of mappings where
all target dependencies are full tgds. By the proof idea of Theorem
3.2, we can easily replace the full tgds by egds.

The undecidability of checking if a specific dependency is re-
dundant follows directly from the proof of Theorems 4.7 and 4.8.

COROLLARY 5.1. LetM = (S,T,Σ) be a a schema mapping
with Σ = Σst ∪ Σt based on s-t tgds and target egds, or full s-t
tgds and full target tgds and let τ ∈ Σ. Then it is undecidable if τ
is redundant w.r.t. DE- resp. CQ-equivalence.

96

PROOF. Recall the simulation mappings M = (S,T,Σ) and
M′ = (S,T,Σ′) with Σ′ = Σ∪{τ} introduced for Theorem 4.6.
Clearly, τ is redundant in M′, iff M ≡CQ M′ resp. M ≡DE
M′. By Theorems 4.7 and 4.8, deciding these equivalences would
come down to deciding the Halting problem.

We now show that undecidability also holds for subset-minimality
for both DE- and CQ-equivalence. In the preceding corollary, the
main idea was that a specific dependency τ is non-redundant iff TM
halts. Therefore for subset-minimality, it suffices to make sure that
τ is the only dependency that might be redundant.

THEOREM 5.2. Let M = (S,T,Σ) be a a schema mapping
with Σ = Σst∪Σt based on s-t tgds and target egds, or full s-t tgds
and full target tgds. Then it is undecidable if Σ is subset-minimal
w.r.t. DE- resp. CQ-equivalence.

PROOF. (Sketch). The mappingM′ from Theorem 4.6 can be
transformed into a mappingM′′ where apart from the halting de-
tection dependency τ , no other dependency can be redundant. This
non-redundancy of any other dependency σ is accomplished by
adding appropriate s-t tgds which cause σ to “fire” when chasing
an appropriately chosen source instance withM′′.

For cardinality-minimality we have to combine the proof ideas of
the previous undecidability proofs with the sirup construction [14],
which already played an important role in Section 3.

THEOREM 5.3. Let M = (S,T,Σ) be a a schema mapping
with Σ = Σst ∪ Σt based on s-t tgds and target egds, or full s-t
tgds and full target tgds. Then it is undecidable if Σt is cardinality-
minimal w.r.t. DE- resp. CQ-equivalence.

PROOF. (Sketch). We start with our simulation mapping M
from Theorem 4.6. The work of the s-t tgds in Section 4.1 and
the setup of relations needed for the sirup construction can be done
by a set of s-t tgds that cannot be further reduced. As in the proof
of Theorem 4.8, we can replace the target egds by full target tgds
using an equality relation. Based on the sirup construction of [14]
that we already used in the proof of Theorem 3.3, we know how to
encode all our full target tgds by a single full target tgd σ.

In summary, we can transform the simulation mappingM from
Section 4 into a mappingM′ consisting of a set of s-t tgds Σst that
cannot be further reduced and a single full target tgd σ. Now let
M′′ = M′ ∪ {τ}, where τ is the halting detection dependency
from Section 4. Then M′′ is cardinality-minimal iff τ is not re-
dundant inM′′ iff TM halts.

In [15], Gottlob et al. also looked at other optimization criteria
besides subset- and cardinality-minimality. One such criterion is
antecedent-minimality, which we want to apply to the target egds
here, i.e.: Given a mapping Σst ∪ Σt, where Σt consists of egds
only, is the total number of atoms in all antecedents in Σt minimal?

THEOREM 5.4. LetM = (S,T,Σ) be a a mapping with Σ =
Σst∪Σt of s-t tgds and target egds. Then it is undecidable if for all
Σ′t, s.t. Σst ∪Σt ≡CQ Σst ∪Σ′t (resp. Σst ∪Σt ≡DE Σst ∪Σ′t),
the total number of atoms in the antecedents in Σt is less than or
equal to the total number of atoms in the antecedents in Σ′t. That
is, Σt is antecedent-minimal w.r.t. DE- resp. CQ-equivalence.

PROOF. (Sketch). For this, we exploit a result shown later for
Theorem 7.1: Our simulation mappingM from Theorem 4.6 can
be transformed into a mapping M∗ which uses at most one key
dependency per target relation. Then M∗ is clearly cardinality-
minimal, since there is only one dependency enforcing equalities
in each relation, and this one cannot be left out (without violating
equivalence).

6. OPTIMIZATION OF S-T TGDS
The undecidability results proved in the previous sections are

mainly due to the target dependencies. That is, DE- and CQ-equiva-
lence of two mappings M1 and M2 remain undecidable even if
M1 andM2 coincide on the s-t tgds (and they only differ on the
target dependencies). Likewise, several optimization tasks of the
target dependencies are undecidable even if the s-t tgds are kept
fixed. We now shift our focus to the s-t-tgds and investigate two
main questions: First, do the relaxed notions of equivalence of two
schema mappings become decidable if the schema mappings coin-
cide on the target dependencies? Second, do the relaxed notions
of equivalence provide additional potential (compared with logical
equivalence) of optimization of the s-t tgds in the presence of target
dependencies? Below, we shall give a positive answer to the first
question and a negative answer to the second one.

The main technical tool for deriving these results will be an adap-
tation and extension of the PROPAGATE procedure from [15]. In
[15], this procedure was used to “propagate” the effect of the target
egds into the s-t tgds. It thus played an important role in the compu-
tation of a normal form of s-t tgds in the presence of target egds. In
Figure 1, we present the extended version of this procedure, called
PROPAGATEE . Its input is (1) a mappingM = (S,T,Σ), where
Σ = Σst ∪Σt consists of s-t tgds and target egds and tgds, and (2)
a conjunction of atoms ϕ(x̄), where ~x denotes the variables in this
conjunction. By chasing At(ϕ(x̄)) with Σ, PROPAGATEE derives
a set of source egds ∆Σ

s (ϕ(x̄)) and a set ∆Σ
st(ϕ(x̄)) consisting of

a single s-t tgd. The following example will help to illustrate the
work of the PROPAGATEE procedure.

EXAMPLE 6.1. Consider the schema mapping Σ = {τ1, τ2, ε}
consisting of a single s-t tgd, one target tgd, and one target egd:

τ1 : S(x1, x2)→ (∃y)P (x1, y), Q(y, x2)
τ2 : P (x1, x2)→ (∃z)R(x2, x1, z)
ε : R(x, v, z) ∧Q(x,w)→ v = w

Suppose that we apply the PROPAGATEE procedure to the CQ
ϕ(x̄) = S(x1, x2), i.e., ϕ(x̄) is the antecedent of the s-t tgd τ1.
Then the procedure starts with source database I = {S(x1, x2)}.
The chase of I with Σ takes three steps. The first two derive new
facts from I: J1 ={P (x1, y), Q(y, x2)}, J2 = J1∪{R(y, x1, z)}.
The last chase step enforces the egd ε by unifying x1 and x2, i.e.,
for substitution λ = {x1 ← x, x2 ← x}, we have J3 = J2λ =
{P (x, y), R(y, x, z), Q(y, x)}.

In total, the procedure derives a source egd σ : S(x1, x2) →
x1 = x2, and the s-t tgd τ ′1 : S(x, x)→ (∃y, z)P (x, y) ∧ R(y, x,
z) ∧ Q(y, x). It can be easily checked that Σ ≡ Σ′ with Σ′ =
{σ, τ ′1, τ2, ε}, i.e., it is correct (up to logical equivalence) to re-
place τ1 in Σ by the source egd and the s-t tgd resulting from
PROPAGATEE . In particular, the source egd σ is logically implied
by Σ, i.e.: the chase with Σ fails on every source instance contain-
ing a fact S(c1, c2) where c1, c2 are distinct constants. 2

Generalizing Example 6.1, we can prove the following proper-
ties of the PROPAGATEE procedure: (1) PROPAGATEE is sound,
i.e., it only derives dependencies which are logically implied by Σ.
(2) If PROPAGATEE is called with the antecedent ϕ(x̄) of some de-
pendency τ ∈ Σ, then τ may be replaced in Σ by the source egds
and s-t tgds resulting from the PROPAGATEE procedure. Finally,
we also show that (3) PROPAGATEE does not distinguish between
CQ-equivalent mappings. Formally, we get the following lemmas.

LEMMA 6.1. Let Σ = Σst ∪Σt and let ϕ(x̄) be a an arbitrary
CQ. Then Σ |= ∆Σ

s (ϕ(x̄)) ∪∆Σ
st(ϕ(x̄)).

97

Procedure PROPAGATEE

Input: Mapping Σ = Σst ∪ Σt, conjunction ϕ(x̄)
Output: Sets of dependencies ∆Σ

s (ϕ(x̄)) and ∆Σ
st(ϕ(x̄))

/* 1. chase with Σ = Σst ∪ Σt */
I := At(ϕ(x̄));
J := chase(I,Σ);

/* 2. compute s-t tgd τ */
let J = JS ∪ JT , s.t. JS is an instance over S

and JT is an instance over T;
let J∗ = core(JT), where the variables that occur

in JS are considered as constants.
τ :=

`V
A∈JS

A
´
→ (∃ȳ)

V
B∈J∗ B;

∆st := {τ};
/* 3. compute source egds */

∆s := ∅;
Compute a substitution λ s.t. At(ϕ(x̄λ)) = JS ;
for each pair of variables xj , xk ∈ x̄ do

if xjλ = xkλ then
∆s := ∆s ∪ {ϕ(x̄)→ xj = xk};

/* 4. output result */
return (∆s,∆st);

Figure 1: Extended Propagate Procedure.

LEMMA 6.2. Let Σ = Σst ∪ Σt and σ ∈ Σst, s.t. ϕ(x̄) is the
antecedent of σ and let Σ′ = (Σ\{σ})∪∆Σ

s (ϕ(x̄))∪∆Σ
st(ϕ(x̄)).

Then Σ′ |= Σ holds.

LEMMA 6.3. Let Σ = Σst ∪Σt and Υ = Υst ∪Υt be schema
mappings with Σ ≡CQ Υ. Moreover, for an arbitrary conjunction
ϕ(x̄), let ∆Σ = ∆Σ

s (ϕ(x̄))∪∆Σ
st(ϕ(x̄)) and ∆Υ = ∆Υ

s (ϕ(x̄))∪
∆Υ
st(ϕ(x̄)), respectively, denote the output of the PROPAGATEE

procedure. Then ∆Σ ≡ ∆Υ holds.

We now combine these three lemmas to show that if two map-
pings are CQ-equivalent, then their difference can be reduced to
the target dependencies (while the s-t tgds can be replaced by com-
mon source egds and s-t tgds). Since DE-equivalence implies CQ-
equivalence, this clearly holds for DE-equivalent mappings as well.

THEOREM 6.4. Let Σ = Σst ∪ Σt and Υ = Υst ∪ Υt with
Σ ≡CQ Υ. Then there exist a set Σ∗s of source egds and Σ∗st of s-t
tgds, s.t. Σ ≡ Σ∗s ∪ Σ∗st ∪ Σt and Υ ≡ Σ∗s ∪ Σ∗st ∪Υt.

PROOF. The idea is to call PROPAGATEE with every antecedent
occurring in Σst ∪ Υst and to take Σ∗s (resp. Σ∗st) as the set of all
source egds (resp. all s-t tgds) produced by these procedure calls.
Formally, we set Φ = {ϕ(x) | ϕ(x) is the antecedent of some
σ ∈ Σst} ∪ {ϕ(x) | ϕ(x) is the antecedent of some σ ∈ Υst} and
Σ∗s =

S
ϕ(x)∈Φ ∆Σ

s (ϕ(x)) and Σ∗st =
S
ϕ(x)∈Φ ∆Σ

st(ϕ(x)). The
(logical) equivalences Σ ≡ Σ∗s∪Σ∗st∪Σt. and Υ ≡ Σ∗s∪Σ∗st∪Υt

are shown by induction on |Φ| and using the Lemmas 6.1 – 6.3.

With this theorem at hand, we can now settle the question of
the decidability of DE- and CQ-equivalence of schema mappings
with logically equivalent (and, in particular, with identical) target
dependencies. To this end, we first prove the following lemma.

LEMMA 6.5. Let Σ = Σst ∪ Σt and Υ = Υst ∪Υt, such that
Σ ≡CQ Υ and Σt ≡ Υt holds. Then Σ ≡ Υ.

PROOF. By Theorem 6.4, there exist a set of source egds Σt
∗

and a set of s-t tgds Σ∗st such that Σ ≡ Σ∗s ∪ Σ∗st ∪ Σt and Υ ≡
Σ∗s ∪ Σ∗st ∪Υt. The claim follows from Σt ≡ Υt.

THEOREM 6.6. Suppose that the problems of DE- and CQ-equi-
valence are restricted to pairs of schema mappings Σ = Σst ∪ Σt
and Υ = Υst ∪ Υt, s.t. Σt and Υt are logically equivalent. With
this restriction, the DE- and CQ-equivalence problems Σ ≡DE Υ
and Σ ≡CQ Υ, respectively, are decidable.

PROOF. By the condition Σt ≡ Υt and by Lemma 6.5, Σ ≡ Υ
holds iff Σ ≡CQ Υ holds. Hence, also Σ ≡DE Υ coincides with
logical equivalence.

In other words, the relaxed notions of equivalence are decidable
on schema mappings if only the s-t tgds are allowed to vary. This is
in sharp contrast to the situation where only the target dependencies
vary, see Section 4. This naturally raises the question if the decid-
ability result of Theorem 6.6 allows us to exploit additional pos-
sibilities (compared with logical equivalence) of optimizing the s-t
tgds in the presence of target dependencies. The following example
illustrates the simplifications achievable with logical equivalence.

EXAMPLE 6.2. Consider the mapping Σ = {τ1, τ2}, where τ1
(resp. τ2) is the following s-t tgd (resp. target egd):
τ1 : S(x1, x2)∧S(x1, x3)→ P (x2, y1)∧Q(y2, x3)∧Q(y3, x3)
τ2 : P (x1, v) ∧Q(w, x2)→ v = w

To simplify the notation, we have omitted the existential quantifi-
cation (which has to be applied to the variables occurring in the
conclusion only). Under logical equivalence, Σ can be simplified
to Σ′ = {τ ′1, τ2} with τ ′1 : S(x1, x2)→ P (x2, y1) ∧Q(y2, x2).
Using the dependency implication test from Lemma 2.1, one can
easily verify that Σ′ |= τ1 and Σ |= τ ′1, that is, Σ ≡ Σ′ holds. 2

We now show for a broad class of optimization problems on s-
t tgds that the relaxed notions of equivalence lead to exactly the
same notion of optimality as logical equivalence. Negatively, this
means that the relaxed notions of equivalence do not give us addi-
tional power. Positively, this means that for optimizing the s-t tgds
one can interchangeably use algorithms for any of these notions of
equivalence. Below, we carry over the notions of optimality from
Definition 3.1 to s-t tgds and generalize these notions to arbitrary,
real-valued target functions. W.l.o.g., we restrict ourselves to min-
imization problems. For the sake of a uniform notation, we denote
logical equivalence by ≡log rather than ≡.

DEFINITION 6.1. LetM = (S,T,Σ) with Σ = Σst ∪Σt be a
schema mapping, let x ∈ {log,DE,CQ} and let F be a function
that assigns a real number to every set of s-t tgds.
Then the set of s-t tgds Σst is called F -optimal w.r.t. x-equivalence,
if there does not exist a set of s-t tgds Σ′st, s.t. F (Σ′st) < F (Σst)
and Σst ∪ Σt ≡x Σ′st ∪ Σt.

Formally, we show below that, for any real-valued function F ,
the F -optimality w.r.t. DE- or CQ-equivalence coincides with the
F -optimality w.r.t. logical equivalence.

THEOREM 6.7. LetM = (S,T,Σ) with Σ = Σst ∪ Σt be a
schema mapping and let F be a function that assigns a real number
to every set of s-t tgds. Then Σst is F -optimal w.r.t. logical equiv-
alence iff it is F -optimal w.r.t. DE-equivalence iff it is F -optimal
w.r.t. CQ-equivalence.

PROOF. Logical equivalence entails DE-equivalence, which en-
tails CQ equivalence [10]. Hence, it suffices to show that if Σst is
F -optimal w.r.t. logical equivalence then it is also F -optimal w.r.t.
CQ-equivalence. Suppose to the contrary that Σst is F -optimal
w.r.t. logical equivalence but not w.r.t. CQ-equivalence. Then there
exists Σ′st, s.t. F (Σ′st) < F (Σst) and Σst∪Σt ≡CQ Σ′st∪Σt. By
Lemma 6.5, then also Σst∪Σt ≡ Σ′st∪Σt holds, which contradicts
the assumption that Σst is F -optimal w.r.t. logical equivalence.

98

7. RESTRICTED CLASSES OF MAPPINGS
In this section, we consider schema mappings with specific tar-

get dependencies: functional dependencies, key dependencies and
inclusion dependencies. We first show that the CQ equivalence re-
mains undecidable for such mappings. DE-equivalence, however,
becomes decidable for the class of mappings which includes a fairly
broad class of common database constraints, namely functional and
inclusion dependencies possessing the terminating chase property.

7.1 Target KDs under CQ-Equivalence
We now show undecidability of CQ-equivalence for mappings

using at most one key dependency per target relation. Essentially,
this means simulating a Turing machine using such mappings.

For the simulation, we need to compute the next state of the Tur-
ing machine given its current state. This was originally done using
a target tgd of the form
• state(t, q) ∧ . . . ∧ chain(t, t′)→ state(t′, q′) (1)

Clearly, this cannot be done using key dependencies.
Idea 1. Given the current state q at time t and a number of other
values (like tape symbol), it is possible to express the next state q′

as a key dependency using the relation next-state(t, . . . , q, q′).
For each possible transition, we use s-t tgds to create next-state

atoms containing only constants. E.g., suppose there is a transition
from state 3 to state 4 given specific conditions ~c. Then we need to
add atoms for all possible times 0, 1, . . . , n:

next-state(0, c̄, 3, 4)
next-state(1, c̄, 3, 4)

. . .
next-state(n, c̄, 3, 4)

Now we can use a key dependency to do lookups into that relation.

• next-state(x̄, q, q′) ∧ next-state(x̄, q, q′′)→ q′ = q′′

E.g. at time 7, if we want to retrieve the resulting state q′ of an
actual transition from state 3 and specific conditions ~c, we can do
this via an atom next-state(7, c̄, 3, q′) in the target instance: Our
key dependency enforces the instantiation of q′ to 4.

The construction of all of the needed lookup tables (for state,
symbol, cursor) can be done using similar s-t tgds. 2

Given these relations, we need to describe a full computation. So
we use the following s-t tgd to establish lookups into next-state.

• chainS(t, _)→ (∃q, q′) next-state(t, . . . , q, q′) (2)

So, for a computation of length n, we need to make these lookups:

next-state(0, . . . , q0, q
′
0)

next-state(1, . . . , q1, q
′
1)

. . .
next-state(n, . . . , qn, q

′
n)

However, there is a problem, since the result of the first lookup q′0
is not propagated to the argument q1 of the second lookup.

What is clear is that we cannot use s-t tgds to guarantee q′i =
qi+1 using existential variables. After all, the length of the compu-
tation is unknown during the design of our schema mapping.
Idea 2. It is possible to connect variables along an indefinite num-
ber of atoms using key dependencies.

In fact, we want that the states q0, q′0, q1, q′1, . . . from next-state
are exactly the unique states at times 0, 1, . . . given by the state
relation. We therefore extend s-t tgd (2) to additionally store which
states correspond to which time points.

• chainS(t, t′)→ (∃q, q′) next-state(t, . . . , q, q′) ∧ (3)
state(t, q) ∧ state(t′, q′)

We then use a single key dependency to actually ensure that for
each time point t, there is a specific single state q.

• state(t, q) ∧ state(t, q′)→ q = q′

E.g., at times 0 and 1, we have the following tuples generated by
our s-t tgd

next-state(0, . . . , q0, q
′
0) ∧ state(0, q0) ∧ state(1, q′0) ∧

next-state(1, . . . , q1, q
′
1) ∧ state(1, q1) ∧ state(2, q′1)

So since the target instance contains the atoms state(1, q′0) and
state(1, q1), the key dependency enforces the equality q′0 = q1.
This technique is used for state in one dimension (time) and for
tape and cursor in two dimensions (time and tape location). 2

So far, we can simulate Turing machines, but we still need a mech-
anism to detect halting. Similar to the construction in Section 4, we
would like to use the tgd state(_, 1) ∧ halt(h, h′) → h = h′ for
this purpose. However, it is not a key dependency.

Idea 3. To effectively detect the halting state, we introduce a rela-
tion detect to associate every state q with some arbitrarily chosen
constant 0. We realize this by extending s-t tgd (3) as follows

• chainS(t, t′)→ (∃q, q′) next-state(t, . . . , q, q′) ∧ (4)
state(t, q) ∧ state(t′, q′) ∧ detect(q, 0)

Furthermore, we add an atom halt(x) and a detect atom which
associates the halting state (state 1) with the variable x.

• rootS(_)→ detect(1, x) ∧ halt(x)

For halting detection, we add the following key dependency

• detect(q, y) ∧ detect(q, y′)→ y = y′ [τ]

Now if some q equals the halting state (state 1), the variable x
will be set to 0 using τ . So let M be defined by the dependen-
cies sketched above and assume an appropriate source instance I .
Then the the core of I underM contains halt(0) iff TM halts, and
it contains halt(v) for a labelled null v iff TM does not halt. 2

THEOREM 7.1. CQ-equivalence is undecidable for schema map-
pings based on s-t tgds and at most one key dependency per target
relation.

At this point, it is important to observe that the construction in the
preceding theorem does not work for DE-equivalence. This is the
case because of the form of the halting detection dependency τ .

In particular, assume that TM does not halt. Then the labelled
null v in any of the atoms state(_, v) generated by the s-t tgd in (4)
will never be instantiated to 1. Hence, we know that τ never fires.
LetM′ = M∪ {τ} and let In (with n > 0) be a driving source
instance. Then the chase of In withM and also withM′ succeeds
and core(In,M) = core(In,M′). Now let J be an arbitrary uni-
versal solution of In under M. Then we know that detect(0, 0)
must be contained in J (since state 0 is the initial state). So let us
extend J to J ′ = J ∪ {detect(0, u)} for a fresh labelled null u.
This new atom will not be present in the core, so J ′ does not con-
tradictM ≡CQM′. However, J ′ violates τ , therefore J ′ is not a
solution underM′. SoM 6≡DE M′ since J ′ ∈ UnivSol(I,M)
but J ′ 6∈ Sol(I,M′) and, therefore J ′ 6∈ UnivSol(I,M′).

In contrast, if we do not require the halting detection depen-
dency to be a key dependency, then the construction is applicable
to both CQ- and DE-equivalence. This was indeed the case for
Theorem 5.4, which exploits the preceding construction, but with a
non-key dependency for halting detection.

99

7.2 Target IDs and FDs under DE-Equivalence
The disparity between DE- and CQ-equivalence observed in the

previous section will become yet deeper in this section: We show
that DE-equivalence is decidable for mappings whose target de-
pendencies even belong to a bigger class than just key dependen-
cies. The idea of the equivalence test is rather simple: given two
mappings, we identify dependencies in one mapping which are not
logically implied by the other mapping. For DE-equivalence, it is
sufficient that no such “differing” dependency ever fires in any pos-
sible chase sequence (see Theorem 7.3). Moreover, we will show
that for a certain class of target dependencies, this condition is also
necessary for DE-equivalence.

DEFINITION 7.1. A query ϕ is said to be satisfiable in a map-
ping Σ if there exists a source instance I such that the chase of I
with Σ terminates and succeeds, and chase(I,Σ) |= ϕ holds.

DEFINITION 7.2. Let Σ and Σ′ be schema mappings. Depen-
dency τ ∈ Σ ∪ Σ′ is said to be “differing”, if it is not implied by
one of the mappings, i.e., either Σ 6|= τ or Σ′ 6|= τ holds.

DEFINITION 7.3 (AUC). We say that a pair of mappings Σ,Σ′

meets the antecedent unsatisfiability condition (AUC), if no differ-
ing dependency τ in any of the two mappings has an antecedent
satisfiable in the mapping which contains τ .

As it was shown by Theorem 6.4, for any two mappings Σ =
Σst ∪ Σt and Σ′ = Σ′t ∪ Σ′st, whenever Σ ≡CQ Σ′ holds, there
exist sets Σ∗s of source egds and Σ∗st of s-t tgds, such that Σ ≡
Σ∗s ∪ Σ∗st ∪ Σt and Σ′ ≡ Σ∗s ∪ Σ∗st ∪ Σ′t. Since DE-equivalence
implies CQ equivalence, in this section we always assume that two
mappings whose DE-equivalence is under consideration have ex-
actly the same set of s-t tgds and source egds.

As a consequence, by “differing dependency” we will always as-
sume a target one. We also notice that the following simple propo-
sition holds:

PROPOSITION 7.2. LetM = (S,T,Σ = Σs ∪ Σst ∪ Σt) be
a mapping. For any dependency τ over T, Σ |= τ iff Σt |= τ .

The following theorem can be illustrated by the mappings M
andM1 from the Example 1.1.

THEOREM 7.3. Let Σ = Σs∪Σst∪Σt and Σ′ = Σs∪Σst∪Σ′t
be schema mappings with terminating chase property where the
target dependencies consist of egds and tgds. If Σ and Σ′ satisfy
the AUC, then Σ ≡DE Σ′ holds.

It turns out that for DE-equivalent mappings, the AUC can be
reformulated in terms of unsatisfiability in either mapping:

THEOREM 7.4. Let Σ = Σs∪Σst∪Σt and Σ′ = Σs∪Σst∪Σ′t
be two DE-equivalent mappings. For any differing dependency τ ∈
Σ ∪ Σ′, let Στ ∈ {Σ,Σ′} denote the mapping containing τ , and
let Σ¬τ be the other mapping, Σ¬τ 6|= τ . Then, the following two
statements are equivalent:

1. For any differing dependency τ ∈ Σ ∪ Σ′, the antecedent of
τ is unsatisfiable in Σ¬τ ;

2. (AUC) For any differing dependency τ ∈ Σ ∪ Σ′, the an-
tecedent of τ is unsatisfiable in Στ .

Theorem 7.4 will allow us to show, that for some useful class of
mappings, the antecedent unsatisfiability condition is also neces-
sary for DE-equivalence. Namely, this is the case for mappings in
which target dependencies are constant-free and connected:

DEFINITION 7.4. A conjunctive query is said to be connected if
so is its Gaifman graph (that is, a graph in which nodes are query
atoms and an edge is drawn between two nodes whenever the re-
spective atoms share a variable).

An egd is connected if its antecedent is. Finally, a tgd is con-
nected if the conjunction of its antecedent and conclusion is: both
the antecedent and the conclusion are connected and share at least
one variable.

THEOREM 7.5. Consider the mappings Σ = Σs∪Σst∪Σt and
Σ′ = Σs ∪ Σst ∪ Σ′t in which both Σt and Σ′t are constant-free
and connected. Then, Σ ≡DE Σ′ implies that the two mappings
satisfy the antecedent unsatisfiability condition.

PROOF (SKETCH). Assume that Σ ≡DE Σ′ holds, but the an-
tecedent unsatisfiability condition is violated: that is, there exists
a differing dependency δ in either of the mappings, with the an-
tecedent satisfiable in the mapping which contains δ. Then, by The-
orem 7.4, also the following statement holds: W.l.o.g. there exists
τ ∈ Σt such that Σ′ 6|= τ and the antecedent ϕ(x̄) of τ is satisfi-
able in Σ′. Now if τ and all dependencies in Σ′t are constant-free
and connected, we derive a contradiction by showing Σ 6≡DE Σ′:

Indeed, assume there exists a source instance I such that ϕ(x̄) is
satisfied in J = chase(I,Σ′). Let [ϕ] be a database isomorphic to
ϕ(x̄): each atom of ϕ(x̄) is turned into a fact in [ϕ] by instantiating
the variables with distinct labelled nulls not occurring in J .

Based on [ϕ], we now build a counter-example to Σ ≡DE Σ′.
We first note that the chase with both Σ and Σ′ succeeds on [ϕ],
as the target dependencies in both mappings are constant-free, and
dom([ϕ]) consists solely of labeled nulls.

Consider the instance Jϕ = chase([ϕ],Σ′). One can show the
following three properties, justifying that the instance J ′ = J ∪Jϕ
is exactly a counter-example to DE-equivalence of Σ and Σ′:

a. J ′ 6|= Σt and hence, J ′ 6∈ Sol(I,Σ).
b. J ′ |= Σ′t. Since J ∈ Sol(I,Σ′), we have J ′ ∈ Sol(I,Σ′).
c. There exists a homomorphism from J ′ onto any other solution

for I under Σ′. Hence, J ′ ∈ UnivSol(I,Σ′).

Theorem 7.5 allows one to reduce the data exchange equivalence
of mappings with terminating chase property, containing constant-
free and connected target dependencies, to testing the satisfiability
of conjunctive queries according to Definition 7.1. This is good
news, since the satisfiability of a conjunctive query boils down to
evaluating the query against the chase of some fixed instance.

DEFINITION 7.5. A singleton-domain database I1
S for schema

S contains a single atomR(c, . . . c) for each relationR in S, where
c is some constant: dom(I1

S) = {c}.

THEOREM 7.6. LetM = (S,T,Σ) be schema mapping where
Σ consists of source egds, source-to-target tgds, and target egds
and tgds, possessing the terminating chase property. A Boolean
conjunctive query q is satisfiable in Σ iff chase(I1

S,Σ) |= q.

PROOF. There is a homomorphism h (not preserving constants)
from any source database I onto I1

S. Thus, any dependency which
fires in the chase of I is also applicable when I1

S is chased, and h
can be extended to h′ : chase(I,Σ)→ chase(I1

S,Σ) by extending
the domain of h to the nulls introduced by the chase of I with Σ.
Hence, for every I , chase(I,Σ) |= q only if chase(I1

S,Σ) |= q.
The “if” direction is trivial.

Finally, we bring together the results of this section, of Section 6
and Lemma 2.1 to establish the DE-equivalence as a useful tool
for optimizing practically relevant schema mappings. We say that

100

a schema mapping possesses the polytime-terminating chase prop-
erty, if on any source instance, the chase with this mapping termi-
nates in polynomial time. So are, e.g., the super-weakly-acyclic
mappings [19], and inductively-restricted mappings [20].

THEOREM 7.7. DE-equivalence of schema mappings with tar-
get dependencies consisting of FDs and IDs, and possessing the
terminating chase property is decidable.

Furthermore, suppose that these schema mappings possess the
polytime-terminating chase property and that the number of vari-
ables in the antecedent resp. conclusion of s-t tgds in the mappings
is bounded by some constant b. Then DE-equivalence of such map-
pings can be decided in polynomial time.

PROOF. First note that FDs and IDs are always connected and
constant-free. Then, given the mappings Σ = Σst ∪ Σt and Σ′ =
Σ′st ∪ Σ′t where both Σt and Σ′t are restricted to FDs and IDs and
possess the terminating chase property, the following procedure de-
cides Σ ≡DE Σ′:

1. Transform Σ and Σ′ into the form Σs ∪ Σ̂st ∪ Σt resp.
Σ′s ∪ Σ̂′st ∪ Σ′t using the PROPAGATEE procedure. By The-
orem 6.4, if Σs 6≡ Σ′s or Σ̂st 6≡ Σ̂′st, conclude Σ 6≡DE Σ′.

2. Conclude Σ ≡DE Σ′ iff the pair (Σ,Σ′) meets the an-
tecedent unsatisfiability condition.

The polynomial-time upper bound is due to the fact that the map-
pings have the polytime-terminating chase property and the depen-
dency size is bounded. For the target dependencies this bound is
implicit in the size of the schema, which we consider as fixed.

The previous result extends easily to mapping optimization with
respect to redundancy elimination and subset-minimality. Namely,
the following theorem can be easily shown:

THEOREM 7.8. LetM = (S,T,Σ) be a schema mapping with
target FDs and IDs, possessing the polytime-terminating chase prop-
erty. Moreover, assume that the number of antecedent resp. con-
clusion variables in the s-t tgds of Σ is limited by some constant b.
Then, the following problems can be decided in polynomial time:
• checking if a dependency τ ∈ Σ is redundant w.r.t. DE-

equivalence, and therefore,
• checking if Σ is subset-minimal.

Thus, in terms of complexity, DE equivalence, while offering
strictly higher optimization potential, is no worse than logical equiv-
alence (studied in [15]) in the setting of Theorem 7.7. Note also,
that the Theorems 7.7 and 7.8 hold for a class of mappings which
is broader than FDs and IDs, namely constant-free and connected
target tgds and egds. For such mappings, we may also investigate
other useful minimization tasks which can be immediately seen to
be decidable: for example, testing if any atom can be eliminated
from a given dependency.

8. CONCLUSION
We have studied DE- and CQ-equivalence of schema mappings

consisting of s-t tgds as well as target tgds and/or target egds. We
have shown that the equivalence itself as well as various natural
optimization tasks under these notions of equivalence are unde-
cidable. That is, in these important aspects, the two notions of
equivalence display the same behaviour. However, we have also
identified a significant difference between them: CQ-equivalence
remains undecidable even if the target dependencies are restricted
to key dependencies while DE-equivalence becomes decidable.

As far as future work is concerned, we would like to search
for further decidable fragments, in particular of DE-equivalence.

Conversely, also the undecidability results (in particular for DE-
equivalence) should be extended to further special cases. Another
important direction of future work is to extend the investigation into
the decidability/undecidability of DE- and CQ-equivalence and of
related optimization tasks to other kinds of mappings like schema
mappings consisting of Second-Order tgds.

9. REFERENCES
[1] M. Arenas, R. Fagin, and A. Nash. Composition with target

constraints. In Proc. ICDT’10, pages 129–142. ACM, 2010.
[2] M. Arenas, J. Pérez, J. L. Reutter, and C. Riveros. Inverting

schema mappings: Bridging the gap between theory and
practice. PVLDB, 2(1):1018–1029, 2009.

[3] M. Arenas, J. Pérez, and C. Riveros. The recovery of a
schema mapping: Bringing exchanged data back. ACM
Trans. Database Syst., 34(4), 2009.

[4] C. Beeri and M. Y. Vardi. A proof procedure for data
dependencies. J. ACM, 31(4):718–741, 1984.

[5] P. A. Bernstein. Applying model management to classical
meta data problems. In Proc. CIDR’03, 2003.

[6] A. Deutsch, A. Nash, and J. B. Remmel. The chase revisited.
In Proc. PODS’08, pages 149–158. ACM, 2008.

[7] O. M. Duschka, M. R. Genesereth, and A. Y. Levy. Recursive
query plans for data integration. J. Log. Prog., 43(1), 2000.

[8] R. Fagin. Horn clauses and database dependencies. J. ACM,
29(4):952–985, 1982.

[9] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: semantics and query answering. Theor. Comput.
Sci., 336(1):89–124, 2005.

[10] R. Fagin, P. G. Kolaitis, A. Nash, and L. Popa. Towards a
theory of schema-mapping optimization. PODS’08, ACM.

[11] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange: getting
to the core. ACM Trans. Dat. Syst., 30(1):174–210, 2005.

[12] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Composing
schema mappings: Second-order dependencies to the rescue.
ACM Trans. Database Syst., 30(4):994–1055, 2005.

[13] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Reverse data
exchange: coping with nulls. PODS’09, pages 23–32, ACM.

[14] G. Gottlob and C. H. Papadimitriou. On the complexity of
single-rule datalog queries. Inf. Comput., 183(1), 2003.

[15] G. Gottlob, R. Pichler, and V. Savenkov. Normalization and
optimization of schema mappings. PVLDB, 2(1), 2009.

[16] A. Y. Halevy, A. Rajaraman, and J. J. Ordille. Data
integration: The teenage years. In Proc. VLDB’06.

[17] D. S. Johnson and A. C. Klug. Testing containment of
conjunctive queries under functional and inclusion
dependencies. J. Comput. Syst. Sci., 28(1):167–189, 1984.

[18] J. Madhavan and A. Y. Halevy. Composing mappings among
data sources. In Proc. VLDB’03, pages 572–583, 2003.

[19] B. Marnette. Generalized schema-mappings: from
termination to tractability. In PODS, pages 13–22, 2009.

[20] M. Meier, M. Schmidt, and G. Lausen. On chase termination
beyond stratification. PVLDB, 2(1):970–981, 2009.

[21] S. Melnik. Generic Model Management: Concepts and
Algorithms, volume 2967 of LNCS. Springer, 2004.

[22] A. Nash, P. A. Bernstein, and S. Melnik. Composition of
mappings given by embedded dependencies. ACM TODS,
32(1):4, 2007.

[23] O. Shmueli. Equivalence of datalog queries is undecidable. J.
Log. Prog., 15(3):231–241, 1993.

101

