Database Theory
VU 181.140, SS 2016

6. Conjunctive Queries

Reinhard Pichler
Institut für Informationssysteme
Arbeitsbereich DBAI
Technische Universität Wien

26 April, 2016

Outline

6. Conjunctive Queries
6.1 Query Equivalence and Containment
6.2 Homomorphism Theorem
6.3 Query Minimization
6.4 Acyclic Conjunctive Queries

Query Optimization

The common approach to (first-order) query optimization is via equivalence preserving transformations in relational algebra. E.g.:

- \bowtie is commutative and associative, hence applicable in any order
- Cascaded projections may be simplified: If the attributes A_1, \ldots, A_n are among B_1, \ldots, B_m, then
 \[\pi_{A_1,\ldots,A_n}(\pi_{B_1,\ldots,B_m}(E)) = \pi_{A_1,\ldots,A_n}(E) \]
- Cascaded selections might be merged:
 \[\sigma_{c_1}(\sigma_{c_2}(E)) = \sigma_{c_1 \land c_2}(E) \]
- Commuting selection with join. If c only involves attributes in E_1, then
 \[\sigma_c(E_1 \bowtie E_2) = \sigma_c(E_1) \bowtie E_2 \]

We do not treat such transformations in this course.

Beyond Standard Equivalences

- The known equivalences are not always sufficient:
 - e.g.: none of the equivalences reduces the number of joins!
- For further optimization, the following decision problems are crucial:

Definition (Query Equivalence and Containment)

We say a query Q_1 is equivalent to a query Q_2 (in symbols, $Q_1 \equiv Q_2$) if $Q_1(D) = Q_2(D)$ for every database instance D. Similarly, we say Q_1 is contained in Q_2 (written $Q_1 \subseteq Q_2$) if $Q_1(D) \subseteq Q_2(D)$ for every D.

QUERY-EQUIVALENCE

INSTANCE: A pair Q_1, Q_2 of queries.
QUESTION: Does $Q_1 \equiv Q_2$ hold?

QUERY-CONTAINMENT

INSTANCE: A pair Q_1, Q_2 of queries.
QUESTION: Does $Q_1 \subseteq Q_2$ hold?
In the following we concentrate w.l.o.g. on query containment because
\[Q_1 \equiv Q_2 \iff Q_1 \subseteq Q_2 \text{ and } Q_2 \subseteq Q_1 \text{ and } Q_1 \subseteq Q_2 \iff Q_1 \equiv Q_2. \]

Observe that if \(Q_1, Q_2 \) are formulated in relational algebra, then deciding \(Q_1 \subseteq Q_2 \) (and thus also \(Q_1 \equiv Q_2 \)) is undecidable!

- Indeed, \(Q \) is empty over all databases \(\iff Q \subseteq \emptyset \).
- By Traktenbrots Theorem, checking emptiness is undecidable for RA!

Good news: \(Q_1 \subseteq Q_2 \) is decidable for conjunctive queries!

The decidability comes from the Homomorphism Theorem (see below).

The theorem also gives rise to optimization of conjunctive queries that reduces the number of joins.

Conjunctive Queries into Tableaux

Tableau: representation of a conjunctive query as a database

A tableau for a CQ \(Q \) is just a database where variables can appear in tuples, plus a set of distinguished variables.

Assume a query \(Q \) such that
\[Q(x, y) \land B(x, y) \land R(y, z) \land R(y, w) \land R(w, y). \]

Then the tableau of \(Q \) is:

\[
\begin{array}{c|c|c|c}
 & A & B \\
\hline
 x & A & y \\
 z & B & w \\
 y & & \\
\end{array}
\]

Then \(x, y \) \(\leftarrow \) answer line

Variables in the answer line are called distinguished

Datalog-like notation for CQs

Next we use Datalog notation for CQs!

E.g.: the conjunctive query
\[\{ (x, y) \mid \exists z, w. B(x, y) \land R(y, z) \land R(y, w) \land R(w, y) \} \]

is written as the rule
\[Q(x, y) \land B(x, y) \land R(y, z) \land R(y, w) \land R(w, y). \]

Tableau homomorphisms

Definition (Tableau homomorphism)

A homomorphism of two tableaux \(f: T_1 \rightarrow T_2 \) is a mapping
\[f: \{ \text{variables of } T_1 \} \rightarrow \{ \text{variables of } T_2 \} \cup \{ \text{constants} \} \]

such that:

- For every distinguished \(x \), \(f(x) = x \)
- For every relation \(R \) in \(T_1 \) and row \((x_1, \ldots, x_k)\) in \(R \), tuple \((f(x_1), \ldots, f(x_k))\) is a row of \(R \) in \(T_2 \)

Theorem (Homomorphism Theorem)

Let \(Q_1, Q_2 \) be two conjunctive queries, and \(T_{Q_1}, T_{Q_2} \) their tableaux. Then
\[Q_1 \subseteq Q_2 \iff \text{there exists a homomorphism } f: T_{Q_2} \rightarrow T_{Q_1}. \]
Applying the Homomorphism Theorem

- We first consider queries over a single relation:
 - $Q_1(x, y) : R(y, x), R(x, z)$
 - $Q_2(x, y) : R(y, x), R(w, x), R(x, u)$

Tableau for Q_1:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>R:</td>
<td>y x</td>
</tr>
<tr>
<td></td>
<td>x z</td>
</tr>
<tr>
<td></td>
<td>x y</td>
</tr>
</tbody>
</table>

Tableau for Q_2:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>R:</td>
<td>y x</td>
</tr>
<tr>
<td></td>
<td>w x</td>
</tr>
<tr>
<td></td>
<td>x u</td>
</tr>
<tr>
<td></td>
<td>x y</td>
</tr>
</tbody>
</table>

Take f such that:
- $f(w) = y$,
- $f(u) = z$.

Hence $Q_1 \subseteq Q_2$!
Take \(f \) such that:
- \(f(w) = y \),
- \(f(u) = z \),
- \(f(x) = x \) and \(f(y) = y \).
- Hence \(Q_1 \subseteq Q_2 \! \).
Existence of a Homomorphism: Complexity

Theorem

Given two tableaux, deciding the existence of a homomorphism between them is NP-complete.

Proof.

NP-membership. Guess a candidate mapping \(f \) and check in polynomial time whether \(f \) is a homomorphism.

NP-hardness. By a straightforward reduction from the NP-complete problem BQE for CQs. Let the Boolean CQ \(Q \) and database \(D \) be an arbitrary instance of BQE. We define the following tableaux \(T_1 \) and \(T_2 \):

- \(T_1 \): tableau of the Boolean CQ \(Q \).
- \(T_2 \): consider \(D \) as tableau of a Boolean CQ

We clearly have: Query \(Q \) over DB \(D \) is non-empty \(\iff \) there exists a homomorphism from \(T_1 \) to \(T_2 \).

Proof of the Homomorphism Theorem.

Observation. A tuple \(\vec{c} \) is in the answer to a CQ \(Q \) over a database \(D \) if and only if there is a homomorphism \(f \) from the tableau of \(Q \) to the database \(D \) such that \(f(\vec{x}) = \vec{c} \), where \(\vec{x} \) is the tuple of distinguished variables of \(Q \).

Assume a pair \(Q_1, Q_2 \) of CQs with variables \(V_1, V_2 \), respectively. Assume that \(\vec{x} \) is the tuple of answer variables of \(Q_1 \) and \(Q_2 \).

Suppose there exists a homomorphism \(f : T_{Q_1} \rightarrow T_{Q_2} \). Assume a database \(D \) and an arbitrary tuple \(\vec{c} \in Q_2(D) \). By the above observation there is a homomorphism \(g \) from \(T_{Q_1} \) to \(D \) such that \(g(\vec{x}) = \vec{c} \). Observe that the composition \(h(\cdot) = g(f(\cdot)) \) is a homomorphism from \(T_{Q_1} \) to \(D \) such that \(h(\vec{x}) = \vec{c} \). Hence \(\vec{c} \in Q_2(D) \).

Suppose \(Q_1 \subseteq Q_2 \). Then, by assumption, \(Q_2(D) \subseteq Q_2(D) \) for all instances \(D \). Take the tableau \(T_{Q_2} \) as database instance \(D \). Clearly, \(\vec{x} \) is in the answer to \(Q_1 \) over \(T_{Q_1} \). Then using the assumption we get \(\vec{x} \in Q_2(T_{Q_1}) \). By the observation above, then there is a homomorphism \(f \) from \(T_{Q_1} \) to \(T_{Q_2} \) such that \(f(\vec{x}) = \vec{x} \).

CQ Containment and Equivalence: Complexity

Corollary

Given two conjunctive queries \(Q_1 \) and \(Q_2 \), both deciding \(Q_1 \subseteq Q_2 \) and \(Q_1 \equiv Q_2 \) are NP-complete.

Proof.

The NP-completeness of CQ Containment follows immediately from the Homomorphism Theorem together with the above theorem.

From this, we may conclude the NP-completeness of CQ Equivalence via the following equivalences:

\[
Q_1 \equiv Q_2 \iff Q_1 \subseteq Q_2 \text{ and } Q_2 \subseteq Q_1 \text{ and } Q_1 \subseteq Q_2 \iff Q_1 \equiv (Q_1 \cap Q_2).
\]
Minimizing Conjunctive Queries

Goal: Given a conjunctive query Q, find an equivalent conjunctive query Q' with the minimum number of joins.

More formally:

Definition

A conjunctive query Q is minimal if there does not exist a conjunctive query Q' such that

- $Q \equiv Q'$, and
- Q' has fewer atoms than Q.

Minimization Procedure

Consider CQs Q and Q' with $Q \equiv Q'$, s.t.

$Q(\bar{x}) \Leftarrow R_1(\bar{u}_1), \ldots, R_k(\bar{u}_k)$ and

$Q'(\bar{x}) \Leftarrow S_1(\bar{v}_1), \ldots, S_l(\bar{v}_l)$ and $l < k$.

By the Homomorphism Theorem, there exist homomorphisms $f : T_Q \to T_{Q'}$ and $g : T_{Q'} \to T_Q$.

Clearly, for the image of g, we have $|\text{Im}(g)| \leq l$.

Let $\text{Im}(g) = \{R_1(\bar{u}_1), \ldots, R_m(\bar{u}_m)\}$ with $m \leq l$ and let

$Q''(\bar{x}) \Leftarrow R_1(\bar{u}_1), \ldots, R_m(\bar{u}_m)$.

We claim that then $Q'' \equiv Q$ holds.

Again, we apply the Homomorphism Theorem: We have to show that there exist homomorphisms $f'' : T_Q \to T_{Q''}$ and $g'' : T_{Q''} \to T_Q$.

Actually, g'' trivially exists – just take the identity.

Moreover, f'' can be obtained via composition: $f''(\cdot) = g(f(\cdot))$. □

Minimization by Deletion

- The following is an easy consequence of the Homomorphism Theorem:
 - Assume Q is

 $Q(\bar{x}) \Leftarrow R_1(\bar{u}_1), \ldots, R_k(\bar{u}_k)$

 - Assume that there is an equivalent conjunctive query Q' of the form

 $Q'(\bar{x}) \Leftarrow S_1(\bar{v}_1), \ldots, S_l(\bar{v}_l)$, $l < k$.

 - Then Q is equivalent to a query of the form

 $Q''(\bar{x}) \Leftarrow R_1(\bar{u}_1), \ldots, R_m(\bar{u}_m)$, with $m \leq l$

 In other words, to minimize a conjunctive query, it suffices to consider deletions of atoms on the right of “:\–”. Why?

Minimization Procedure

- Given a conjunctive query Q, transform it into the tableau T_Q.
- Algorithm to obtain a minimal equivalent query:

 $T' := T_Q$;

 repeat until no change

 choose a row t in T';

 if there is a homomorphism $f : T' \to T' \setminus \{t\}$

 then $T' := T' \setminus \{t\}$

 end;

 return (the query defined by) T';

 Note: If a homomorphism $T' \to T' \setminus \{t\}$ exists, then T', $T' \setminus \{t\}$ define equivalent queries, as a homomorphism from $T' \setminus \{t\}$ to T' exists.
Minimizing Conjunctive Queries: example

- Conjunctive query with one relation R only:
 \[Q(x, y, z) :\sim R(x, y, z_i). R(x_1, y, z_2). R(x_1, y, z), y = 4 \]

- Tableau T_Q (relation R omitted):

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>4</td>
<td>z_1</td>
</tr>
<tr>
<td>x_1</td>
<td>4</td>
<td>z_2</td>
</tr>
<tr>
<td>x_1</td>
<td>4</td>
<td>z</td>
</tr>
<tr>
<td>x</td>
<td>4</td>
<td>z</td>
</tr>
</tbody>
</table>

- Minimization, step 1: Is there a homomorphism from T_Q to

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>x</td>
<td>4</td>
<td>z_1</td>
</tr>
<tr>
<td>x_1</td>
<td>4</td>
<td>z_2</td>
</tr>
<tr>
<td>x_1</td>
<td>4</td>
<td>z</td>
</tr>
<tr>
<td>x</td>
<td>4</td>
<td>z</td>
</tr>
</tbody>
</table>

- Answer: No. For any homomorphism f, $f(x) = x$ (why?), thus the image of the first row is not in the small tableau.

Step 2: Is T_Q equivalent to

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>4</td>
<td>z_1</td>
</tr>
<tr>
<td>x_1</td>
<td>4</td>
<td>z_2</td>
</tr>
<tr>
<td>x_1</td>
<td>4</td>
<td>z</td>
</tr>
<tr>
<td>x</td>
<td>4</td>
<td>z</td>
</tr>
</tbody>
</table>

- Answer: Yes. Homomorphism $f : f(z_2) = z$, all other variables stay the same.

- The new tableau is not equivalent to

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>x</td>
<td>4</td>
<td>z_1</td>
</tr>
<tr>
<td>x_1</td>
<td>4</td>
<td>z</td>
</tr>
</tbody>
</table>

- Because $f(x) = x, f(z) = z$, and the image of one of the rows is not present.

Complexity of Minimization (1)

Theorem

Given a tableau T and a tuple t in T, checking whether there is a homomorphism from T to $T \setminus \{t\}$ is NP-complete.

Proof.

Membership in NP is immediate. For the hardness part, we provide a reduction from 3-COLORABILITY. We exploit a well-known trick: a graph is 3-colorable iff it can be homomorphically embedded into a “triangle”. Assume a graph $G = (V, E)$, where $V = \{1, \ldots, n\}$. W.l.o.g., G is assumed to be connected. Take the Boolean CQ Q_G with the following atoms and test if atom $V_1(x_1)$ is “redundant”:

1. $V_i(x_1), \ldots, V_n(x_n)$,
2. $E(x_i, x_j)$ for each edge $(i, j) \in E$,
3. $R(y_b), G(y_g). B(y_b)$,
4. $E(y_r, y_g), E(y_g, y_r), E(y_g, y_b), E(y_b, y_g) \text{ and } E(y_r, y_b), E(y_b, y_r)$,
5. $V_i(y_c)$ for all $i \in V$ and $c \in \{r, g, b\}$.
Proof (continued).

It is not difficult to see that G is 3-colorable iff there is a homomorphism from T_{Q_1} to $T_{Q_2} \setminus \{V_1(x_1)\}$.

(\Rightarrow) Assume G is 3-colorable with $\mu : V \to \{r, g, b\}$ a witnessing coloring. Then the following function f is a homomorphism from T_{Q_1} to $T_{Q_2} \setminus \{V_1(x_1)\}$:

- $f(x_i) = y_{\mu(i)}$, for all $i \in V$,
- $f(y_c) = y_c$, for all $c \in \{r, g, b\}$.

(\Leftarrow) Assume there is a homomorphism f from T_{Q_1} to $T_{Q_2} \setminus \{V_1(x_1)\}$. Then $f(x_1) \in \{y_r, y_g, y_b\}$ due to the atom $V_1(x_1)$ of Q_1. Since G is connected, we must also have $f(x_i) \in \{y_r, y_g, y_b\}$ for all $i \in V$.

Take the function $\mu : V \to \{r, g, b\}$ such that (a) $\mu(i) = r$ if $f(x_i) = y_r$, (b) $\mu(i) = g$ if $f(x_i) = y_g$, and (c) $\mu(i) = b$ if $f(x_i) = y_b$. We claim that μ is a valid 3-coloring of G. Let (i, j) be an arbitrary edge in E. Then $E(x_i, x_j)$ is an atom in Q_1. Since f is a homomorphism, we have $(f(x_i), f(x_j))$ in the relation E of $T_{Q_2} \setminus \{V_1(x_1)\}$. Then by construction of Q_2, we have $f(x_i) \neq f(x_j)$ and thus $\mu(i) \neq \mu(j)$. □

Complexity of Minimization (2)

Theorem

Given a conjunctive query Q, checking whether Q is minimal is co-NP-complete.

Proof.

We prove by showing that checking whether a query is not minimal is NP-complete. NP-Membership of the latter problem is immediate. For the hardness part, we observe that the query Q_G obtained from G in the previous proof can be reused. We show below that G is 3-colorable iff Q_G is not minimal.

(\Rightarrow) Assume G is 3-colorable with $\mu : V \to \{r, g, b\}$ a witnessing coloring. Then the following function f (also used in the previous proof) is a homomorphism from T_{Q_1} to $T_{Q_2} \setminus \{V_1(x_1)\}$:

- $f(x_i) = y_{\mu(i)}$, for all $i \in V$,
- $f(y_c) = y_c$, for all $c \in \{r, g, b\}$.

Hence, Q_G is not minimal.

Uniqueness of Minimal Queries

A natural question: does the order in which we remove tuples from the tableaux matter? The answer is "no" by the following theorem.

Theorem

If Q_1, Q_2 are two minimal queries equivalent to a query Q, then the tableaux T_{Q_1} and T_{Q_2} are isomorphic.

Proof.

The proof proceeds in several steps.

Homomorphisms. By the equivalences $Q_1 \equiv Q \equiv Q_2$, there exists a homomorphism $f : T_{Q_1} \to T_{Q_2}$ and a homomorphism $g : T_{Q_2} \to T_{Q_1}$. Let $h = g \circ f$. Clearly, $h : T_{Q_1} \to T_{Q_1}$ is also a homomorphism.

$|T_{Q_1}| = |T_{Q_2}|$. Suppose that $|T_{Q_1}| < |T_{Q_2}|$ (the case $|T_{Q_2}| < |T_{Q_1}|$ is symmetric). Then $|h(T_{Q_1})| < |T_{Q_1}|$, and hence, $h(T_{Q_1}) \subset T_{Q_1}$. Thus the query corresponding to $h(T_{Q_1})$ is strictly smaller than Q_1. This contradicts the assumption that Q_1 is a minimal CQ equivalent to Q.

Acyclic Conjunctive Queries

- Many CQs in practice enjoy the so-called **acyclicity** property
- Acyclic CQs can be evaluated efficiently (in polynomial time)

Definition

A conjunctive query Q is **acyclic** if it has a join tree.

Definition (Join Tree)

Let $Q(x_1), R_1(z_1), \ldots, R_n(z_n)$ be a CQ.

A join tree $T = (V, E)$ is a tree where

- $V = \{R_1(z_1), \ldots, R_n(z_n)\}$, i.e., V is the set of atoms in Q
- E satisfies for all variables z of Q:
 - $\{R_j(z_j) \in V \mid z \text{ occurs in } R_j(z_j)\}$ induces a connected subtree in T
Join Tree – Example

Example

\[Q(x_1, x_2, x_3, x_4, x_5, x_6) := \]
\[
R_3(x_3) \land R_4(x_2, x_4, x_5) \land R_1(x_1, x_2, x_3) \land R_2(x_2, x_3) \land R_2(x_5, x_6) \]

Join Tree – Example

Example

\[Q(x_1, x_2, x_3, x_4, x_5, x_6) := \]
\[
R_3(x_3) \land R_4(x_2, x_4, x_5) \land R_1(x_1, x_2, x_3) \land R_2(x_2, x_3) \land R_2(x_5, x_6) \]
Join Tree – Example

\[Q(x_1, x_2, x_3, x_4, x_5, x_6) := R_3(x_3) \land R_4(x_2, x_4, x_3) \land R_1(x_1, x_2, x_3) \land R_2(x_2, x_3) \land R_2(x_5, x_6) \]

Example

Finding Join Trees

Remarks:

- Existence of a join tree can be efficiently decided
- Join tree can be efficiently computed (if one exists)

\[\rightarrow \text{GYO-reduction} \] (Graham, Yu, and Ozsoyoglu)

- Tests for acyclicity of hypergraphs
- Reduction sequence allows to build a join tree efficiently
- Easy to identify a query with a hypergraph
- Two equivalent definitions exist

Define

- Atom \(R(\vec{z}) \) is empty if \(|\vec{z}| = 0\), and
- Atom \(R_1(\vec{z}_1) \) is contained in atom \(R_2(\vec{z}_2) \) if \(\vec{z}_1 \subseteq \vec{z}_2 \)
GYO-Reduction

Definition (GYO/GYO’-reduction)

Let \(Q(x_1, x_2, x_3, x_4, x_5, x_6) \) be a CQ. Apply the following rules until no longer possible.

- **GYO-reduction:**
 - Eliminate variables that are contained in at most one atom.
 - Eliminate atoms that are empty or contained in another atom.

- **GYO’-reduction:**
 - Eliminate atoms that share no variables with other atoms.
 - Eliminate atoms \(R \) if there exists a witness \(R’ \) s.t. each variable in \(R \) either appears in \(R \) only, or also appears in \(R’ \).

Theorem

- \(GYO'(Q) = \emptyset \iff GYO(Q) = \emptyset \)
- \(GYO'(Q) = \emptyset \iff Q \) has a join tree (iff \(Q \) is acyclic)

GYO-reduction: Example

Example

Consider again \(Q(x_1, x_2, x_3, x_4, x_5, x_6):\)

\[
\begin{align*}
R_1(x_3) & \land R_4(x_2, x_4, x_3) & \land R_1(x_1, x_2, x_3) & \land R_2(x_2, x_3) & \land R_2(x_5, x_6) \\
& \land & \land & \land & \land \\
& \land & \land & \land & \land \\
& \land & \land & \land & \land \\
& \land & \land & \land & \land \\
\end{align*}
\]

\[\begin{array}{c}
R_2(x_2, x_3) \\
R_2(x_5, x_6) \\
R_6(x_2, x_4, x_3) \\
R_3(x_3) \\
\end{array}\]

GYO-reduction: Proof

Proof.

We only prove the second equivalence:

GYO'(Q) = \emptyset \Rightarrow Q has a join tree: Consider the sequence \((R_1, \ldots, R_n) \) of atoms removed during the reduction. Create a join tree as follows:

- **Whenever** \(R_j \) was the witness for \(R_i \), then make \(R_j \) a child node of \(R_i \).
- **Merge** the resulting forest to a tree “arbitrarily.”

It is easy to check that this indeed gives a valid join tree.

Q has a join tree \Rightarrow GYO'(Q) = \emptyset: Consider a join tree \(T \) for \(Q \).

Removing leaf nodes from \(T \) in arbitrary order gives a sequence of valid GYO’-reduction steps that eliminates all atoms:

- **Either** a leaf node shares no variable with its parent \(\Rightarrow \) First rule
- **All** variables occurring not only in the leaf node must be contained in the parent node (connectedness condition) \(\Rightarrow \) parent node is witness

GYO-reduction: Example

Example

Consider again \(Q(x_1, x_2, x_3, x_4, x_5, x_6):\)

\[
\begin{align*}
R_1(x_3) & \land R_4(x_2, x_4, x_3) & \land R_1(x_1, x_2, x_3) & \land R_2(x_2, x_3) & \land R_2(x_5, x_6) \\
& \land & \land & \land & \land \\
& \land & \land & \land & \land \\
& \land & \land & \land & \land \\
& \land & \land & \land & \land \\
\end{align*}
\]

\[\begin{array}{c}
R_2(x_2, x_3) \\
R_2(x_5, x_6) \\
R_6(x_2, x_4, x_3) \\
R_3(x_3) \\
\end{array}\]
Consider again $Q(x_1, x_2, x_3, x_4, x_5, x_6)$:

$$R_3(x_3) \land R_4(x_2, x_4, x_3) \land R_1(x_1, x_2, x_3) \land R_2(x_2, x_3) \land R_5(x_5, x_6)$$

Let $A_0 = \{r_1, r_2, r_3, r_4, r_5\}$.
Let $A_1 = \{r_1, r_2, r_3, r_4\}$.
Let $A_2 = \{r_2, r_3, r_4\}$.
Let $A_3 = \{r_3, r_4\}$.

$A_0 = \{r_1, r_2, r_3, r_4, r_5\}$
$A_1 = \{r_1, r_2, r_3, r_4\}$
$A_2 = \{r_2, r_3, r_4\}$
$A_3 = \{r_3, r_4\}$
$A_4 = \{r_4\}$
GYO-reduction: Example

Consider again $Q(x_1, x_2, x_3, x_4, x_5, x_6) = R_3(x_3) \land R_2(x_2, x_4, x_3) \land R_1(x_1, x_2, x_3) \land R_2(x_2, x_3) \land R_2(x_5, x_6)$.

Let $T = (V, E)$ be a join tree of a query Q.

Given database instance D, decide $Q(D) = \emptyset$ as follows:

1. Assign to each $R_j(x_j) \in V$ the corresponding relation R^D_j of D.
2. In a bottom up traversal of T: compute semijoins of R^D_j.
3. If the resulting relation at root node is empty, then $Q(D) = \emptyset$; nonempty, then $Q(D) \neq \emptyset$.

For ACQs Q:
- Deciding $Q(D) = \emptyset$ is feasible in polynomial time.
- Computing $Q(D)$ can be done in output polynomial time.

Yannakakis Algorithm – Example
Yannakakis Algorithm – Example

\[
\begin{array}{l}
t_1 : R_2 (x_2, x_3) \\
x_2 \quad x_3 \\
c_1 \quad b_2 \\
c_2 \quad b_2 \\
c_4 \quad b_5 \\
\\
t_2 : R_2 (x_3, x_4) \\
x_3 \quad x_4 \\
c_1 \quad b_2 \\
c_2 \quad b_2 \\
c_4 \quad b_5 \\
\\
t_3 : R_1 (x_2, x_3, x_4) \\
x_2 \quad x_3 \quad x_4 \\
c_1 \quad a_1 \quad b_1 \\
c_2 \quad a_1 \quad b_2 \\
c_3 \quad a_2 \quad b_2 \\
\\
t_4 : R_3 (x_3) \\
x_3 \\
b_2 \\
\\
t_5 : R_4 (x_2, x_4, x_3) \\
x_2 \quad x_4 \quad x_3 \\
c_1 \quad a_1 \quad b_1 \\
c_2 \quad a_1 \quad b_2 \\
c_3 \quad a_2 \quad b_2 \\
\end{array}
\]
Yannakakis Algorithm – Example

t_1 : R_2 (x_2 , x_3)
\[x_2 \quad x_3 \]
\[c_1 \quad b_2 \]
\[c_2 \quad b_2 \]
\[c_4 \quad b_5 \]

\begin{align*}
t_2 : R_3 (x_2 , x_4 , x_3) & \quad t_3 : R_4 (x_1 , x_2 , x_3) \\
\quad x_4 \quad x_5 \quad x_3 \\
\quad c_1 \quad b_2 \quad c_1 \\
\quad c_2 \quad b_2 \quad c_2 \\
\quad c_4 \quad b_5 \quad c_4 \\
\quad x_5 \quad c_1 \quad b_2 \\
\quad x_5 \quad c_1 \quad b_2 \\
\quad x_5 \quad c_1 \quad b_2 \\
\end{align*}

\begin{align*}
t_4 : R_3 (x_3) & \quad t_5 : R_5 (x_2 , x_4 , x_3) \\
\quad x_5 \\
\quad b_2 \\
\quad c_1 \quad a_1 \quad b_1 \\
\quad c_1 \quad a_1 \quad b_1 \\
\quad c_1 \quad a_1 \quad b_1 \\
\end{align*}
Yannakakis Algorithm – Example

\[\begin{cases} t_1 : R_2(x_2, x_3) \\ x_2 & x_3 \\ c_1 & b_2 \\ c_1 & b_2 \\ c_4 & b_6 \end{cases} \]

\[\begin{cases} t_2 : R_2(x_3, x_4) \\ x_3 & x_4 \\ c_1 & b_3 \\ c_4 & b_6 \end{cases} \]

\[\begin{cases} t_3 : R_1(x_1, x_2, x_3) \\ x_1 & x_2 & x_3 \\ c_1 & c_2 & b_3 \\ c_4 & a_1 & b_2 \end{cases} \]

\[\begin{cases} t_4 : R_3(x_1) \\ x_1 \\ b_5 \end{cases} \]

\[\begin{cases} t_5 : R_4(x_2, x_4, x_3) \\ x_2 & x_4 & x_3 \\ c_1 & a_2 & b_4 \\ c_1 & a_2 & b_4 \end{cases} \]
Yannakakis Algorithm – Example

\[t_1 : R_2(x_2, x_3) \]
\[x_2 \quad x_3 \]
\[c_1 \quad c_2 \quad b_2 \]
\[t_2 : R_2(x_3, x_3) \]
\[x_3 \quad x_3 \]
\[c_1 \quad b_3 \quad c_3 \quad b_3 \]
\[t_1 : R_1(x_1, x_2, x_3) \]
\[x_1 \quad x_2 \quad x_3 \]
\[c_1 \quad c_2 \quad b_2 \quad c_3 \quad b_3 \]
\[t_2 : R_2(x_3, x_3) \]
\[x_3 \quad x_3 \]
\[c_1 \quad b_3 \quad c_3 \quad b_3 \]
\[t_1 : R_1(x_1, x_2, x_3) \]
\[x_1 \quad x_2 \quad x_3 \]
\[c_1 \quad c_2 \quad b_2 \quad c_3 \quad b_3 \]
\[t_2 : R_2(x_3, x_3) \]
\[x_3 \quad x_3 \]
\[c_1 \quad b_3 \quad c_3 \quad b_3 \]
\[t_1 : R_1(x_1, x_2, x_3) \]
\[x_1 \quad x_2 \quad x_3 \]
\[c_1 \quad c_2 \quad b_2 \quad c_3 \quad b_3 \]

Yannakakis Algorithm – Example

\[t_1 : R_2(x_2, x_3) \]
\[x_2 \quad x_3 \]
\[c_1 \quad c_2 \quad b_2 \]
\[t_2 : R_2(x_3, x_3) \]
\[x_3 \quad x_3 \]
\[c_1 \quad b_3 \quad c_3 \quad b_3 \]
\[t_1 : R_1(x_1, x_2, x_3) \]
\[x_1 \quad x_2 \quad x_3 \]
\[c_1 \quad c_2 \quad b_2 \quad c_3 \quad b_3 \]
\[t_2 : R_2(x_3, x_3) \]
\[x_3 \quad x_3 \]
\[c_1 \quad b_3 \quad c_3 \quad b_3 \]
\[t_1 : R_1(x_1, x_2, x_3) \]
\[x_1 \quad x_2 \quad x_3 \]
\[c_1 \quad c_2 \quad b_2 \quad c_3 \quad b_3 \]
\[t_2 : R_2(x_3, x_3) \]
\[x_3 \quad x_3 \]
\[c_1 \quad b_3 \quad c_3 \quad b_3 \]
Yannakakis Algorithm – Example

\[t_1 : R_2(x_2, x_3) \]
\[x_2 \quad x_3 \]
\[c_1 \quad b_2 \quad c_2 \quad b_2 \]
\[c_3 \quad b_2 \quad c_3 \quad b_2 \]
\[c_4 \quad b_2 \quad c_4 \quad b_2 \]

\[t_2 : R_2(x_2, x_3) \]
\[x_2 \quad x_3 \]
\[c_1 \quad b_2 \quad c_2 \quad b_2 \]
\[c_3 \quad b_2 \quad c_3 \quad b_2 \]
\[c_4 \quad b_2 \quad c_4 \quad b_2 \]

\[t_3 : R_1(x_1, x_2, x_3) \]
\[x_1 \quad x_2 \quad x_3 \]
\[c_1 \quad a_2 \quad b_2 \quad a_2 \]
\[c_2 \quad a_2 \quad b_2 \quad a_2 \]
\[c_3 \quad a_2 \quad b_2 \quad a_2 \]

\[t_4 : R_3(x_3) \]
\[x_3 \]
\[c_1 \quad a_2 \quad b_2 \quad a_2 \]

\[t_5 : R_4(x_2, x_4, x_3) \]
\[x_2 \quad x_4 \quad x_3 \]
\[c_1 \quad a_2 \quad b_2 \quad a_2 \]
\[c_2 \quad a_2 \quad b_2 \quad a_2 \]
\[c_3 \quad a_2 \quad b_2 \quad a_2 \]

Yannakakis Algorithm – Example

\[t_1 : R_2(x_2, x_3) \]
\[x_2 \quad x_3 \]
\[c_1 \quad b_2 \quad c_2 \quad b_2 \]
\[c_3 \quad b_2 \quad c_3 \quad b_2 \]
\[c_4 \quad b_2 \quad c_4 \quad b_2 \]

\[t_2 : R_2(x_2, x_3) \]
\[x_2 \quad x_3 \]
\[c_1 \quad b_2 \quad c_2 \quad b_2 \]
\[c_3 \quad b_2 \quad c_3 \quad b_2 \]
\[c_4 \quad b_2 \quad c_4 \quad b_2 \]

\[t_3 : R_1(x_1, x_2, x_3) \]
\[x_1 \quad x_2 \quad x_3 \]
\[c_1 \quad a_2 \quad b_2 \quad a_2 \]
\[c_2 \quad a_2 \quad b_2 \quad a_2 \]
\[c_3 \quad a_2 \quad b_2 \quad a_2 \]

\[t_4 : R_3(x_3) \]
\[x_3 \]
\[c_1 \quad a_2 \quad b_2 \quad a_2 \]

\[t_5 : R_4(x_2, x_4, x_3) \]
\[x_2 \quad x_4 \quad x_3 \]
\[c_1 \quad a_2 \quad b_2 \quad a_2 \]
\[c_2 \quad a_2 \quad b_2 \quad a_2 \]
\[c_3 \quad a_2 \quad b_2 \quad a_2 \]
Yannakakis Algorithm – Example

\[
t_1 : R_2(x_2, x_3) \\
\begin{array}{c|c}
 x_2 & x_3 \\
 c_1 & b_2 \\
 c_4 & b_5 \\
\end{array}
\]

\[
t_2 : R_3(x_5, x_6) \\
\begin{array}{c|c|c}
 x_5 & x_6 & b_2 \\
 c_1 & b_2 & a_1 \\
 c_4 & b_5 & b_2 \\
\end{array}
\]

\[
t_3 : R_1(x_1, x_2, x_3) \\
\begin{array}{c|c|c|c}
 x_1 & x_2 & x_3 & c_1 \\
 a_1 & b_2 & a_2 & c_2 \\
\end{array}
\]

\[
t_4 : R_3(x_3) \\
\begin{array}{c|c}
 x_3 & b_2 \\
 c_1 & a_1 \\
\end{array}
\]

\[
t_5 : R_4(x_2, x_4, x_3) \\
\begin{array}{c|c|c|c}
 x_2 & x_4 & x_3 & c_1 \\
 a_1 & b_2 & c_2 \\
\end{array}
\]

Yannakakis Algorithm – Example

\[
t_1 : R_2(x_2, x_3) \\
\begin{array}{c|c}
 x_2 & x_3 \\
 c_1 & b_2 \\
 c_4 & b_5 \\
\end{array}
\]

\[
t_2 : R_3(x_5, x_6) \\
\begin{array}{c|c|c}
 x_5 & x_6 & b_2 \\
 c_1 & b_2 & a_1 \\
 c_4 & b_5 & b_2 \\
\end{array}
\]

\[
t_3 : R_1(x_1, x_2, x_3) \\
\begin{array}{c|c|c|c}
 x_1 & x_2 & x_3 & c_1 \\
 a_1 & b_2 & a_2 & c_2 \\
\end{array}
\]

\[
t_4 : R_3(x_3) \\
\begin{array}{c|c}
 x_3 & b_2 \\
 c_1 & a_1 \\
\end{array}
\]

\[
t_5 : R_4(x_2, x_4, x_3) \\
\begin{array}{c|c|c|c}
 x_2 & x_4 & x_3 & c_1 \\
 a_1 & b_2 & c_2 \\
\end{array}
\]
Yannakakis Algorithm – Example

Let's consider the following query:

\[t_1 : R_2(x_2, x_3) \]

\[t_2 : R_2(x_5, x_6) \]

\[t_3 : R_1(x_1, x_2, x_3) \]

\[t_4 : R_3(x_5) \]

\[t_5 : R_6(x_2, x_4, x_5) \]

The Yannakakis Algorithm is a method for optimizing the evaluation of conjunctive queries in relational databases. It identifies and eliminates unnecessary joins to improve query execution efficiency. The algorithm can be applied to both cyclic and acyclic conjunctive queries, with the latter being more straightforward to analyze.
Yannakakis Algorithm – Example

\[t_1 : R_2(x_2, y_1) \]
\[x_2 \quad y_1 \]
\[c_1 \quad b_2 \]
\[c_2 \quad b_2 \]
\[c_4 \quad b_2 \]
\[t_2 : R_2(x_3, y_2) \]
\[x_3 \quad y_2 \]
\[c_1 \quad b_2 \]
\[c_2 \quad b_2 \]
\[c_4 \quad b_2 \]
\[t_3 : R_2(x_1, x_2, x_3) \]
\[x_1 \quad x_2 \quad x_3 \]
\[c_1 \quad b_2 \]
\[c_1 \quad b_2 \]
\[c_4 \quad b_2 \]
\[t_4 : R_3(x_5) \]
\[x_5 \]
\[b_2 \]
\[t_5 : R_4(x_2, y_4, x_3) \]
\[x_2 \quad y_4 \quad x_3 \]
\[b_2 \quad c_5 \quad a_2 \]
\[a_1 \quad b_2 \]
\[t_6 : R_5(x_1, x_2, x_3) \]
\[x_1 \quad x_2 \quad x_3 \]
\[c_1 \quad b_2 \]
\[c_2 \quad b_2 \]
\[c_4 \quad b_2 \]
Yannakakis Algorithm – Enumeration

Two additional traversals allow us to enumerate all answers.

Theorem

Let Q be an acyclic conjunctive query. Given some database instance D, $Q(D)$ can be computed in output polynomial time, i.e., in time $O(||D|| + ||Q(D)||^k)$ for some constant $k \geq 1$.

Yannakakis Algorithm – Proof

Proof sketch.

Correctness of the algorithm follows from the following propositions:

Given join tree T, for $t \in V(T)$ let T_t be the subtree of T rooted at t, R_t the relation computed by semijoins and R'_t the one by joins:

1. After the 1st bottom-up traversal:

 $$R_t = \pi_{\text{vars}(t)}(\bigwedge_{v \in V(T_t)} v)$$ for each $t \in T$

2. After the top-down traversal:

 $$R_t = \pi_{\text{vars}(t)}(\bigwedge_{v \in V(T_t)} v)$$ for each $t \in T$
Yannakakis Algorithm – Proof

Proof sketch.
Correctness of the algorithm follows from the following propositions:
Given join tree T, for $t \in V(T)$ let T_t be the subtree of T rooted at t, R_t the relation computed by semijoins and R'_t the one by joins:
1 After the 1st bottom-up traversal:
$$R_t = \pi_{\text{vars}(t)}(\land_{v \in V(T_t)} v)$$ for each $t \in T$
2 After the top-down traversal:
$$R_t = \pi_{\text{vars}(t)}(\land_{v \in V(T_t)} v)$$ for each $t \in T$
3 After the 2nd bottom-up traversal:
$$R'_t = \pi_{\text{vars}(T_t)}(\land_{v \in V(T_t)} v)$$ for each $t \in T$

⇒ R'_r at root r contains all results

Example

1 We have already performed the 1st bottom-up traversal

Yannakakis Algorithm – Proof

Proof sketch.
Correctness of the algorithm follows from the following propositions:
Given join tree T, for $t \in V(T)$ let T_t be the subtree of T rooted at t, R_t the relation computed by semijoins and R'_t the one by joins:
1 After the 1st bottom-up traversal:
$$R_t = \pi_{\text{vars}(t)}(\land_{v \in V(T_t)} v)$$ for each $t \in T$
2 After the top-down traversal:
$$R_t = \pi_{\text{vars}(t)}(\land_{v \in V(T_t)} v)$$ for each $t \in T$
3 After the 2nd bottom-up traversal:
$$R'_t = \pi_{\text{vars}(T_t)}(\land_{v \in V(T_t)} v)$$ for each $t \in T$

⇒ R'_r at root r contains all results

Example

1 We have already performed the 1st bottom-up traversal
2 Top-down semijoins
Example

1. We have already performed the 1st bottom-up traversal
2. Top-down semijoins

Example

1. We have already performed the 1st bottom-up traversal
2. Top-down semijoins
Example

1 We have already performed the 1st bottom-up traversal
2 Top-down semijoins

Example

1 We have already performed the 1st bottom-up traversal
2 Top-down semijoins

Example

1 We have already performed the 1st bottom-up traversal
2 Top-down semijoins
3 Compute result in 2nd bottom-up traversal
Enumeration – Example

\[
\begin{array}{c|c}
\text{t}_1 : R_2 (x_2, x_3) & n_2 \\
\hline
x_2 & x_3 \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{t}_2 : R_2 (x_3, n_3) & n_2 \\
\hline
x_3 & x_2 \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{t}_1 : R_1 (x_1, x_2, x_3) & n_3 \\
\hline
x_1 & x_2 & x_3 \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{t}_2 : R_2 (x_3, n_3) & n_2 \\
\hline
x_3 & x_2 \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{t}_3 : R_1 (x_1, x_2, x_3) & n_3 \\
\hline
x_1 & x_2 & x_3 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c}
\text{t}_1 : R_2 (x_2, x_3) & n_2 & n_3 & n_4 & n_5 \\
\hline
c_1 & b_2 & c_1 & b_2 \\
\end{array}
\]

Learning Objectives

- The notions of query equivalence and containment,
- The Homomorphism Theorem,
- The complexity of query equivalence and containment,
- Minimization of conjunctive queries,
- Acyclic conjunctive queries,
- The Yannakakis algorithm.