5. Complexity of Query Evaluation

Beyond Traktenbrot’s Theorem

- By Traktenbrot’s Theorem, it is undecidable to check whether a given first-order query Q produces some output over some database.
- What happens if D is actually given as input?

The following are natural (decision) problems in this context:

QUERY-OUTPUT-TUPLE (QOT)

INSTANCE: A database D, a query Q, a tuple \vec{c} of values.
QUESTION: Does $\vec{c} \in Q(D)$ hold?

BOOLEAN-QUERY-EVALUATION (BQE)

INSTANCE: A database D, a Boolean query Q.
QUESTION: Does Q evaluate to true in D?

NOTE: we often view Boolean domain calculus queries $\{\bot\} \phi$ simply as closed formulae ϕ.

QUERY-NON-EMPTINESS (QNE)

INSTANCE: A database D, a query Q.
QUESTION: Does query Q yield a non-empty result over the DB D, i.e. $Q(D) \neq \emptyset$?
QOT vs. BQE vs. QNE

We concentrate next on the complexity of BQE.

Not a limitation: in our setting QOT and QNE are essentially the same problems as BQE:

From QOT to BQE
Assume a database D, a domain calculus query $Q = \{ \vec{x} \mid \phi(\vec{x}) \}$, and a value tuple $\vec{c} = (c_1, \ldots, c_n)$. Then $\vec{c} \in Q(D)$ iff Q' evaluates to true in D, where

\[
\vec{x} = (x_1, \ldots, x_n), \quad \text{and} \quad Q' = \exists \vec{x}. (\phi(\vec{x}) \land x_1 = c_1 \ldots \land x_n = c_n)
\]

From QNE to BQE
Assume a database D, a domain calculus query $Q = \{ \vec{x} \mid \phi(x) \}$. Then $Q(D) \neq \emptyset$ iff $\exists \vec{x}. \phi(\vec{x})$ evaluates to true in D.

From BQE to QNE and QOT \Rightarrow trivial.

Complexity Measures for BQE

Combined complexity

The complexity of BQE without any assumptions about the input query Q and database D is called the combined complexity of BQE.

Data and query complexity

Data complexity of BQE refers to the following decision problem: Let Q be some fixed Boolean query. INSTANCE: An input database D. QUESTION: Does Q evaluate to true in D?

Query complexity of BQE refers to the following decision problem: Let D be some fixed input database. INSTANCE: A Boolean query Q. QUESTION: Does Q evaluate to true in D?

Relevant Complexity Classes

We recall the inclusions between some fundamental complexity classes:

\[
L \subseteq P \subseteq NP \subseteq \text{PSPACE} \subseteq \text{EXPTIME}
\]

- L is the class of all problems solvable in logarithmic space,
- P — in polynomial time,
- NP — in nondeterministic polynomial time,
- PSPACE — in polynomial space,
- EXPTIME — in exponential time.

Complexity of First-order Queries

Theorem (A)

The query complexity and the combined complexity of domain calculus queries is PSPACE-complete (even if we disallow negation and equality atoms). The data complexity is in L (actually, even in a much lower class).

To prove the theorem, we proceed in steps as follows:

1. We provide an algorithm for query evaluation:
 - it shows PSPACE membership for combined complexity (and thus for query complexity as well), and
 - L membership w.r.t. data complexity,
2. We show PSPACE-hardness of query complexity (clearly, the lower bound applies for combined complexity as well).
An algorithm for evaluating FO queries

Let us analyse the space usage of our algorithm. We have to store:

1. The input database D and the formula ψ:
 - do not contribute to the space requirements.
2. The global variables $X = \{x_1, y_1, \ldots, x_n, y_n\}$.
 - Each variable requires $O(\log m)$ bits of space. Thus X needs $O(n \log m)$ bits. Note that X requires logarithmic space if ψ is fixed.
3. A call stack $S = (S_1, \ldots, S_k)$, where $k \leq 2n$ and each S_j stores a state in which a subroutine is called. Clearly, for both subroutines a state S_j only needs to store the value of i and the return position in the subroutine.
 - Storing a value $i \in \{1, \ldots, 2n\}$ requires logarithmic space in the size of ψ (i.e. $O(\log n)$), but only constant space if ψ is fixed. (The return position requires constant space in both cases.)
 - Hence S needs $O(n \log n)$ bits of storage, which is constant if ψ is fixed.
4. Space for evaluating φ in an assignment
 - requires a transversal of the parse tree of ψ: space $O(\log ||\psi||)$ suffices.

Overall we need $O(n \log m + n \log n + \log ||\psi||)$ bits of storage.

An algorithm for evaluating FO queries

Let us analyse the space usage of our algorithm. We have to store:

1. The input database D and the formula ψ:
 - do not contribute to the space requirements.
2. The global variables $X = \{x_1, y_1, \ldots, x_n, y_n\}$.
 - Each variable requires $O(\log m)$ bits of space. Thus X needs $O(n \log m)$ bits. Note that X requires logarithmic space if ψ is fixed.
3. A call stack $S = (S_1, \ldots, S_k)$, where $k \leq 2n$ and each S_j stores a state in which a subroutine is called. Clearly, for both subroutines a state S_j only needs to store the value of i and the return position in the subroutine.
 - Storing a value $i \in \{1, \ldots, 2n\}$ requires logarithmic space in the size of ψ (i.e. $O(\log n)$), but only constant space if ψ is fixed. (The return position requires constant space in both cases.)
 - Hence S needs $O(n \log n)$ bits of storage, which is constant if ψ is fixed.
4. Space for evaluating φ in an assignment
 - requires a transversal of the parse tree of ψ: space $O(\log ||\psi||)$ suffices.

Overall we need $O(n \log m + n \log n + \log ||\psi||)$ bits of storage.
The PSPACE lower bound

To prove the PSPACE-hardness result, we first recall quantified Boolean formulae:

QSAT (QBF)

INSTANCE: An expression \(\exists x_1 \forall x_2 \exists x_3 \cdots Q x_n \phi \), where \(Q \) is either \(\forall \) or \(\exists \) and \(\phi \) is a Boolean formula in CNF with variables from \(\{ x_1, x_2, x_3, \ldots, x_n \} \).

QUESTION: Is there a truth value for the variable \(x_1 \) such that for both truth values of \(x_2 \) there is a truth value for \(x_3 \) and so on up to \(x_n \), such that \(\phi \) is satisfied by the overall truth assignment?

Theorem

QSAT is PSPACE-complete.

Remark. A detailed proof is given in the Komplexitätstheorie lecture.

Proof of the PSPACE-Hardness of BQF

The PSPACE-hardness result for Theorem (A) can be shown by a reduction from the QSAT-problem. Let \(\psi \) be an arbitrary QBF with

\[
\psi = \exists x_1 \forall x_2 \cdots Q x_n \alpha(x_1, \ldots, x_n)
\]

where \(Q \) is either \(\forall \) or \(\exists \) and \(\alpha \) is a quantifier-free Boolean formula with variables in \(\{ x_1, \ldots, x_n \} \).

We first define the (fixed) input database \(D \) over the predicate symbols \(L = \{ \text{istrue}, \text{isequal}, \text{not}, \text{or}, \text{and} \} \) with the obvious meaning:

\[
D = \{ \text{istrue}(1), \text{isequal}(0, 0), \text{isequal}(1, 1), \text{not}(1, 0), \text{not}(0, 1), \text{or}(1, 1), \text{or}(0, 1), \text{or}(0, 1), \text{or}(0, 0), \text{and}(1, 1), \text{and}(1, 0), \text{and}(0, 1), \text{and}(0, 0) \}
\]

Proof of the PSPACE-Hardness (continued)

For each sub-formula \(\beta \) of \(\alpha \), we define a quantifier-free, first-order formula \(T_\beta(z_1, \ldots, z_n, x) \) with the following intended meaning:

if the variables \(x_i \) have the truth value \(z_i \), then the formula \(\beta(x_1, \ldots, x_n) \) evaluates to the truth value \(x \).

The formulae \(T_\beta(z_1, \ldots, z_n, x) \) can be defined inductively w.r.t. the structure of \(\alpha \) as follows:

Case \(\beta = \)

- \(x_i \) (with \(1 \leq i \leq n \)):
 \[T_\beta(z, x) \equiv \text{isequal}(z_i, x) \]
- \(\neg \beta' \):
 \[T_\beta(z, x) \equiv \exists t_1 T_{\beta'}(z, t_1) \land \text{not}(t_1, x) \]
- \(\beta_1 \land \beta_2 \):
 \[T_{\beta_1 \land \beta_2}(z, x) \equiv \exists t_1 t_2 T_{\beta_1}(z, t_1) \land T_{\beta_2}(z, t_2) \land \text{and}(t_1, t_2, x) \]
- \(\beta_1 \lor \beta_2 \):
 \[T_{\beta_1 \lor \beta_2}(z, x) \equiv \exists t_1 t_2 T_{\beta_1}(z, t_1) \land T_{\beta_2}(z, t_2) \land \text{or}(t_1, t_2, x) \]
Complexity of Conjunctive Queries

Recall that conjunctive queries (CQs) are a special case of first-order queries whose only connective is ∧ and whose only quantifier is ∃ (i.e., ∨, ¬ and ∀ are excluded).

E.g.: \[Q = \{ \langle x \rangle \mid \exists y, z. R(x, y) \land R(y, z) \land P(z, x) \} \]

Theorem (B)

The query complexity and the combined complexity of BQE for conjunctive queries is NP-complete.

Proof (continued)

Hardness (of the query complexity). We reduce the NP-complete 3-SAT problem to our problem. For this purpose, we consider the following input database (over a ternary relation symbol c and a binary relation symbol v) as fixed:

\[D = \{ c(1, 1, 1), c(1, 1, 0), c(1, 0, 1), c(1, 0, 0), c(0, 1, 1), c(0, 1, 0), c(0, 0, 1), v(1, 0), v(0, 1) \} \]

Now let an arbitrary instance of the 3-SAT problem be given through the 3-CNF formula \(\Phi = \bigwedge_{i=1}^{n} l_i \lor l_{i+1} \lor l_{i+2} \) over the propositional variables \(x_1, \ldots, x_k \). Then we define a conjunctive query \(Q \) as follows:

\[(\exists x_1, \ldots, x_k) c(l_1, l_2, l_3) \land \cdots \land c(l_n, l_{n+1}, l_{n+2}) \land v(x_1, \bar{x}_1) \land \cdots \land v(x_k, \bar{x}_k) \]

where \(l^* = x \) if \(l = x \), and \(l^* = \bar{x} \) if \(l = \bar{x} \). Moreover, \(x_1, \ldots, x_k \) are fresh first-order variables. By slight abuse of notation, we thus use \(x_i \) to denote either a propositional atom (in \(\Phi \)) or a first-order variable (in \(Q \)).

It is straightforward to verify that the 3-CNF formula \(\Phi \) is satisfiable \(\iff \) \(Q \) evaluates to true in \(D \).

Complexity of Datalog

Theorem (C)

Query evaluation in Datalog has the following complexity:

- P-complete w.r.t. data complexity, and
- \(\text{EXPTIME-complete} \) w.r.t. combined and query complexity.

To prove the theorem, we first concentrate on ground Datalog programs:

- A program is ground if it has no variables.
- Such programs are also known as propositional logic programs.
- Note that a ground atom \(R(\bar{t}_{im}, \bar{t}_{bob}) \) can be seen as a propositional variable \(R_{\bar{t}_{im}, \bar{t}_{bob}} \).
P-hardness of Ground Datalog

Proof: (Hardness)

- By encoding of a TM. Assume $M = (K, \Sigma, \delta, q_{start})$, an input string I and a number of steps N, where N is a polynomial of $|I|$.
- We construct in logspace a program $P(M, N)$, a database $DB(I, N)$ and an atom A such that
 \[A \in T_{P(M, N)}^*(DB(I, N)) \text{ iff } M \text{ accepts } I \text{ in } N \text{ steps}. \]
- Recall that the transition function δ of M with a single tape can be represented by a table whose rows are tuples $t = (q_1, \sigma_1, q_2, \sigma_2, d)$. Such a tuple t expresses the following if-then-rule:
 - if at some time instant τ the machine is in state q_1, the cursor points to cell number π, and this cell contains symbol σ_1
 - then at instant $\tau + 1$ the machine is in state q_2, cell number π contains symbol σ_2, and the cursor points to cell number $\pi + d$.

P-hardness of Ground Datalog: the Database

The construction of the database $DB(I, N)$:

- $symbol_{\alpha}[0, 0]$, for $0 \leq \pi < |I|$, where $I_{\pi} = \alpha$
- $symbol_{\sigma}[0, \pi]$, for $0 \leq \pi \leq |I|$
- $cursor[0, 0]$
- $state_{q_{start}}[0]$

P-hardness of Ground Datalog: the Atoms

The propositional atoms in $P(M, N)$.

- $symbol_{\alpha}[\tau, \pi]$ for $0 \leq \tau \leq N$, $0 \leq \pi \leq N$ and $\alpha \in \Sigma$. Intuitive meaning: at instant τ of the computation, cell number π contains symbol α.
- $cursor[\tau, \pi]$ for $0 \leq \tau \leq N$ and $0 \leq \pi \leq N$. Intuitive meaning: at instant τ, the cursor points to cell number π.
- $state_{q}[\tau]$ for $0 \leq \tau \leq N$ and $q \in K$. Intuitive meaning: at instant τ, the machine M is in state q.
- $accept$ Intuitive meaning: M has reached state q_{yes}.

P-hardness of Ground Datalog: the Rules

- **transition rules:** for each entry $(q_1, \sigma_1, q_2, \sigma_2, d)$, $0 \leq \tau < N$, $0 \leq \pi < N$, and $0 \leq \pi + d$

 \[
 \begin{align*}
 &symbol_{\sigma_1}[\tau + 1, \pi] \leftarrow state_{q_1}[\tau], symbol_{\sigma_1}[\tau, \pi], cursor[\tau, \pi] \\
 &cursor[\tau + 1, \pi + d] \leftarrow state_{q_1}[\tau], symbol_{\sigma_1}[\tau, \pi], cursor[\tau, \pi] \\
 &state_{q_2}[\tau + 1] \leftarrow state_{q_1}[\tau], state_{q_2}[\tau, \pi], cursor[\tau, \pi]
 \end{align*}
 \]

- **inertia rules:** where $0 \leq \tau < N$, $0 \leq \pi < \pi' \leq N$

 \[
 \begin{align*}
 &symbol_{\sigma_1}[\tau + 1, \pi] \leftarrow symbol_{\sigma_1}[\tau, \pi], cursor[\tau, \pi'] \\
 &symbol_{\sigma_1}[\tau + 1, \pi'] \leftarrow symbol_{\sigma_1}[\tau, \pi], cursor[\tau, \pi]
 \end{align*}
 \]

- **accept rule:** for $0 \leq \tau < N$

 \[
 accept \leftarrow state_{q_{yes}}[\tau]
 \]

P-hardness of Ground Datalog

- The encoding precisely simulates the behaviour of M on input I up to N steps. (This can be formally shown by induction on the time steps.)
- $accept \in T_{P(M,N)}^P(DB(I,N))$ iff M accepts I in N steps.
- The construction is feasible in logarithmic space.
- Note that each rule in $P(M,N)$ has at most 4 atoms. In fact, P-hardness applies already for programs with at most 3 atoms in the rules:
 - Simply replace each $A \leftarrow B, C, D$ in $P(M,N)$ by $A \leftarrow B, E$ and $E \leftarrow C, D$, where E is a fresh atom.

Grounding Complexity

Given a program P and a database DB, the number of rules in $\text{ground}(P, DB)$ is bounded by

$$|P| \cdot \#\text{consts}(P, DB)^{v_{\text{max}}}$$

- v_{max} is the maximum number of different variables in any rule $r \in P$
- $\#\text{consts}(P, DB)$ is the number of constants occurring in P and DB.
- $\text{ground}(P, DB)$ is polynomial in the size of DB.
- Hence, the complexity of propositional logic programming is an upper bound for the data complexity.
- Note that $\text{ground}(P, DB)$ can be exponential in the size of P.

Data Complexity of Datalog

Proposition

Query evaluation in Datalog is P-complete w.r.t. data complexity.

Proof: (Membership)

Effective reduction to reasoning over ground Datalog programs is possible. Given a program P, a database DB, and atom A:

- Generate $P' = \text{ground}(P, DB)$, i.e. the set all ground instances of rules in P:
 $$\text{ground}(P, DB) = \bigcup_{r \in P} \text{Ground}(r; P, DB)$$

 NB: more details on $\text{Ground}(r; P, DB)$ in Lecture 2.
- Decide whether $A \in T_{P'}^P(DB)$.

Data Complexity of Datalog: P-hardness

Proof: Hardness

The P-hardness can be shown by writing a simple Datalog meta-interpreter for ground programs with at most 3 atoms per rule:

- Represent rules $A_0 \leftarrow A_1, \ldots, A_i$ of such a program P, where $0 \leq i \leq 2$, using database facts (A_0, \ldots, A_i) in an $(i + 1)$-ary relation R_i on the propositional atoms.
- Then, the program P which is stored this way in a database $DB_M(P)$ can be evaluated by a fixed Datalog program P_{MI} which contains for each relation R_i, $0 \leq i \leq 2$, a rule
 $$T(X_0) \leftarrow T(X_1), \ldots, T(X_i), R_i(X_0, \ldots, X_i).$$

- $T(x)$ intuitively means that atom x is true. Then,
 $$A \in T_{P'}^P(DB) \iff T(A) \in T_{P_{MI}}^P(DB_M(P))$$
- P-hardness of the data complexity of Datalog is then immediately obtained.
Query Complexity of Datalog: EXPTIME-hardness

The predicates $Succ^m$, $First^m$, and $Last^m$ are provided.

- The database facts $symbol_0[0, \pi]$ are readily translated into the Datalog rules

 \[symbol_0(X, t) \leftarrow First^m(X), \]

 where t represents the position π.

- Similarly for the facts $cursor[0, 0]$ and $state_0[0]$.

- Database facts $symbol[I, 0, \pi]$, where $|I| \leq \pi \leq N$, are translated to the rule

 \[symbol(X, Y) \leftarrow First^m(X), \leq^m(t, Y) \]

 where t represents the number $|I| + 1$.

Ideas for lifting $P(M, N)$ and $DB(I, N)$ to $P_{dat}(M, I, N)$ and DB_{dat}:

- use the predicates $symbol_0(X, Y)$, $cursor(X, Y)$ and $state_0(X)$ instead of the propositional letters $symbol[X, Y]$, $cursor[X, Y]$ and $state_0[X]$ respectively.

- W.l.o.g., let N be of the form $N = 2^m – 1$ for some integer $m \geq 1$. The time points τ and tape positions π from 0 to N are encoded in binary, i.e. by m-ary tuples $t_\tau = (c_1, \ldots, c_m)$, $c_i \in \{0, 1\}$, $i = 1, \ldots, m$, such that $0 = (0, \ldots, 0)$, $1 = (0, \ldots, 1)$, $N = (1, \ldots, 1)$.

- The functions $\tau + 1$ and $\pi + d$ are realized by means of the successor $Succ^m$ from a linear order \leq^m on $\{0, 1\}^m$.

The translation of the accept rules is straightforward:

\[accept \leftarrow state_{eq_{\forall x}}(X). \]
Defining \(\text{Succ}^m(X, X') \) and \(\leq^m \)

- The ground facts \(\text{Succ}^1(0, 1), \text{First}^1(0), \) and \(\text{Last}^1(1) \) are provided in \(DB_{dat} \).
- For an inductive definition, suppose \(\text{Succ}^i(X, Y), \text{First}^i(X), \) and \(\text{Last}^i(X) \) tell the successor, the first, and the last element from a linear order \(\leq^i \) on \(\{0, 1\}^i \), where \(X \) and \(Y \) have arity \(i \).

Then, use rules

\[
\begin{align*}
\text{Succ}^{i+1}(Z, X, Z, Y) & \leftarrow \text{Succ}^i(X, Y) \\
\text{Succ}^{i+1}(Z, X, Z', Y) & \leftarrow \text{Succ}^i(Z, Z'), \text{Last}^i(X), \text{First}^i(Y) \\
\text{First}^{i+1}(Z, X) & \leftarrow \text{First}^i(Z), \text{First}^i(X) \\
\text{Last}^{i+1}(Z, X) & \leftarrow \text{Last}^i(Z), \text{Last}^i(X)
\end{align*}
\]

Defining \(\text{Succ}^m(X, X') \) and \(\leq^m \)

- The ground facts \(\text{Succ}^1(0, 1), \text{First}^1(0), \) and \(\text{Last}^1(1) \) are provided in \(DB_{dat} \).
- For an inductive definition, suppose \(\text{Succ}^i(X, Y), \text{First}^i(X), \) and \(\text{Last}^i(X) \) tell the successor, the first, and the last element from a linear order \(\leq^i \) on \(\{0, 1\}^i \), where \(X \) and \(Y \) have arity \(i \).

Alternatively, use rules

\[
\begin{align*}
\text{Succ}^{i+1}(0, X, 0, Y) & \leftarrow \text{Succ}^i(X, Y) \\
\text{Succ}^{i+1}(1, X, 1, Y) & \leftarrow \text{Succ}^i(X, Y) \\
\text{Succ}^{i+1}(0, X, 1, Y) & \leftarrow \text{Last}^i(X), \text{First}^i(Y) \\
\text{First}^{i+1}(0, X) & \leftarrow \text{First}^i(X) \\
\text{Last}^{i+1}(1, X) & \leftarrow \text{Last}^i(X)
\end{align*}
\]

- The order \(\leq^m \) is easily defined from \(\text{Succ}^m \) by two clauses

\[
\begin{align*}
\leq^m(X, X) & \leftarrow \\
\leq^m(X, Y) & \leftarrow \text{Succ}^m(X, Z), \leq^m(Z, Y)
\end{align*}
\]

Combined and Query Complexity of Datalog: Conclusion

- Let \(L \) be an arbitrary language in \(\text{EXPTIME} \), i.e., there exists a Turing machine \(M \) deciding \(L \) in exponential time. Then there is a constant \(k \) such that \(M \) accepts/rejects every input \(I \) within \(2^{\lvert I \rvert^k} \) steps.

- The program \(P_{dat}(M, I, \lvert I \rvert^k) \) is constructible from \(M \) and \(I \) in polynomial time (in fact, careful analysis shows feasibility in logarithmic space).

- \(\text{accept} \) is in the answer of \(P_{dat}(M, I, \lvert I \rvert^k) \) evaluated over \(DB_{dat} \iff M \) accepts input \(I \) within \(N \) steps.

- Thus the \(\text{EXPTIME} \)-hardness follows.
Complexity of Datalog with Stratified Negation

Theorem

Reasoning in stratified ground Datalog programs with negation is P-complete. Stratified Datalog with negation is
- P-complete w.r.t. data complexity, and
- EXPTIME-complete w.r.t. combined and query complexity.

- A ground stratified program P can be partitioned into disjoint sets S_1, \ldots, S_n s.t. the semantics of P is computed by successively computing in polynomial time the fixed-points of the immediate consequence operators T_{S_1}, \ldots, T_{S_n}.
- As with plain Datalog, for programs with variables, the grounding step causes an exponential blow-up.

Learning Objectives

- The BQE, QOT and QNE problems
- The notions of combined, data and query complexity
- The complexity of first-order queries
- The complexity of conjunctive queries
- The complexity of plain and stratified Datalog