Database Theory
VU 181.140, SS 2016

2. Introduction to Datalog

Reinhard Pichler

Institut für Informationssysteme
Arbeitsbereich DBAI
Technische Universität Wien

8 March, 2016
Outline

2. Datalog
2.1 Motivation
2.2 Datalog - Syntax
2.3 Restrictions on the Datalog Syntax
2.4 Logical Semantics of Datalog
2.5 Operational Semantics of Datalog
2.6 Datalog with negation
2.7 Stratification
Motivation

- SQL, relational algebra, relational calculus (both tuple and domain relational calculus) are "relational complete", i.e., they have the full expressive power of relational algebra.
- But: many interesting queries cannot be formulated in these languages
- Example: no recursive queries (SQL now offers a recursive construct)
Example

- Relation `parents(PARENT,CHILD)`, gives information on the parent-child relationship of a certain group of people.
- Problem: look for all ancestors of a certain person.
- Solution: define relation `ANCESTOR(X,Y)`: X is ancestor of Y by generating one generation after the other (one join and one projection each) and finally merge all generations (union):

```
grandchild(GRANDPARENT, GRANDCHILD) :=
\pi_{1,4}(parents[CHILD = PARENT]parents)
grandgrandchild(GRANDGRANDPARENT,GRANDGRANDCHILD) :=
\pi_{1,4}(parents[CHILD = GRANDPARENT]grandchild)
...
ancestor(ANCESTOR,NAME) := parents \cup grandchild \cup grandgrandchild \cup ...
```
Possible Solution

- Use of a programming language with an embedded relational complete query language:

```plaintext
begin
    result := {};
    newtuples := parents;
    while newtuples \subseteq result do
        begin
            result := result \cup newtuples;
            newtuples := \pi_{1,4}(newtuples[2 = 1]parents);
        end;
    ancestor := result
end.
```

- Procedural, needs knowledge of a programming language, leaves little room for query optimization.
Better Solution: Datalog

- Prolog-like logical query language,
- allows recursive queries in a declarative way
- Example:
 - compute all ancestors on the basis of the relation parents

 \[
 \text{ancestor}(X,Y) \leftarrow \text{parents}(X,Y).
 \]

 \[
 \text{ancestor}(X,Z) \leftarrow \text{parents}(X,Y), \text{ancestor}(Y,Z).
 \]

 - use the ancestor predicate to compute the ancestors of a certain person (Hans):

 \[
 \text{hans-ancestor}(X) \leftarrow \text{ancestor}(X,\text{hans}).
 \]

 - compute the ancestors of a certain person (Hans) directly:

 \[
 \text{hans-ancestor}(X) \leftarrow \text{parents}(X,\text{hans}).
 \]

 \[
 \text{hans-ancestor}(X) \leftarrow \text{hans-ancestor}(Y), \text{parents}(X,Y).
 \]
Datalog - Syntax

\[
\text{<datalog_program> ::= } \text{<datalog_rule> | <datalog_program><datalog_rule>}
\]

\[
\text{<datalog_rule> ::= <head> :- <body>}
\]

\[
\text{<head> ::= <literal>}
\]

\[
\text{<body> ::= <literal> | <body>, <literal>}
\]

\[
\text{<literal> ::= <relation_id>(<list_of_args>)}
\]

\[
\text{<list_of_args> ::= <term> | <list_of_args>, <term>}
\]

\[
\text{<term> ::= <symb_const> | <symb_var>}
\]

\[
\text{<symb_const> ::= <number> | <lcc> | <lcc><string>}
\]

\[
\text{<symb_var> ::= <ucc> | <ucc><string>}
\]

(lcc = lower_case_character; ucc = upper_case_character)
Restrictions on the Datalog Syntax

\(<relation_id>\):

- name of an existing relation of the database (parents) - can be used only in rule bodies
- name of a new relation defined by the datalog program (ancestor)
- has always the same number of arguments.

comparison predicates:

\(=, \langle\rangle, <, >\) are treated like known database relations.

variables:

- each variable that appears in the head of a rule has to be bound in the body
- variables that appear as arguments of comparison predicates must appear in the same body in literals without comparison predicates

A datalog query is also called datalog program
Logical Semantics of Datalog

We consider

\[R \ldots \text{ datalog rule of the form } L_0 \leftarrow L_1, L_2, \ldots, L_n, \]
\[L_i \ldots \text{ literal of the form } p_i(t_1, \ldots, t_{n_i}) \]
\[x_1, x_2, \ldots, x_\ell \text{ variables in } R \]
\[P \ldots \text{ datalog program with the rules } R_1, R_2, \ldots, R_m \]

We construct

\[R^* = \forall x_1 \forall x_2 \ldots \forall x_\ell ((L_1 \land L_2 \land \cdots \land L_n) \Rightarrow L_0). \]

We assign to each datalog program \(P \) the (semantically) well-defined formula \(P^* \) as follows:

\[P^* = R_1^* \land R_2^* \land \cdots \land R_m^* \]
We consider now

\[\text{REL} \ldots \text{a relation of the database.} \]
\[\langle t_1, \ldots, t_n \rangle \ldots \text{a tuple of the relation REL.} \]
\[\text{rel}(t_1, \ldots, t_n) \ldots \text{a fact} \]

\[\text{DB} \ldots \text{database with relations REL}_1, \text{REL}_2, \ldots, \text{REL}_k \]

We assign to each database relation REL the formula

\[\text{REL}^* = \text{conjunction of all facts} \]

- a relation is an unordered set of tuples
- the assignment REL \(\mapsto\) REL* is therefore not uniquely defined.
- take an arbitrary order (e.g. lexicographical order) since conjunction is commutative.

We assign to each database DB the (semantically) well-defined formula \(DB^*\) as follows:

\[DB^* = \text{REL}^*_1 \land \text{REL}^*_2 \land \cdots \land \text{REL}^*_k. \]
We have:

\(DB^* \) is a conjunction of ground atoms (i.e., the facts) and

\(P^* \) is a conjunction of formulas with implication

Let \(G \) be a conjunction of facts and formulas with implication. Then the set \(\text{cons}(G) \) of facts that follow from \(G \) is uniquely defined.

In other words, we have \(\text{cons}(G) = \{ A \mid A \text{ is a fact with } G \models A \} \).

Definition

The semantics of a datalog program \(P \) is defined as the function \(M[P] \), that assigns to each database \(DB \) the set of all facts that follow from the formula "\(P^* \land DB^* \)"

\[
M[P] : DB \to \text{cons}(P^* \land DB^*)
\]
Example

Consider the database DB with relations `woman(NAME)`, `man(NAME)`, `parents(PARENT, CHILD)` and the datalog program:

\[
\text{grandpa}(X,Y) :- \text{man}(X), \text{parents}(X,Z), \text{parents}(Z,Y).
\]

<table>
<thead>
<tr>
<th>woman (NAME)</th>
<th>man (NAME)</th>
<th>parents (PARENT, CHILD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grete</td>
<td>Hans</td>
<td>Hans, Linda</td>
</tr>
<tr>
<td>Linda</td>
<td>Karl</td>
<td>Grete, Linda</td>
</tr>
<tr>
<td>Gerti</td>
<td>Michael</td>
<td>Karl, Michael</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linda, Michael</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Karl, Gerti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linda, Gerti</td>
</tr>
</tbody>
</table>
Let us compute DB^*, P^* and $\text{cons}(P^* \land DB^*)$:

$DB^* = REL_1^* \land \cdots \land REL_k^*$ with $REL_1^* =$ conjunction of all facts

$DB^* =$
woman(grete) \land woman(linda) \land woman(gerti) \land
man(hans) \land man(karl) \land man(michael) \land
parents(hans, linda) \land parents(grete, linda) \land
parents(karl, michael) \land parents(linda, michael) \land
parents(karl, gerti) \land parents(linda, gerti)$.

$P^* = R_1^* \land \cdots \land R_m^*$ with $R_i^* = \forall x_1 \forall x_2 \cdots \forall x_\ell ((L_1 \land \cdots \land L_n) \Rightarrow L_0)$.

$P^* = \forall X \forall Y \forall Z : ((\text{man}(X) \land \text{parents}(X, Z) \land \text{parents}(Z, Y)) \Rightarrow \text{grandpa}(X, Y))$.

Pichler 8 March, 2016
The new facts in $\textit{cons}(P^* \land DB^*)$:

grandpa(hans,michael), grandpa(hans,gerti).

The datalog program P with

$P = \text{grandpa}(X,Y) :- \text{man}(X), \text{parents}(X,Z), \text{parents}(Z,Y)$

defines a new relation grandpa with the following tuples:

\begin{center}
\begin{tabular}{c c}
\hline
grandpa & $(X$ $Y)$ \\
\hline
 & Hans Michael \\
 & Hans Gerti \\
\hline
\end{tabular}
\end{center}
Operational Semantics of Datalog

- Datalog rules are seen as inference rules,
- a fact that appears in the head of a rule can be deduced, if the facts in the body of the rule can be deduced.

Example:

facts: parents(linda,michael), parents(linda,gerti)
rule: siblings(michael,gerti) :-
 parents(linda,michael), parents(linda,gerti).

the following fact can be deduced:

siblings(michael,gerti)
Rules with variables

- A rule R with variables represents all variable-free rules we get from R by substituting the variables with the constant symbols.

- The constant symbols are taken from the database DB and the program P.

- A variable-free rule resulting from such a substitution is called **ground instance** of R with respect to P and DB.

- We write $Ground(R, P, DB)$ to denote the set of all ground instances over P and DB of R.
Example:

Compute all relations between siblings with the following rule:

\[
\text{siblings}(Y, Z) : - \ \text{parents}(X, Y), \text{parents}(X, Z), Y \leftrightarrow Z.
\]

All 6^3 ground instances of this rule with respect to P and DB from above are (Note that there are 6 constant symbols: \{grete, linda, gerti, hans, michael, karl\}):

- \[
\text{siblings}(\text{grete}, \text{grete}) : - \ \text{parents}(\text{grete}, \text{grete}), \text{parents}(\text{grete}, \text{grete}), \text{grete} \leftrightarrow \text{grete} \ (X = Y = Z = \text{grete})
\]
- \[
\text{siblings}(\text{grete}, \text{linda}) : - \ \text{parents}(\text{grete}, \text{grete}), \text{parents}(\text{grete}, \text{linda}), \text{grete} \leftrightarrow \text{linda} \ (X = Y = \text{grete}, Z = \text{linda})
\]

... ...

- \[
\text{siblings}(\text{karl}, \text{karl}) : - \ \text{parents}(\text{karl}, \text{karl}), \text{parents}(\text{karl}, \text{karl}), \text{karl} \leftrightarrow \text{karl} \ (X = Y = Z = \text{karl})
\]
Idea: execution of a datalog program P on a database DB: iterative deduction of facts until saturation is reached (fixpoint)

Formalization: define a fixpoint operator

- define Operator $T_P(DB)$: augments DB with all facts, that can be deduced in one step by applying the rules from P to DB.

$$T_P(DB) = DB \cup \bigcup_{R \in P} \{ L_0 \mid L_0 ::= L_1, \ldots, L_n \in \text{Ground}(R; P, DB), L_1, \ldots, L_n \in DB \}$$

- T_P is called the immediate consequence operator.
- $T_P^i(DB) = T_P(T_P^{i-1}(DB))$ iterated application of T_P.
\[
\begin{align*}
T^0_P(DB) & = DB \\
T^1_P(DB) & = T_P(T^0_P(DB)) = T_P(DB) \\
& = DB \cup \bigcup_{R \in P} \{ L_0 \mid L_0 : \neg L_1, \ldots, L_n \in \text{Ground}(R; P, DB), L_1, \ldots, L_n \in DB \} \\
T^2_P(DB) & = T_P(T^1_P(DB)) = T_P(T_P(DB)) \\
& \quad \ldots \\
T^i_P(DB) & = T_P(T^{i-1}_P(DB)) = T_P(\ldots T_P(DB)) \\
& \quad \ldots
\end{align*}
\]
Properties of $T_P(DB)$

- The set of facts is monotonically increasing i.e.:
 $$T^i_P(DB) \subseteq T^{i+1}_P(DB)$$

- The sequence $\langle T^i_P(DB) \rangle$ converges finitely:
 there exists n with $T^m_P(DB) = T^n_P(DB)$ for all $m \geq n$.

- $T^\omega_P(DB)$. . . set of facts, to which $\langle T^i_P(DB) \rangle$ converges is the result of the application of P to DB.

- The operational semantics of a datalog program P assigns to each database DB the set of facts $T^\omega_P(DB)$:
 $$O[P] : DB \rightarrow T^\omega_P(DB).$$

Theorem (Equivalence of semantics)

Assume a program P. Then it holds that $M[P] = O[P]$. In other words, for any database DB, we have: $\text{cons}(P^* \land DB^*) = T^\omega_P(DB)$.
Proof of Theorem

Let P be a program and DB a database. We show

$$\text{cons}(P^* \land DB^*) = T^\omega_P(DB).$$

(1) We first show $T^\omega_P(DB) \subseteq \text{cons}(P^* \land DB^*)$. By induction on i, we show that $T^i_P(DB) \subseteq \text{cons}(P^* \land DB^*)$ for every $i \geq 0$. Note that this includes the case where $i = \omega$.

Base case. Assume $i = 0$. Take a fact $L \in T^0_P(DB)$. Then by definition of $T^0_P(DB)$, $L \in DB$. By definition, DB^* is a conjunction of literals and L occurs in it. Hence, by classical logic, $L \in \text{cons}(P^* \land DB^*)$.

The inductive step. Suppose $T^i_P(DB) \subseteq \text{cons}(P^* \land DB^*)$ for $i \geq 0$. We show that $T^{i+1}_P(DB) \subseteq \text{cons}(P^* \land DB^*)$. Recall that $T^{i+1}_P(DB) = T_P(T^i_P(DB))$. Thus by the definition of T_P,

$$T^{i+1}_P(DB) = T^i_P(DB) \cup \bigcup_{R \in P} \{L_0 \mid L_0 := L_1, \ldots, L_n \in \text{Ground}(R, P, DB),$$

$$L_1, \ldots, L_n \in T^i_P(DB)\}$$
By the induction hypothesis, $T_P^i(DB) \subseteq cons(P^* \land DB^*)$. Thus it remains to show that $L_0 \in cons(P^* \land DB^*)$ for any rule $R \in P$ such that there is $L_0 \vdash L_1, \ldots, L_n \in Ground(R, P, DB)$ with $L_1, \ldots, L_n \in T_P^i(DB)$.

Assume such a rule $R = L_0' \vdash L_1', \ldots, L_n'$ in P, and suppose π is the substitution of variables with constants such that applying π to R results in $L_0 \vdash L_1, \ldots, L_n$, i.e. $\pi(L_j') = L_j$ for $j \in \{0, \ldots, n\}$.

By construction, in $P^* \land DB^*$ we have the conjunct

$$R^* = \forall x_1 \forall x_2 \ldots \forall x_\ell ((L_1' \land L_2' \land \cdots \land L_n') \Rightarrow L_0').$$

Thus, by employing the semantics of classical logic, for any variable substitution π' such that $\{\pi'(L_1'), \ldots, \pi'(L_n')\} \subseteq cons(P^* \land DB^*)$ we also have $\pi'(L_0') \in cons(P^* \land DB^*)$. Since π is a substitution such that $\{\pi(L_1'), \ldots, \pi(L_n')\} = \{L_1, \ldots, L_n\} \subseteq cons(P^* \land DB^*)$ by the induction hypothesis, we get $\pi(L_0') = L_0 \in cons(P^* \land DB^*)$.
(2) We show \(\text{cons}(P^* \land DB^*) \subseteq T^\omega_P(DB) \). To this end, we prove that \(L \notin T^\omega_P(DB) \) implies \(L \notin \text{cons}(P^* \land DB^*) \), for any fact \(L \). We thus simply show that \(T^\omega_P(DB) \) is a model of \(P^* \land DB^* \).

This suffices because of the following simple property: if \(M \) is a model of a formula \(F \), then any fact \(L \notin M \) is not a logical consequence of \(F \) (as witnessed by \(M \) itself).
$T^\omega_P(DB)$ is a model of DB^* because $DB = T^0_P(DB) \subseteq T^\omega_P(DB)$ by the definition of $T^\omega_P(DB)$.

It remains to show that $T^\omega_P(DB)$ is also a model of P^*. Consider an arbitrary rule $R \in P$. We have to show that $T^\omega_P(DB)$ is a model of R^* with $R^* = \forall x_1 \forall x_2 \ldots \forall x_\ell ((L_1 \land L_2 \land \cdots \land L_n) \Rightarrow L_0)$.

Consider an arbitrary (ground) variable assignment π on the variables x_1, \ldots, x_ℓ. The only non-trivial case is that all facts $\pi(L_1), \ldots, \pi(L_n)$ are true in $T^\omega_P(DB)$, i.e., $\{\pi(L_1), \ldots, \pi(L_n)\} \subseteq T^\omega_P(DB)$.

We have to show that then also $\pi(L_0)$ is true in $T^\omega_P(DB)$, i.e., $\pi(L_0) \in T^\omega_P(DB)$.

We know $\pi(L_0) : - \pi(L_1), \ldots, \pi(L_n) \in \text{Ground}(R, P, DB)$. Thus by the definition of T_P, $\pi(L_0) \in T_P(T^\omega_P(DB))$. Since $T_P(T^\omega_P(DB)) = T^\omega_P(DB)$ by the definition of $T^\omega_P(DB)$, we obtain $\pi(L_0) \in T^\omega_P(DB)$.
Algorithm: INFER

INPUT: datalog program P, database DB

OUTPUT: $T^\omega_P(DB) \ (= \ cons(P^* \land DB^*))$

STEP 1. $GP := \bigcup_{R \in P} \text{Ground}(R; P, DB)$,

(* GP . . . set of all ground instances *)

STEP 2. $OLD := \{\}; \ NEW := DB$

STEP 3. while $NEW \neq OLD$ do begin

$OLD := NEW; \ NEW := \text{ComputeTP}(OLD)$;

end;

STEP 4. output OLD.
Subroutine ComputeTP

INPUT: Set of facts OLD

OUTPUT: $TP(OLD)$

STEP 1. \[F := OLD; \]

STEP 2. for each rule $L_0 :\leftarrow L_1, \ldots, L_n$ in GP do
if $L_1, \ldots, L_n \in OLD$
then \[F := F \cup \{ L_0 \}; \]

STEP 3. return F;
Example

Apply the following program P to calculate all ancestors of the above given database DB.

\[
\text{ancestor}(X,Y) :- \text{parents}(X,Y).
\]

\[
\text{ancestor}(X,Z) :- \text{parents}(X,Y), \text{ancestor}(Y,Z).
\]

Step 1. (INFER) build GP

\[
GP = \{ \text{ancestor}(\text{grete},\text{grete}) :- \text{parents}(\text{grete},\text{grete}), \\
\text{ancestor}(\text{grete},\text{linda}) :- \text{parents}(\text{grete},\text{linda}), \\
\ldots, \\
\text{ancestor}(\text{grete},\text{grete}) :- \text{parents}(\text{grete},\text{grete}), \\
\text{ancestor}(\text{grete},\text{grete}), \\
\text{ancestor}(\text{grete},\text{grete}) :- \text{parents}(\text{grete},\text{linda}), \\
\text{ancestor}(\text{linda},\text{grete}), \\
\ldots \}.
\]

(There are $6^2 + 6^3 = 252$ ground instances.)
Step 2. \(OLD := \{\} \), \(NEW := DB \);

Step 3. \(OLD \neq NEW \)

- Cycle 1: \(OLD := DB \), \(NEW := TP(OLD) = TP(DB) \)
 \[
 TP(OLD) = OLD \cup \{\text{ancestor}(A, B) \mid \text{parents}(A, B) \in DB\};
 \]

- Cycle 2: \(OLD := TP(DB) \), \(NEW := TP(OLD) = TP(TP(DB)) \)
 \[
 TP(OLD) =
 OLD \cup \{\text{ancestor}(hans, michael), \text{ancestor}(hans, gerti), \text{ancestor}(grete, michael), \text{ancestor}(grete, gerti)\}.
 \]

- Cycle 3: \(TP(OLD) = OLD \), there are no new facts

Step 4. Output of \(OLD \).

The result corresponds to the extension of \(DB \) with the new table \textit{ancestor}
<table>
<thead>
<tr>
<th>parents</th>
<th>(PARENT, CHILD)</th>
<th>ancestor</th>
<th>(ANCESTOR, NAME)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hans</td>
<td>Linda</td>
<td>Hans</td>
<td>Linda</td>
</tr>
<tr>
<td>Grete</td>
<td>Linda</td>
<td>Grete</td>
<td>Linda</td>
</tr>
<tr>
<td>Karl</td>
<td>Michael</td>
<td>Karl</td>
<td>Michael</td>
</tr>
<tr>
<td>Linda</td>
<td>Michael</td>
<td>Linda</td>
<td>Michael</td>
</tr>
<tr>
<td>Karl</td>
<td>Gerti</td>
<td>Karl</td>
<td>Gerti</td>
</tr>
<tr>
<td>Linda</td>
<td>Gerti</td>
<td>Linda</td>
<td>Gerti</td>
</tr>
<tr>
<td>Hans</td>
<td>Michael</td>
<td>Hans</td>
<td>Michael</td>
</tr>
<tr>
<td>Hans</td>
<td>Gerti</td>
<td>Hans</td>
<td>Gerti</td>
</tr>
<tr>
<td>Grete</td>
<td>Michael</td>
<td>Grete</td>
<td>Michael</td>
</tr>
<tr>
<td>Grete</td>
<td>Gerti</td>
<td>Grete</td>
<td>Gerti</td>
</tr>
</tbody>
</table>
Datalog with negation

- Without negation, datalog is not relational complete because set difference \((R - S)\) cannot be expressed.
- We introduce the negation (\textbf{not}) in bodies of rules.
- Restriction on the application of the negation:

 \begin{quote}
 A relation \(R\) must not be defined on the basis of its negation.
 \end{quote}

- Check for this constraint: with graph-theoretic methods.
Graph representation

Let P be a datalog program with negated literals in the body of rules.

Definition: dependency graph

$DEP(P)$ is defined as the directed graph, with:
- nodes . . . predicates (predicate symbols) p in P,
- edges . . . $p \rightarrow q$, if there exists a rule in P where p is the head atom and q appears in the body (meaning: “p depends on q”).

Mark an edge $p \rightarrow q$ of $DEP(P)$ with a star “*”, if q in the body is negated.

Definition

A datalog program P with negation is called valid if the graph $DEP(P)$ has no directed cycle that contains an edge marked with “*”.

Such programs are called **stratified**, since they can be divided into strata with respect to the negation.
Example

The following program P with the rules:

\[
\begin{align*}
&\text{husband}(X) :- \text{man}(X), \text{married}(X). \\
&\text{bachelor}(X) :- \text{man}(X), \text{not } \text{husband}(X).
\end{align*}
\]

is stratified.
The program P with the rules:

husband(X) :- man(X), not bachelor(X).
bachelor(X) :- man(X), not husband(X).

is not stratified.
Stratification

Definition

A stratum is composed by the maximal set of predicates for which the following holds:

1. if a predicate p appears in the head of a rule, that contains a negated predicate q in the body, then p is in a higher stratum than q.

2. if a predicate p appears in the head of a rule, that contains an unnegated (positive) predicate q in the body, then p is in a stratum at least as high as q.
Algorithm

INPUT: A set of datalog rules.

OUTPUT: the decision whether the program is stratified and the classification of the predicates into strata.

METHOD:

1. initialize the strata for all predicates with 1.

2. do for all rules R with predicate p in the head:
 - if (i) the body of R contains a negated predicate q, (ii) the stratum of p is i, and (iii) the stratum of q is j with $i \leq j$, then set $i := j + 1$.
 - if (i) the body of R contains an unnegated predicate q, (ii) the stratum of p is i, and (iii) the stratum of q is j with $i < j$, then set $i := j$.

until:

- status is stable \Rightarrow program is stratified.
- stratum $n > \#$ predicates \Rightarrow not stratified.
Example

Consider R, S relations of the database DB, P:

\[
\begin{align*}
 v(X,Y) & : - r(X,X), r(Y,Y). \\
 u(X,Y) & : - s(X,Y), s(Y,Z), \text{not } v(X,Y). \\
 w(X,Y) & : - \text{not } u(X,Y), v(Y,X).
\end{align*}
\]

![Diagram showing stratification of rules]

- r, s, v level 1
- u level 2
- w level 3
Semantics of datalog with negation

Note: when calculating the strata of a datalog program with negation the following holds:

Step 1: computation of all relations of the first stratum.

Step i: computation of all relations that belong to stratum i.

\Rightarrow the relations computed in step $i - 1$ are known in step i.

Semantics of datalog with negation is therefore uniquely defined.

Computation of P from the last example above:

Step 1: compute V from R

Step 2: compute U from S and V

Step 3: compute W from U and V
Properties of datalog with negation

- Datalog with negation is relational complete:
 - The difference \(D = R - S \) of two (e.g. binary) relations \(R \) and \(S \):
 \[
 d(X,Y) :- r(X,Y), \quad \textbf{not} \quad s(X,Y).
 \]

- syntactical restrictions of datalog with negation:

 all variables that appear in the body within a negated literal must also appear in a positive (unnegated) literal
Example

Let DB be a database that contains information on graphs, with relations $v(X)$, saying X is a node and $e(X,Y)$ saying there is an edge from X to Y. Write a datalog program that computes all pairs of nodes (X,Y), where X is a source, Y is a sink and X is connected to Y.

$p(X,Y) :- \text{source}(X), \text{sink}(Y), \text{connection}(X,Y)$.

$\text{connection}(X,X) :- v(X)$.
$\text{connection}(X,Y) :- e(X,Z), \text{connection}(Z,Y)$.

$n_\text{source}(X) :- e(Y,X)$.
$\text{source}(X) :- v(X), \text{not } n_\text{source}(X)$.

$n_\text{sink}(X) :- e(X,Y)$.
$\text{sink}(X) :- v(X), \text{not } n_\text{sink}(X)$.
n_source: b, c, e, f
n_sink: a, b, c, d
connection: (a,a), . . . , (f,f), (a,b), (a,c), (a,e), (a,f), (b,c), (b,e), (c,e), (d,c), (d,e)
source: a, d
sink: e, f
p: (a,e), (a,f), (d,e)
Learning objectives

- Motivation for Datalog (recursive queries)
- Syntax of Datalog
- Semantics of Datalog:
 - logical semantics,
 - operational semantics.
- Datalog with negation:
 - the need for negation,
 - the notions of dependency graph and stratification,
 - semantics of Datalog with negation.