2. Introduction to Datalog

Reinhard Pichler

Institut für Informationssysteme
Arbeitsbereich DBAI
Technische Universität Wien

14 March, 2017
Outline

2. Datalog
 2.1 Motivation
 2.2 Datalog - Syntax
 2.3 Restrictions on the Datalog Syntax
 2.4 Logical Semantics of Datalog
 2.5 Operational Semantics of Datalog
 2.6 Datalog with negation
 2.7 Stratification
Motivation

- SQL, relational algebra, relational calculus (both tuple and domain relational calculus) are "relational complete", i.e., they have the full expressive power of relational algebra.
- But: many interesting queries cannot be formulated in these languages
- Example: no recursive queries (SQL now offers a recursive construct)
Example

- Relation `parent(PARENT, CHILD)`, gives information on the parent-child relationship of a certain group of people.
- Problem: look for all ancestors of a certain person.
- Solution: define relation `ANCESTOR(X, Y)`: X is ancestor of Y by generating one generation after the other (one join and one projection each) and finally merge all generations (union):

 \[\text{parent} := \{ (P, C) \mid \text{PARENT} = P, \text{CHILD} = C \}\]

 \[\text{grandparent} := \pi_{1,4}(\text{parent}[\text{CHILD} = \text{PARENT}] \cdot \text{parent})\]

 \[\text{grandgrandparent} := \pi_{1,4}(\text{parent}[\text{CHILD} = \text{GRANDPARENT}] \cdot \text{grandparent})\]

 \[\ldots\]

 \[\text{ancestor} := \text{parent} \cup \text{grandparent} \cup \text{grandgrandparent} \cup \ldots\]
Possible Solution

- Use of a programming language with an embedded relational complete query language:

  ```prolog
  begin
  result := \{\};
  newtuples := parent;
  while newtuples \not\subseteq result do
  begin
    result := result \cup newtuples;
    newtuples := \pi_{1,4}(newtuples[2 = 1]parent);
  end;
  ancestor := result
  end.
  ```

- Procedural, needs knowledge of a programming language, leaves little room for query optimization.
Better Solution: Datalog

- Prolog-like logical query language,
- allows recursive queries in a **declarative** way
- Example:
 - compute all ancestors on the basis of the relation `parent`
 \[
 \text{ancestor}(X,Y) :- \text{parent}(X,Y).
 \]
 \[
 \text{ancestor}(X,Z) :- \text{parent}(X,Y), \text{ancestor}(Y,Z).
 \]
 - use the ancestor predicate to compute the ancestors of a certain person (Hans):
 \[
 \text{hans_ancestor}(X) :- \text{ancestor}(X,\text{hans}).
 \]
 - compute the ancestors of a certain person (Hans) directly:
 \[
 \text{hans_ancestor}(X) :- \text{parent}(X,\text{hans}).
 \]
 \[
 \text{hans_ancestor}(X) :- \text{hans_ancestor}(Y), \text{parent}(X,Y).
 \]
Datalog - Syntax

\[
<datalog_program> ::= <datalog_rule> \mid <datalog_program><datalog_rule>
\]

\[
<datalog_rule> ::= <head> :- <body>
\]

\[
<head> ::= <literal>
\]

\[
<body> ::= <literal> \mid <body>, <literal>
\]

\[
<literal> ::= <relation_id>(<list_of_args>)
\]

\[
<list_of_args> ::= <term> \mid <list_of_args>, <term>
\]

\[
<term> ::= <symb_const> \mid <symb_var>
\]

\[
<symb_const> ::= <number> \mid <lcc> \mid <lcc><string>
\]

\[
<symb_var> ::= <ucc> \mid <ucc><string>
\]

(lcc = lower_case_character; ucc = upper_case_character)
Restrictions on the Datalog Syntax

<relation_id>:

- name of an existing relation of the database (parent) - can be used only in rule bodies
- name of a new relation defined by the datalog program (ancestor)
- has always the same number of arguments.

comparison predicates:

=, <>, < , > are treated like known database relations.

variables:

- each variable that appears in the head of a rule has to be bound in the body
- variables that appear as arguments of comparison predicates must appear in the same body in literals without comparison predicates

A datalog query is also called datalog program
Logical Semantics of Datalog

We consider

\[R \ldots \text{datalog rule of the form } L_0 \leftarrow L_1, L_2, \ldots, L_n, \]

\[L_i \ldots \text{literal of the form } p_i(t_1, \ldots, t_{n_i}) \]

\[x_1, x_2, \ldots, x_\ell \text{ variables in } R \]

\[P \ldots \text{datalog program with the rules } R_1, R_2, \ldots, R_m \]

We construct

\[R^* = \forall x_1 \forall x_2 \ldots \forall x_\ell ((L_1 \land L_2 \land \cdots \land L_n) \Rightarrow L_0). \]

We assign to each datalog program \(P \) the (semantically) well-defined formula \(P^* \) as follows:

\[P^* = R_1^* \land R_2^* \land \cdots \land R_m^* \]
We consider now

\[
\text{REL} \ldots \text{ a relation of the database.} \\
\langle t_1, \ldots, t_n \rangle \ldots \text{ a tuple of the relation REL.} \\
rel(t_1, \ldots, t_n) \ldots \text{ a fact} \\
\text{DB} \ldots \text{ database with relations REL}_1, \text{REL}_2, \ldots, \text{REL}_k
\]

We assign to each database relation REL the formula

\[
\text{REL}^* = \text{conjunction of all facts}
\]

- a relation is an unordered set of tuples
- the assignment REL \rightarrow REL^* is therefore not uniquely defined.
- take an arbitrary order (e.g. lexicographical order) since conjunction is associative and commutative.

We assign to each database DB the (semantically) well-defined formula \(DB^* \) as follows:

\[
DB^* = REL_1^* \land REL_2^* \land \cdots \land REL_k^*.
\]
We have:

\[DB^* \] is a conjunction of ground atoms (i.e., the facts) and
\[P^* \] is a conjunction of formulas with implication

Let \(G \) be a conjunction of facts and formulas with implication. Then the set \(\text{cons}(G) \) of facts that follow from \(G \) is uniquely defined.
In other words, we have \(\text{cons}(G) = \{ A \mid A \text{ is a fact with } G \models A \} \).

Definition

The semantics of a datalog program \(P \) is defined as the function \(M[P] \), that assigns to each database \(DB \) the set of all facts that follow from the formula “\(P^* \land DB^* \)"

\[M[P] : DB \rightarrow \text{cons}(P^* \land DB^*) \]
Example

Consider the database DB with relations \textit{woman} (\textit{NAME}), \textit{man} (\textit{NAME}), \textit{parent} (\textit{PARENT}, \textit{CHILD}) and the datalog program:

\[
\text{grandpa}(X,Y) :- \text{man}(X), \text{parent}(X,Z), \text{parent}(Z,Y).
\]

<table>
<thead>
<tr>
<th>woman (NAME)</th>
<th>man (NAME)</th>
<th>parent (PARENT, CHILD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grete</td>
<td>Hans</td>
<td>Hans Linda</td>
</tr>
<tr>
<td>Linda</td>
<td>Karl</td>
<td>Grete Linda</td>
</tr>
<tr>
<td>Gerti</td>
<td>Michael</td>
<td>Karl Michael</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linda Michael</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Karl Gerti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linda Gerti</td>
</tr>
</tbody>
</table>
Let us compute DB^*, P^* and $\text{cons}(P^* \land DB^*)$:

$DB^* = REL_1^* \land \cdots \land REL_k^*$ with $REL_i^* = \text{conjunction of all facts}$

$DB^* = \text{woman}($grete$) \land \text{woman}($linda$) \land \text{woman}($gerti$) \land \\
\text{man}($hans$) \land \text{man}($karl$) \land \text{man}($michael$) \land \\
\text{parent}($hans$, $linda$) \land \text{parent}($grete$, $linda$) \land \\
\text{parent}($karl$, $michael$) \land \text{parent}($linda$, $michael$) \land \\
\text{parent}($karl$, $gerti$) \land \text{parent}($linda$, $gerti$).

$P^* = R_1^* \land \cdots \land R_m^*$ with $R_i^* = \forall x_1 \forall x_2 \ldots \forall x_\ell((L_1 \land \cdots \land L_n) \Rightarrow L_0)$.

$P^* = \forall X \forall Y \forall Z : ((\text{man}(X) \land \text{parent}(X, Z) \land \text{parent}(Z, Y)) \Rightarrow \\
\text{grandpa}(X, Y))$.
The new facts in $\text{cons}(P^* \land DB^*)$:

grandpa(hans,michael), grandpa(hans,gerti).

The datalog program P with

$P = \text{grandpa}(X,Y) :- \text{man}(X), \text{parent}(X,Z), \text{parent}(Z,Y)$

defines a new relation grandpa with the following tuples:

$\text{grandpa} (X \hspace{1cm} Y)$

\begin{tabular}{ll}
 Hans & Michael \\
 Hans & Gerti \\
\end{tabular}
Operational Semantics of Datalog

- Datalog rules are seen as inference rules,
- a fact that appears in the head of a rule can be deduced, if the facts in the body of the rule can be deduced.

Example:

facts: parent(linda,michael), parent(linda,gerti)
rule: siblings(michael,gerti) :-
 parent(linda,michael), parent(linda,gerti).

the following fact can be deduced:

siblings(michael,gerti)
Rules with variables

- A rule R with variables represents all variable-free rules we get from R by substituting the variables with the constant symbols.
- The constant symbols are taken from the database DB and the program P.
- A variable-free rule resulting from such a substitution is called **ground instance** of R with respect to P and DB.
- We write $\text{Ground}(R, P, DB)$ to denote the set of all ground instances over P and DB of R.
Example:

Compute all relations between siblings with the following rule:

\[\text{siblings}(Y, Z) : \neg \text{parent}(X, Y), \text{parent}(X, Z), Y <> Z. \]

All \(6^3\) ground instances of this rule with respect to \(P\) and \(DB\) from above are (Note that there are 6 constant symbols: \{grete, linda, gerti, hans, michael, karl\}):

\[
\begin{align*}
\text{siblings}(\text{grete}, \text{grete}) & : \neg \text{parent}(\text{grete}, \text{grete}), \text{parent}(\text{grete}, \text{grete}), \\
& \quad \text{grete} <> \text{grete} \quad (X = Y = Z = \text{grete}) \\
\text{siblings}(\text{grete}, \text{linda}) & : \neg \text{parent}(\text{grete}, \text{grete}), \text{parent}(\text{grete}, \text{linda}), \\
& \quad \text{grete} <> \text{linda} \quad (X = Y = \text{grete}, Z = \text{linda}) \\
& \ldots \quad \ldots \\
\text{siblings}(\text{karl}, \text{karl}) & : \neg \text{parent}(\text{karl}, \text{karl}), \text{parent}(\text{karl}, \text{karl}), \\
& \quad \text{karl} <> \text{karl} \quad (X = Y = Z = \text{karl})
\end{align*}
\]
Idea: execution of a datalog program P on a database DB: iterative deduction of facts until saturation is reached (fixpoint)

Formalization: define a fixpoint operator

- define Operator $T_P(DB)$: augments DB with all facts, that can be deduced in one step by applying the rules from P to DB.

$$T_P(DB) = DB \cup \bigcup_{R \in P} \{L_0 \mid L_0 \leftarrow L_1, \ldots, L_n \in \text{Ground}(R; P, DB), L_1, \ldots, L_n \in DB\}$$

- T_P is called the **immediate consequence operator**.
- $T_P^i(DB) = T_P(T_P^{i-1}(DB))$ iterated application of T_P.
$T_P^0(DB) = DB$

$T_P^1(DB) = T_P(T_P^0(DB)) = T_P(DB)$

$= DB \cup \bigcup_{R \in P} \{ L_0 \mid L_0 : -L_1, \ldots, L_n \in \text{Ground}(R; P, DB),
 L_1, \ldots, L_n \in DB \}$

$T_P^2(DB) = T_P(T_P^1(DB)) = T_P(T_P(DB))$

$\ldots \quad \ldots$

$T_P^i(DB) = T_P(T_P^{i-1}(DB)) = T_P(\ldots T_P(DB))$

$\ldots \quad \ldots$
Properties of $T_P(DB)$

- The set of facts is monotonically increasing i.e.:

 \[T_P^i(DB) \subseteq T_P^{i+1}(DB) \]

- The sequence $\langle T_P^i(DB) \rangle$ converges finitely:
 there exists n with $T_P^m(DB) = T_P^n(DB)$ for all $m \geq n$.

- $T_P^\omega(DB)$... set of facts, to which $\langle T_P^i(DB) \rangle$ converges is the result of the application of P to DB.

- The operational semantics of a datalog program P assigns to each database DB the set of facts $T_P^\omega(DB)$:

 \[O[P] : DB \rightarrow T_P^\omega(DB). \]

Theorem (Equivalence of semantics)

Assume a program P. Then it holds that $M[P] = O[P]$. In other words, for any database DB, we have: $\text{cons}(P^* \land DB^*) = T_P^\omega(DB)$.
Proof of Theorem

Let P be a program and DB a database. We show

$$cons(P^* \land DB^*) = T_\omega^P(DB).$$

(1) We first show $T_\omega^P(DB) \subseteq cons(P^* \land DB^*)$. By induction on i, we show that $T_i^P(DB) \subseteq cons(P^* \land DB^*)$ for every $i \geq 0$. Note that this includes the case where $i = \omega$.

Base case. Assume $i = 0$. Take a fact $L \in T_0^P(DB)$. Then by definition of $T_0^P(DB)$, $L \in DB$. By definition, DB^* is a conjunction of literals and L occurs in it. Hence, by classical logic, $L \in cons(P^* \land DB^*)$.

The inductive step. Suppose $T_i^P(DB) \subseteq cons(P^* \land DB^*)$ for $i \geq 0$. We show that $T_{i+1}^P(DB) \subseteq cons(P^* \land DB^*)$. Recall that $T_{i+1}^P(DB) = T_P(T_i^P(DB))$. Thus by the definition of T_P,

$$T_{i+1}^P(DB) = T_i^P(DB) \cup \bigcup_{R \in P} \{L_0 \mid L_0 : L_1, \ldots, L_n \in \text{Ground}(R, P, DB),$$

$$L_1, \ldots, L_n \in T_i^P(DB)\}$$
By the induction hypothesis, $T_p(DB) \subseteq cons(P^* \land DB^*)$. Thus it remains to show that $L_0 \in cons(P^* \land DB^*)$ for any rule $R \in P$ such that there is $L_0 : - L_1, \ldots, L_n \in \text{Ground}(R, P, DB)$ with $L_1, \ldots, L_n \in T_p(DB)$.

Assume such a rule $R = L'_0 : - L'_1, \ldots, L'_n$ in P, and suppose π is the substitution of variables with constants such that applying π to R results in $L_0 : - L_1, \ldots, L_n$, i.e. $\pi(L'_j) = L_j$ for $j \in \{0, \ldots, n\}$.

By construction, in $P^* \land DB^*$ we have the conjunct

$$R^* = \forall x_1 \forall x_2 \ldots \forall x_\ell((L'_1 \land L'_2 \land \cdots \land L'_n) \Rightarrow L'_0).$$

Thus, by employing the semantics of classical logic, for any variable substitution π' such that $\{\pi'(L'_1), \ldots, \pi'(L'_n)\} \subseteq cons(P^* \land DB^*)$ we also have $\pi'(L'_0) \in cons(P^* \land DB^*)$. Since π is a substitution such that $\{\pi(L'_1), \ldots, \pi(L'_n)\} = \{L_1, \ldots, L_n\} \subseteq cons(P^* \land DB^*)$ by the induction hypothesis, we get $\pi(L'_0) = L_0 \in cons(P^* \land DB^*)$.

We show \(\text{cons}(P^* \land DB^*) \subseteq T^\omega_P(DB) \). To this end, we prove that \(L \notin T^\omega_P(DB) \) implies \(L \notin \text{cons}(P^* \land DB^*) \), for any fact \(L \). We thus simply show that \(T^\omega_P(DB) \) is a model of \(P^* \land DB^* \).

This suffices because of the following simple property: if \(M \) is a model of a formula \(F \), then any fact \(L \notin M \) is not a logical consequence of \(F \) (as witnessed by \(M \) itself).
$T_P^\omega(DB)$ is a model of DB^* because $DB = T_P^0(DB) \subseteq T_P^\omega(DB)$ by the definition of $T_P^\omega(DB)$.

It remains to show that $T_P^\omega(DB)$ is also a model of P^*. Consider an arbitrary rule $R \in P$. We have to show that $T_P^\omega(DB)$ is a model of R^* with $R^* = \forall x_1 \forall x_2 \ldots \forall x_\ell ((L_1 \land L_2 \land \cdots \land L_n) \Rightarrow L_0)$.

Consider an arbitrary (ground) variable assignment π on the variables x_1, \ldots, x_ℓ. The only non-trivial case is that all facts $\pi(L_1), \ldots, \pi(L_n)$ are true in $T_P^\omega(DB)$, i.e., $\{\pi(L_1), \ldots, \pi(L_n)\} \subseteq T_P^\omega(DB)$.

We have to show that then also $\pi(L_0)$ is true in $T_P^\omega(DB)$, i.e., $\pi(L_0) \in T_P^\omega(DB)$.

We know $\pi(L_0) : - \pi(L_1), \ldots, \pi(L_n) \in \text{Ground}(R, P, DB)$. Thus by the definition of T_P, $\pi(L_0) \in T_P(T_P^\omega(DB))$. Since $T_P(T_P^\omega(DB)) = T_P^\omega(DB)$ by the definition of $T_P^\omega(DB)$, we obtain $\pi(L_0) \in T_P^\omega(DB)$.
Algorithm: INFER

INPUT: datalog program P, database DB
OUTPUT: $T^{\omega}_P(DB)$ (= $\text{cons}(P^* \land DB^*)$)

STEP 1. $GP := \bigcup_{R \in P} \text{Ground}(R; P, DB)$,
 (* GP . . . set of all ground instances *)
STEP 2. $OLD := \{\}; NEW := DB$;
STEP 3. while $NEW \neq OLD$ do begin
 $OLD := NEW; NEW := \text{ComputeTP}(OLD)$;
 end;
STEP 4. output OLD.
Subroutine ComputeTP

INPUT: Set of facts OLD

OUTPUT: $TP(OLD)$

STEP 1. $F := OLD$;

STEP 2. For each rule $L_0 : - L_1, \ldots, L_n$ in GP do
 - If $L_1, \ldots, L_n \in OLD$
 - Then $F := F \cup \{L_0\}$;

STEP 3. Return F;
Example

Apply the following program P to calculate all ancestors of the above given database DB.

\[
\text{ancestor}(X,Y) \leftarrow \text{parent}(X,Y).
\]
\[
\text{ancestor}(X,Z) \leftarrow \text{parent}(X,Y), \text{ancestor}(Y,Z).
\]

Step 1. (INFER) build GP

\[
GP = \{
\text{ancestor}(\text{grete},\text{grete}) \leftarrow \text{parent}(\text{grete},\text{grete}),
\text{ancestor}(\text{grete},\text{linda}) \leftarrow \text{parent}(\text{grete},\text{linda}),
\ldots,
\text{ancestor}(\text{grete},\text{grete}) \leftarrow \text{parent}(\text{grete},\text{grete}),
\text{ancestor}(\text{grete},\text{grete}) \leftarrow \text{parent}(\text{grete},\text{linda}),
\text{ancestor}(\text{linda},\text{grete}),
\ldots
\}.
\]

(There are $6^2 + 6^3 = 252$ ground instances.)
Step 2. \(\text{OLD} := \{ \} \), \(\text{NEW} := \text{DB} \);

Step 3. \(\text{OLD} \neq \text{NEW} \)

Cycle 1: \(\text{OLD} := \text{DB}, \text{NEW} := \text{TP(OLD)} = \text{TP(DB)} \)
\[
\text{TP(OLD)} = \text{OLD} \cup \{ \text{ancestor(A, B)} \mid \text{parent(A, B) } \in \text{DB} \};
\]

Cycle 2: \(\text{OLD} := \text{TP(DB)}, \text{NEW} := \text{TP(OLD)} = \text{TP(TP(DB))} \)
\[
\text{TP(OLD)} = \\
\text{OLD} \cup \{ \text{ancestor(hans, michael), ancestor(hans, gerti), ancestor(grete, michael), ancestor(grete, gerti)} \}.
\]

Cycle 3: \(\text{TP(OLD)} = \text{OLD} \), there are no new facts

Step 4. Output of \(\text{OLD} \).

The result corresponds to the extension of \(\text{DB} \) with the new table \text{ancestor}
<table>
<thead>
<tr>
<th>parent</th>
<th>(PARENT CHILD)</th>
<th>ancestor</th>
<th>(ANCESTOR NAME)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hans</td>
<td>Linda</td>
<td>Hans</td>
<td>Linda</td>
</tr>
<tr>
<td>Grete</td>
<td>Linda</td>
<td>Grete</td>
<td>Linda</td>
</tr>
<tr>
<td>Karl</td>
<td>Michael</td>
<td>Karl</td>
<td>Michael</td>
</tr>
<tr>
<td>Linda</td>
<td>Michael</td>
<td>Linda</td>
<td>Michael</td>
</tr>
<tr>
<td>Karl</td>
<td>Gerti</td>
<td>Karl</td>
<td>Gerti</td>
</tr>
<tr>
<td>Linda</td>
<td>Gerti</td>
<td>Linda</td>
<td>Gerti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hans</td>
<td>Michael</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hans</td>
<td>Gerti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grete</td>
<td>Michael</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grete</td>
<td>Gerti</td>
</tr>
</tbody>
</table>
Datalog with negation

- Without negation, datalog is not relational complete because set difference ($R - S$) cannot be expressed.
- We introduce the negation (not) in bodies of rules.
- Restriction on the application of the negation:

 A relation R must not be defined on the basis of its negation.

- Check for this constraint: with graph-theoretic methods.
Graph representation

Let P be a datalog program with negated literals in the body of rules.

Definition: dependency graph

$DEP(P)$ is defined as the directed graph, with:
- nodes ... predicates (predicate symbols) p in P,
- edges ... $p \rightarrow q$, if there exists a rule in P where p is the head atom and q appears in the body (meaning: “p depends on q”).

Mark an edge $p \rightarrow q$ of $DEP(P)$ with a star “*”, if q in the body is negated.

Definition

A datalog program P with negation is called valid if the graph $DEP(P)$ has no directed cycle that contains an edge marked with “*”. Such programs are called **stratified**, since they can be divided into strata with respect to the negation.
Example

The following program P with the rules:

$$
\begin{align*}
\text{husband}(X) & :- \text{man}(X), \text{married}(X). \\
\text{bachelor}(X) & :- \text{man}(X), \neg \text{husband}(X).
\end{align*}
$$

is stratified.
The program P with the rules:

\begin{align*}
\text{husband}(X) & :\neg \text{man}(X), \neg \text{bachelor}(X). \\
\text{bachelor}(X) & :\neg \text{man}(X), \neg \text{husband}(X).
\end{align*}

is not stratified.
Stratification

Definition

A stratum is composed by the maximal set of predicates for which the following holds:

1. If a predicate p appears in the head of a rule, that contains a negated predicate q in the body, then p is in a higher stratum than q.

2. If a predicate p appears in the head of a rule, that contains an unnegated (positive) predicate q in the body, then p is in a stratum at least as high as q.
Algorithm

INPUT: A set of datalog rules.

OUTPUT: the decision whether the program is stratified and the classification of the predicates into strata.

METHOD:

1. initialize the strata for all predicates with 1.

2. do for all rules R with predicate p in the head:
 - if (i) the body of R contains a negated predicate q,
 (ii) the stratum of p is i, and
 (iii) the stratum of q is j with $i \leq j$, then set $i := j + 1$.
 - if (i) the body of R contains an unnegated predicate q,
 (ii) the stratum of p is i, and
 (iii) the stratum of q is j with $i < j$, then set $i := j$.

until:
- status is stable \Rightarrow program is stratified.
- stratum $n > \#$ predicates \Rightarrow not stratified.
Example

Consider R, S relations of the database DB, P:

$v(X,Y) :- r(X,X), r(Y,Y)$.
$u(X,Y) :- s(X,Y), s(Y,Z), not v(X,Y)$.
$w(X,Y) :- not u(X,Y), v(Y,X)$.

\[
\begin{array}{llllll}
\text{level 3} & & & & & \\
& & & & & \\
\text{level 2} & & & & & \\
& & & & & \\
\text{level 1} & & & & & \\
\end{array}
\]
Semantics of datalog with negation

Note: when calculating the strata of a datalog program with negation the following holds:

Step 1: computation of all relations of the first stratum.
Step i: computation of all relations that belong to stratum i.
⇒ the relations computed in step $i - 1$ are known in step i.

Semantics of datalog with negation is therefore uniquely defined.

Computation of P from the last example above:

Step 1: compute V from R
Step 2: compute U from S and V
Step 3: compute W from U and V
Properties of datalog with negation

- Datalog with negation is relational complete:
 - The difference $D = R - S$ of two (e.g. binary) relations R and S:
 $$d(X,Y) :- r(X,Y), \not s(X,Y).$$

- syntactical restrictions of datalog with negation:

 all variables that appear in the body within a negated literal must also appear in a positive (unnegated) literal
Example

Let DB be a database that contains information on graphs, with relations $v(X)$, saying X is a node and $e(X,Y)$ saying there is an edge from X to Y. Write a datalog program that computes all pairs of nodes (X,Y), where X is a source, Y is a sink and X is connected to Y.

\[
p(X,Y) :- \text{source}(X), \text{sink}(Y), \text{connection}(X,Y).
\]

\[
\text{connection}(X,X) :- v(X).
\]
\[
\text{connection}(X,Y) :- e(X,Z), \text{connection}(Z,Y).
\]

\[
n_{\text{source}}(X) :- e(Y,X).
\]
\[
\text{source}(X) :- v(X), \text{not } n_{\text{source}}(X).
\]

\[
n_{\text{sink}}(X) :- e(X,Y).
\]
\[
\text{sink}(X) :- v(X), \text{not } n_{\text{sink}}(X).
\]
n_source: b, c, e, f
n_sink: a, b, c, d
connection: (a,a), . . . , (f,f), (a,b), (a,c), (a,e), (a,f), (b,c), (b,e), (c,e), (d,c), (d,e)
source: a, d
sink: e, f
p: (a,e), (a,f), (d,e)
Learning objectives

- Motivation for Datalog (recursive queries)
- Syntax of Datalog
- Semantics of Datalog:
 - logical semantics,
 - operational semantics.
- Datalog with negation:
 - the need for negation,
 - the notions of dependency graph and stratification,
 - semantics of Datalog with negation.