2. Introduction to Datalog

Reinhard Pichler

Institut für Informationssysteme
Arbeitsbereich DBAI
Technische Universität Wien

10 March, 2015
Outline

2. Datalog
 2.1 Motivation
 2.2 Datalog - Syntax
 2.3 Restrictions on the Datalog Syntax
 2.4 Logical Semantics of Datalog
 2.5 Operational Semantics of Datalog
 2.6 Datalog with negation
 2.7 Stratification
Motivation

- SQL, relational algebra, relational calculus (both tuple and domain relational calculus) are "relational complete", i.e., they have the full expressive power of relational algebra.
- But: many interesting queries cannot be formulated in these languages
- Example: no recursive queries (SQL now offers a recursive construct)
Example

- Relation parents(PARENT, CHILD), gives information on the parent-child relationship of a certain group of people.
- Problem: look for all ancestors of a certain person.
- Solution: define relation ANCESTOR(X, Y): X is ancestor of Y by generating one generation after the other (one join and one projection each) and finally merge all generations (union):

 \[
 \text{grandchild} (\text{GRANDPARENT}, \text{GRANDCHILD}) := \pi_{1,4} (\text{parents} [\text{CHILD} = \text{PARENT}] \text{parents})
 \]

 \[
 \text{grandgrandchild} (\text{GRANDGRANDPARENT}, \text{GRANDGRANDCHILD}) := \pi_{1,4} (\text{parents} [\text{CHILD} = \text{GRANDPARENT}] \text{grandchild})
 \]

 ...

 \[
 \text{ancestor} (\text{ANCESTOR}, \text{NAME}) := \text{parents} \cup \text{grandchild} \cup \text{grandgrandchild} \cup ...
 \]
Possible Solution

- Use of a programming language with an embedded relational complete query language:

  ```
  begin
  result := \{\};
  newtuples := parents;
  while newtuples \not\subseteq result do
  begin
    result := result \cup newtuples;
    newtuples := \pi_{1,4}(newtuples[2 = 1]parents);
  end;
  ancestor := result
  end.
  ```

- procedural, needs knowledge of a programming language, leaves little room for query optimization.
Better Solution: Datalog

- Prolog-like logical query language,
- allows recursive queries in a declarative way
- Example:
 - compute all ancestors on the basis of the relation parents
 \[
 \text{ancestor}(X,Y) :- \text{parents}(X,Y). \\
 \text{ancestor}(X,Z) :- \text{parents}(X,Y), \text{ancestor}(Y,Z).
 \]
 - use the ancestor predicate to compute the ancestors of a certain person (Hans):
 \[
 \text{hans_ancestor}(X) :- \text{ancestor}(X,\text{hans}).
 \]
 - compute the ancestors of a certain person (Hans) directly:
 \[
 \text{hans_ancestor}(X) :- \text{parents}(X,\text{hans}). \\
 \text{hans_ancestor}(X) :- \text{hans_ancestor}(Y), \text{parents}(X,Y).
 \]
Datalog - Syntax

\[
\text{<datalog_program> ::= <datalog_rule> |}
\]
\[
\text{<datalog_program><datalog_rule>}
\]

\[
\text{<datalog_rule> ::= <head> :- <body>}
\]

\[
\text{<head> ::= <literal>}
\]
\[
\text{<body> ::= <literal> | <body>, <literal>}
\]

\[
\text{<literal> ::= <relation_id>(<list_of_args>)}
\]

\[
\text{<list_of_args> ::= <term> | <list_of_args>, <term>}
\]

\[
\text{<term> ::= <symb_const> | <symb_var>}
\]

\[
\text{<symb_const> ::= <number> | <lcc> | <lcc><string>}
\]
\[
\text{<symb_var> ::= <ucc> | <ucc><string>}
\]

(lcc = lower_case_character; ucc = upper_case_character)
Restrictions on the Datalog Syntax

<relation_id>:

- name of an existing relation of the database (parents) - can be used only in rule bodies
- name of a new relation defined by the datalog program (ancestor)
- has always the same number of arguments.

Comparison predicates:

=, <>, <, > are treated like known database relations.

Variables:

- each variable that appears in the head of a rule has to be bound in the body
- variables that appear as arguments of comparison predicates must appear in the same body in literals without comparison predicates

A datalog query is also called datalog program
Logical Semantics of Datalog

We consider

$$R \ldots \text{ datalog rule of the form } L_0 :- L_1, L_2, \ldots, L_n,$$

$$L_i \ldots \text{ literal of the form } p_i(t_1, \ldots, t_{n_i})$$

$$x_1, x_2, \ldots, x_\ell \text{ variables in } R$$

$$P \ldots \text{ datalog program with the rules } R_1, R_2, \ldots, R_m$$

We construct

$$R^* = \forall x_1 \forall x_2 \ldots \forall x_\ell((L_1 \land L_2 \land \cdots \land L_n) \Rightarrow L_0).$$

We assign to each datalog program P the (semantically) well-defined formula P^* as follows:

$$P^* = R_1^* \land R_2^* \land \cdots \land R_m^*$$
We consider now

\[\text{REL} \ldots \text{ a relation of the database.} \]
\[\{t_1, \ldots, t_n\} \ldots \text{ a tuple of the relation REL.} \]
\[\text{rel}(t_1, \ldots, t_n) \ldots \text{ a fact} \]
\[\text{DB} \ldots \text{ database with relations REL}_1, \text{REL}_2, \ldots, \text{REL}_k \]

We assign to each database relation REL the formula

\[\text{REL}^* = \text{conjunction of all facts} \]

- a relation is an unordered set of tuples
- the assignment REL \(\mapsto \text{REL}^* \) is therefore not uniquely defined.
- take an arbitrary order (e.g. lexicographical order) since conjunction is commutative.

We assign to each database DB the (semantically) well-defined formula \(\text{DB}^* \) as follows:

\[\text{DB}^* = \text{REL}_1^* \land \text{REL}_2^* \land \cdots \land \text{REL}_k^*. \]
We have:

- DB^* is a conjunction of ground atoms (i.e., the facts) and
- P^* is a conjunction of formulas with implication

Let G be a conjunction of facts and formulas with implication. Then the set $\text{cons}(G)$ of facts that follow from G is uniquely defined. In other words, we have $\text{cons}(G) = \{ A \mid A \text{ is a fact with } G \models A \}$.

Definition

The semantics of a datalog program P is defined as the function $M[P]$, that assigns to each database DB the set of all facts that follow from the formula "$P^* \land DB^*$"

$$M[P] : DB \rightarrow \text{cons}(P^* \land DB^*)$$
Example

Consider the database DB with relations woman(NAME), man(NAME), parents(PARENT, CHILD) and the datalog program:

\[
\text{grandpa}(X,Y) :- \text{man}(X), \text{parents}(X,Z), \text{parents}(Z,Y).
\]

<table>
<thead>
<tr>
<th>woman (NAME)</th>
<th>man (NAME)</th>
<th>parents (PARENT, CHILD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grete</td>
<td>Hans</td>
<td>Hans Linda</td>
</tr>
<tr>
<td>Linda</td>
<td>Karl</td>
<td>Grete Linda</td>
</tr>
<tr>
<td>Gerti</td>
<td>Michael</td>
<td>Karl Michael</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linda Michael</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Karl Gerti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linda Gerti</td>
</tr>
</tbody>
</table>
Let us compute DB^*, P^* and $cons(P^* \land DB^*)$:

$DB^* = REL_1^* \land \cdots \land REL_k^*$ with $REL_1^* =$ conjunction of all facts

$DB^* = \text{woman}($grete$) \land \text{woman}($linda$) \land \text{woman}($gerti$) \land \text{man}($hans$) \land \text{man}($karl$) \land \text{man}($michael$) \land \text{parents}($hans$, $linda$) \land \text{parents}($grete$, $linda$) \land \text{parents}($karl$, $michael$) \land \text{parents}($karl$, $gerti$) \land \text{parents}($linda$, $michael$) \land \text{parents}($linda$, $gerti$).

$P^* = R_1^* \land \cdots \land R_m^*$ with $R_i^* = \forall x_1 \forall x_2 \ldots \forall x_\ell ((L_1 \land \cdots \land L_n) \Rightarrow L_0)$.

$P^* = \forall X \forall Y \forall Z : ((\text{man}(X) \land \text{parents}(X, Z) \land \text{parents}(Z, Y)) \Rightarrow \text{grandpa}(X, Y))$.
The new facts in $\text{cons}(P^* \land DB^*)$:

\[\text{grandpa}(\text{hans}, \text{michael}), \text{grandpa}(\text{hans}, \text{gerti}). \]

The datalog program P with

\[P = \text{grandpa}(X, Y) :- \text{man}(X), \text{parents}(X, Z), \text{parents}(Z, Y) \]

defines a new relation grandpa with the following tuples:

\[
\begin{array}{cc}
\text{grandpa} & (X & Y) \\
& \text{Hans} & \text{Michael} \\
& \text{Hans} & \text{Gerti}
\end{array}
\]
Operational Semantics of Datalog

- Datalog rules are seen as inference rules,
- a fact that appears in the head of a rule can be deduced, if the facts in the body of the rule can be deduced.

Example:

facts: parents(linda, michael), parents(linda, gerti)
rule: siblings(michael, gerti) :-
 parents(linda, michael), parents(linda, gerti).

the following fact can be deduced:

siblings(michael, gerti)
Rules with variables

- A rule R with variables represents all variable-free rules we get from R by substituting the variables with the constant symbols.
- The constant symbols are taken from the database DB and the program P.
- A variable-free rule resulting from such a substitution is called **ground instance** of R with respect to P and DB.
- We write $\text{Ground}(R, P, DB)$ to denote the set of all ground instances over P and DB of R.
Example:

Compute all relations between siblings with the following rule:

\[
\text{siblings}(Y,Z) : - \text{parents}(X,Y), \text{parents}(X,Z), Y <> Z.
\]

All 6^3 ground instances of this rule with respect to P and DB from above are (Note that there are 6 constant symbols: \{grete, linda, gerti, hans, michael, karl\}):

\[
\begin{align*}
\text{siblings}(\text{grete},\text{grete}) : - & \quad \text{parents}(\text{grete},\text{grete}), \text{parents}(\text{grete},\text{grete}), \\
& \qquad \text{grete} <> \text{grete} \quad (X = Y = Z = \text{grete})
\end{align*}
\]

\[
\begin{align*}
\text{siblings}(\text{grete},\text{linda}) : - & \quad \text{parents}(\text{grete},\text{grete}), \text{parents}(\text{grete},\text{linda}), \\
& \qquad \text{grete} <> \text{linda} \quad (X = Y = \text{grete}, Z = \text{linda})
\end{align*}
\]

\[
\begin{align*}
\cdots & \quad \cdots
\end{align*}
\]

\[
\begin{align*}
\text{siblings}(\text{karl},\text{karl}) : - & \quad \text{parents}(\text{karl},\text{karl}), \text{parents}(\text{karl},\text{karl}), \\
& \qquad \text{karl} <> \text{karl} \quad (X = Y = Z = \text{karl})
\end{align*}
\]
Idea: execution of a datalog program P on a database DB: iterative deduction of facts until saturation is reached (fixpoint)
Idea: execution of a datalog program P on a database DB: iterative deduction of facts until saturation is reached (fixpoint)

Formalization: define a fixpoint operator

- define Operator $T_P(DB)$: augments DB with all facts, that can be deduced in one step by applying the rules from P to DB.

$$T_P(DB) = DB \cup \bigcup_{R \in P} \{L_0 \mid L_0 : L_1, \ldots, L_n \in \text{Ground}(R; P, DB), L_1, \ldots, L_n \in DB\}$$

T_P is called the immediate consequence operator.
Idea: execution of a datalog program P on a database DB: iterative deduction of facts until saturation is reached (fixpoint)

Formalization: define a fixpoint operator

- define Operator $T_P(DB)$: augments DB with all facts, that can be deduced in one step by applying the rules from P to DB.
- $T^i_P(DB) = T_P(T^{i-1}_P(DB))$ iterated application of T_P.

$$T_P(DB) = DB \cup \bigcup_{R \in P} \{ L_0 \mid L_0 \vdash L_1, \ldots, L_n \in \text{Ground}(R; P, DB), L_1, \ldots, L_n \in DB \}$$

T_P is called the immediate consequence operator.
\[
T^0_P(DB) = DB
\]
\[
T^1_P(DB) = T_P(T^0_P(DB)) = T_P(DB)
\]
\[
= DB \cup \bigcup_{R \in P} \{L_0 : -L_1, \ldots, L_n \in \text{Ground}(R; P, DB),
L_1, \ldots, L_n \in DB\}
\]
\[
T^2_P(DB) = T_P(T^1_P(DB)) = T_P(T_P(DB))
\]
\[
\cdots \quad \cdots
\]
\[
T^i_P(DB) = T_P(T^{i-1}_P(DB)) = T_P(\cdots T_P(DB))
\]
\[
\cdots \quad \cdots
\]
Properties of $T_P(DB)$

- The set of facts is monotonically increasing e.g.

\[T_P^i(DB) \subseteq T_P^{i+1}(DB) \]

- The sequence $\langle T_P^i(DB) \rangle$ converges finitely:
 there is n with $T_P^m(DB) = T_P^n(DB)$ for all $m \geq n$.

- $T_P^\omega(DB)$... set of facts, to which $\langle T_P^i(DB) \rangle$ converges is the result of the application of P to DB.

- The operational semantics of a datalog program P assigns to each database DB the set of facts $T_P^\omega(DB)$:

\[O[P] : DB \to T_P^\omega(DB). \]

Theorem (Equivalence of semantics)

Assume a program P. Then it holds that $M[P] = O[P]$. In other words, for any database DB, we have:

\[\text{cons}(P^* \land DB^*) = T_P^\omega(DB) \]
Proof of Theorem

Let P be a program and DB a database. We show

$$cons(P^* \land DB^*) = T_P^\omega(DB).$$

(1) We first show $T_P^\omega(DB) \subseteq cons(P^* \land DB^*)$. By induction on i, we show that $T_P^i(DB) \subseteq cons(P^* \land DB^*)$ for every $i \geq 0$. Note that this includes the case where $i = \omega$.

Base case. Assume $i = 0$. Take a fact $L \in T_P^0(DB)$. Then by definition of $T_P^0(DB)$, $L \in DB$. By definition, DB^* is a conjunction of literals and L occurs in it. Hence, by classical logic, $L \in cons(P^* \land DB^*)$.

The inductive step. Suppose $T_P^i(DB) \subseteq cons(P^* \land DB^*)$ for $i \geq 0$. We show that $T_P^{i+1}(DB) \subseteq cons(P^* \land DB^*)$. Recall that

$$T_P^{i+1}(DB) = T_P(T_P^i(DB)).$$

Thus by the definition of T_P,

$$T_P^{i+1}(DB) = T_P^i(DB) \cup \bigcup_{R \in P} \{L_0 \mid L_0 \vdash L_1, \ldots, L_n \in Ground(R, P, DB),$$

$$L_1, \ldots, L_n \in T_P^i(DB)\}$$
By the induction hypothesis, $T^i_P(DB) \subseteq cons(P^* \land DB^*)$. Thus it remains to show that $L_0 \in cons(P^* \land DB^*)$ for any rule $R \in P$ such that there is $L_0 : L_1, \ldots, L_n \in \text{Ground}(R, P, DB)$ with $L_1, \ldots, L_n \in T^i_P(DB)$.

Assume such a rule $R = L'_0 : L'_1, \ldots, L'_n$ in P, and suppose π is the substitution of variables with constants such that applying π to R results in $L_0 : L_1, \ldots, L_n$, i.e. $\pi(L'_j) = L_j$ for $j \in \{0, \ldots, n\}$.

By construction, in $P^* \land DB^*$ we have the conjunct

$$R^* = \forall x_1 \forall x_2 \ldots \forall x_\ell((L'_1 \land L'_2 \land \cdots \land L'_n) \Rightarrow L'_0).$$

Thus, by employing the semantics of classical logic, for any variable substitution π' such that $\{\pi'(L'_1), \ldots, \pi'(L'_n)\} \subseteq cons(P^* \land DB^*)$ we also have $\pi'(L'_0) \in cons(P^* \land DB^*)$. Since π is a substitution such that $\{\pi(L'_1), \ldots, \pi'(L_n)\} = \{L_1, \ldots, L_n\} \subseteq cons(P^* \land DB^*)$ by the induction hypothesis, we get $\pi(L'_0) = L_0 \in cons(P^* \land DB^*)$.
(2) We show \(\text{cons}(P^* \land DB^*) \subseteq T_P^\omega(DB) \). To this end, we prove that \(L \notin T_P^\omega(DB) \) implies \(L \notin \text{cons}(P^* \land DB^*) \), for any fact \(L \). We thus simply show that \(T_P^\omega(DB) \) is a model of \(P^* \land DB^* \).

This suffices because of the following simple property: if \(M \) is a model of a formula \(F \), then any fact \(L \notin M \) is not a logical consequence of \(F \) (as witnessed by \(M \) itself).
$T^\omega_P(DB)$ is a model of DB^* because $DB = T^0_P(DB) \subseteq T^\omega_P(DB)$ by the definition of $T^\omega_P(DB)$.

It remains to show that $T^\omega_P(DB)$ is also a model of P^*. Consider an arbitrary rule $R \in P$. We have to show that $T^\omega_P(DB)$ is a model of R^* with $R^* = \forall x_1 \forall x_2 \ldots \forall x_\ell ((L_1 \land L_2 \land \cdots \land L_n) \Rightarrow L_0)$.

Consider an arbitrary (ground) variable assignment π on the variables x_1, \ldots, x_ℓ. The only non-trivial case is that all facts $\pi(L_1), \ldots, \pi(L_n)$ are true in $T^\omega_P(DB)$, i.e., \{\pi(L_1), \ldots, \pi(L_n)\} \subseteq T^\omega_P(DB).

We have to show that then also $\pi(L_0)$ is true in $T^\omega_P(DB)$, i.e., $\pi(L_0) \in T^\omega_P(DB)$.

We know $\pi(L_0) :\neg \pi(L_1), \ldots, \pi(L_n) \in \text{Ground}(R, P, DB)$. Thus by the definition of T_P, $\pi(L_0) \in T_P(T^\omega_P(DB))$. Since $T_P(T^\omega_P(DB)) = T^\omega_P(DB)$ by the definition of $T^\omega_P(DB)$, we obtain $\pi(L_0) \in T^\omega_P(DB)$.
Algorithm: INFER

INPUT: datalog program \(P \), database \(DB \)

OUTPUT: \(T^\omega_P(DB) \) (= \(\text{cons}(P^* \land DB^*) \))

STEP 1. \(GP := \bigcup_{R \in P} \text{Ground}(R; P, DB), \)

(* \(GP \ldots \text{set of all ground instances} \) *)

STEP 2. \(OLD := \{\}; \ NEW := DB;\)

STEP 3. while \(NEW \neq OLD \) do begin

\(OLD := NEW; \ NEW := \text{ComputeTP}(OLD); \)

end;

STEP 4. output \(OLD. \)
Subroutine ComputeTP

INPUT: Set of facts OLD

OUTPUT: $T_P(OLD)$

STEP 1. $F := OLD$;

STEP 2. for each rule $L_0 := L_1, \ldots, L_n$ in GP do
 if $L_1, \ldots, L_n \in OLD$
 then $F := F \cup \{L_0\}$;

STEP 3. return F;
Example

Apply the following program P to calculate all ancestors of the above given database DB.

\[
\begin{align*}
\text{ancestor}(X,Y) & : \text{parents}(X,Y). \\
\text{ancestor}(X,Z) & : \text{parents}(X,Y), \text{ancestor}(Y,Z).
\end{align*}
\]

Step 1. (INFER) build GP

\[
GP = \{ \text{ancestor}(\text{grete},\text{grete}) : \text{parents}(\text{grete},\text{grete}), \text{parents}(\text{grete},\text{linda}), \ldots, \text{ancestor}(\text{grete},\text{grete}) : \text{parents}(\text{grete},\text{grete}), \text{ancestor}(\text{grete},\text{grete}), \text{ancestor}(\text{linda},\text{grete}), \ldots \}.
\]

(There are $6^2 + 6^3 = 252$ ground instances.)
Step 2. \(OLD := \{\}, NEW := DB; \)

Step 3. \(OLD \neq NEW \)

Cycle 1: \(OLD := DB, NEW := TP(OLD) = TP(DB) \)
\[TP(OLD) = OLD \cup \{\text{ancestor}(A, B) \mid \text{parents}(A, B) \in DB\}; \]

Cycle 2: \(OLD := TP(DB), NEW := TP(OLD) = TP(TP(DB)) \)
\[TP(OLD) = OLD \cup \{\text{ancestor}(hans, michael), \text{ancestor}(hans, gerti), \text{ancestor}(grete, michael), \text{ancestor}(grete, gerti)\}. \]

Cycle 3: \(TP(OLD) = OLD, \) there are no new facts

Step 4. Output of \(OLD. \)

The result corresponds to the extension of \(DB \) with the new table \(\text{ancestor} \)
| parents | (PARENT | CHILD) | ancestor | (ANCESTOR | NAME) |
|---------|---------|---------|----------|----------|
| Hans | Linda | Hans | Linda |
| Grete | Linda | Grete | Linda |
| Karl | Michael | Karl | Michael |
| Linda | Michael | Linda | Michael |
| Karl | Gerti | Karl | Gerti |
| Linda | Gerti | Linda | Gerti |
| | | Hans | Michael |
| | | Hans | Gerti |
| | | Grete | Michael |
| | | Grete | Gerti |
Datalog with negation

- Without negation, datalog is not relational complete because set difference ($R - S$) cannot be expressed.
- We introduce the negation (not) in bodies of rules.
- Restriction on the application of the negation:

 \[
 \text{A relation } R \text{ must not be defined on the basis of its negation.}
 \]

- Check for this constraint: with graph-theoretic methods.
Graph representation

Let P be a datalog program with negated literals in the body of rules

Definition: dependency graph

$DEP(P)$ is defined as the directed graph, with:
- nodes ... predicates (predicate symbols) p in P,
- edges ... $p \to q$, if there exists a rule in P where p is the head atom and q appears in the body.

Mark an edge $p \to q$ of $DEP(P)$ with a star “*”, if q in the body is negated.

Definition

A datalog program P with negation is called valid if the graph $DEP(P)$ has no directed cycle that contains an edge marked with “*”.

Such programs are called **stratified**, since they can be divided into strata with respect to the negation.
Example

The following program P with the rules:

\[
\begin{align*}
\text{husband}(X) & : - \text{man}(X), \text{married}(X). \\
\text{bachelor}(X) & : - \text{man}(X), \text{not husband}(X).
\end{align*}
\]

is stratified.
The program P with the rules:

\[
\begin{align*}
\text{husband}(X) & : \neg \text{man}(X), \text{not bachelor}(X). \\
\text{bachelor}(X) & : \neg \text{man}(X), \text{not husband}(X).
\end{align*}
\]

is not stratified.
Stratification

Definition

A stratum is composed by the maximal set of predicates for which the following holds:

1. if a predicate p appears in the head of a rule, that contains a negated predicate q in the body, then p is in a higher stratum than q.

2. if a predicate p appears in the head of a rule, that contains an unnegated (positive) predicate q in the body, then p is in a stratum at least as high as q.
Algorithm

INPUT: A set of datalog rules.

OUTPUT: the decision whether the program is stratified and the classification of the predicates into strata.

METHOD:

1. initialize the strata for all predicates with 1.
2. **do** for all rules \(R \) with predicate \(p \) in the head:
 - if (i) the body of \(R \) contains a **negated predicate** \(q \),
 (ii) the stratum of \(p \) is \(i \), and
 (iii) the stratum of \(q \) is \(j \) with \(i \leq j \), then set \(i := j + 1 \).
 - if (i) the body of \(R \) contains an **unnegated predicate** \(q \),
 (ii) the stratum of \(p \) is \(i \), and
 (iii) the stratum of \(q \) is \(j \) with \(i < j \), then set \(i := j \).

until:

- status is stable \(\Rightarrow \) program is stratified.
- stratum \(n > \# \) predicates \(\Rightarrow \) not stratified.
Example

Consider R, S relations of the database DB, P:

\[
\begin{align*}
\text{v}(X,Y) & : - r(X,X), r(Y,Y). \\
\text{u}(X,Y) & : - s(X,Y), s(Y,Z), \text{not v}(X,Y). \\
\text{w}(X,Y) & : - \text{not u}(X,Y), \text{v}(Y,X).
\end{align*}
\]

* Level 1: r, s, v
* Level 2: u
* Level 3: w
Semantics of datalog with negation

Note: when calculating the strata of a datalog program with negation the following holds:

Step 1: computation of all relations of the first stratum.
Step i: computation of all relations that belong to stratum \(i \).
⇒ the relations computed in step \(i - 1 \) are known in step \(i \).

Semantics of datalog with negation is therefore uniquely defined.

Computation of \(P \) from the last example above:

Step 1: compute \(V \) from \(R \)
Step 2: compute \(U \) from \(S \) and \(V \)
Step 3: compute \(W \) from \(U \) and \(V \)
Properties of datalog with negation

- Datalog with negation is relational complete:
 - The difference $D = R - S$ of two (e.g. binary) relations R and S:
 $$d(X,Y) :- r(X,Y), \text{ not } s(X,Y).$$

- syntactical restrictions of datalog with negation:

 all variables that appear in the body within a negated literal must also appear in a positive (unnegated) literal
Example

Let DB be a database that contains information on graphs, with relations $v(X)$, saying X is a node and $e(X,Y)$ saying there is an edge from X to Y. Write a datalog program that computes all pairs of nodes (X,Y), where X is a source, Y is a sink and X is connected to Y.

```datalog
p(X,Y) :- source(X), sink(Y), connection(X,Y).

connection(X,X) :- v(X).
connection(X,Y) :- e(X,Z), connection(Z,Y).

n_source(X) :- e(Y,X).
source(X) :- v(X), not n_source(X).

n_sink(X) :- e(X,Y).
sink(X) :- v(X), not n_sink(X).
```

Database Theory

1. Datalog

1.7. Stratification

Pichler

10 March, 2015

Page 42
Learning objectives

- Motivation for Datalog (recursive queries)
- Syntax of Datalog
- Semantics of Datalog:
 - logical semantics,
 - operational semantics.
- Datalog with negation:
 - the need for negation,
 - the notions of dependency graph and stratification,
 - semantics of Datalog with negation.