2. Introduction to Datalog

Reinhard Pichler

Institut für Informationssysteme
Arbeitsbereich DBAI
Technische Universität Wien

14 March, 2017

Motivation

- SQL, relational algebra, relational calculus (both tuple and domain
 relational calculus) are “relational complete”, i.e., they have the full
 expressive power of relational algebra.
- But: many interesting queries cannot be formulated in these
 languages
- Example: no recursive queries (SQL now offers a recursive construct)

Example

- Relation parent(PARENT,CHILD), gives information on the
 parent-child relationship of a certain group of people.
- Problem: look for all ancestors of a certain person.
- Solution: define relation ANCESTOR(X,Y): X is ancestor of Y by
 generating one generation after the other (one join and one
 projection each) and finally merge all generations (union):

 \[
 \text{grandparent}(\text{GRANDPARENT}, \text{GRANDCHILD}) := \pi_{1,4}(\text{parent}[\text{CHILD} = \text{PARENT}]\text{parent})
 \]

 \[
 \text{grandgrandparent}(\text{GRANDGRANDPARENT}, \text{GRANDGRANDCHILD}) := \pi_{1,4}(\text{parent}[\text{CHILD} = \text{GRANDPARENT}]\text{grandparent})
 \]

 \[
 \ldots
 \]

 \[
 \text{ancestor}(\text{ANCESTOR}, \text{NAME}) := \text{parent} \cup \text{grandparent} \cup \text{grandgrandparent} \cup \ldots
 \]
Possible Solution

- Use of a programming language with an embedded relational complete query language:

```prolog
begin
  result := {};
  newtuples := parent;
  while newtuples \not\subseteq result do
    begin
      result := result \cup newtuples;
      newtuples := \pi_{1,4}(newtuples[2 = 1]parent);
    end;
  ancestor := result
end.
```

- procedural, needs knowledge of a programming language, leaves little room for query optimization.

Better Solution: Datalog

- Prolog-like logical query language,
- allows recursive queries in a declarative way

Example:

- compute all ancestors on the basis of the relation `parent`
  ```prolog
  ancestor(X,Y) :- parent(X,Y).
  ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
  ```

- use the ancestor predicate to compute the ancestors of a certain person (`Hans`):
  ```prolog
  hans_ancestor(X) :- ancestor(X,hans).
  ```

- compute the ancestors of a certain person (`Hans`) directly:
  ```prolog
  hans_ancestor(X) :- parent(X,hans).
  ```

Restrictions on the Datalog Syntax

```prolog
<s_datalog_program> ::= <datalog_rule> | <datalog_program><datalog_rule>
<datalog_rule> ::= <head> :- <body>
<head> ::= <literal> | <head>, <literal>
<body> ::= <literal> | <body>, <literal>
<literal> ::= <relation_id>(<list_of_args>)
<list_of_args> ::= <term> | <list_of_args>, <term>
<term> ::= <symb_const> | <symb_var>
<symb_const> ::= <number> | <lcc> | <lcc><string>
<symb_var> ::= <ucc> | <ucc><string>
(lcc = lower_case_character; ucc = upper_case_character)
```

- name of an existing relation of the database (`parent`) - can be used only in rule bodies
- name of a new relation defined by the datalog program (`ancestor`) has always the same number of arguments.

comparison predicates:
- `=, <>, <, >` are treated like known database relations.

variables:
- each variable that appears in the head of a rule has to be bound in the body
- variables that appear as arguments of comparison predicates must appear in the same body in literals without comparison predicates

A datalog query is also called datalog program
Logical Semantics of Datalog

We consider

\[R \ldots \text{datalog rule of the form } L_0 \leftarrow L_1, L_2, \ldots, L_n, \]

\[L_i \ldots \text{literal of the form } p_i(t_1, \ldots, t_{n_i}) \]

\[x_1, x_2, \ldots, x_{\ell} \text{ variables in } R \]

\[P \ldots \text{datalog program with the rules } R_1, R_2, \ldots, R_m \]

We construct

\[R^* = \forall x_1 \forall x_2 \ldots \forall x_{\ell} ((L_1 \land L_2 \land \cdots \land L_n) \Rightarrow L_0). \]

We assign to each datalog program \(P \) the (semantically) well-defined formula \(P^* \) as follows:

\[P^* = R_1^* \land R_2^* \land \cdots \land R_m^* \]

We have:

\(DB^* \) is a conjunction of ground atoms (i.e., the facts) and

\(P^* \) is a conjunction of formulas with implication

Let \(G \) be a conjunction of facts and formulas with implication. Then the set \(cons(G) \) of facts that follow from \(G \) is uniquely defined.

In other words, we have \(cons(G) = \{ A \mid A \text{ is a fact with } G \models A \} \).

Definition

The semantics of a datalog program \(P \) is defined as the function \(M[P] \),

\[M[P] : DB \rightarrow cons(P^* \land DB^*) \]

We consider now

\(REL \ldots \) a relation of the database.

\(\langle t_1, \ldots, t_n \rangle \ldots \) a tuple of the relation \(REL \).

\(rel(t_1, \ldots, t_n) \ldots \) a fact

\(DB \ldots \) database with relations \(REL_1, REL_2, \ldots, REL_k \)

We assign to each database relation \(REL \) the formula

\[REL^* = \text{conjunction of all facts} \]

- a relation is an unordered set of tuples
- the assignment \(REL \mapsto REL^* \) is therefore not uniquely defined.
- take an arbitrary order (e.g. lexicographical order) since conjunction is associative and commutative.

We assign to each database \(DB \) the (semantically) well-defined formula \(DB^* \) as follows:

\[DB^* = REL_1^* \land REL_2^* \land \cdots \land REL_k^*. \]

Example

Consider the database \(DB \) with relations \(\text{woman}(\text{NAME}), \text{man}(\text{NAME}), \text{parent}(\text{PARENT}, \text{CHILD}) \) and the datalog program:

\(\text{grandpa}(X, Y) :- \text{man}(X), \text{parent}(X, Z), \text{parent}(Z, Y). \)

\begin{array}{|c|c|c|c|}
<table>
<thead>
<tr>
<th>woman(\text{NAME})</th>
<th>man(\text{NAME})</th>
<th>parent(\text{PARENT}, \text{CHILD})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grete</td>
<td>Hans</td>
<td>Hans</td>
</tr>
<tr>
<td>Linda</td>
<td>Karl</td>
<td>Grete</td>
</tr>
<tr>
<td>Gerti</td>
<td>Michael</td>
<td>Karl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linda</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Karl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gerti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linda</td>
</tr>
</tbody>
</table>
\end{array}
Let us compute DB^*, P^* and $\text{cons}(P^* \land DB^*)$:

$$DB^* = REL_1^* \land \cdots \land REL_k^*$$

with $REL_i^* = \text{conjunction of all facts}$

$$P^* = R_1^* \land \cdots \land R_m^*$$

with $R_i^* = \forall x_1 \forall x_2 \ldots \forall x_{\ell_i} ((L_1 \land \cdots \land L_n) \Rightarrow L_0)$.

The new facts in $\text{cons}(P^* \land DB^*)$:

$$\text{grandpa}(\text{hans}, \text{michael}), \text{grandpa}(\text{hans}, \text{gerti}).$$

The datalog program P with

$$P = \text{grandpa}(X,Y) : \text{man}(X), \text{parent}(X,Z), \text{parent}(Z,Y)$$

defines a new relation grandpa with the following tuples:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hans</td>
<td>Michael</td>
</tr>
<tr>
<td>Hans</td>
<td>Gerti</td>
</tr>
</tbody>
</table>

Datalog rules are seen as inference rules,

- a fact that appears in the head of a rule can be deduced, if the facts in the body of the rule can be deduced.

Example:

facts: $\text{parent(linda,michael)}, \text{parent(linda,gerti)}$

rule: $\text{siblings(michael,gerti)} :\neg$

 $\text{parent(linda,michael)}, \text{parent(linda,gerti)}$.

the following fact can be deduced:

$$\text{siblings(michael,gerti)}$$

Rules with variables

- A rule R with variables represents all variable-free rules we get from R by substituting the variables with the constant symbols.
- The constant symbols are taken from the database DB and the program P.
- A variable-free rule resulting from such a substitution is called a **ground instance** of R with respect to P and DB.
- We write $\text{Ground}(R, P, DB)$ to denote the set of all ground instances over P and DB of R.
Example:
Compute all relations between siblings with the following rule:

\[\text{siblings}(Y, Z) : - \text{parent}(X, Y), \text{parent}(X, Z), Y \leftarrow Z. \]

All 6\(^3\) ground instances of this rule with respect to \(P \) and \(DB \) from above are (Note that there are 6 constant symbols: \{grete, linda, gerti, hans, michael, karl\}):

\begin{align*}
\text{siblings}(\text{grete}, \text{grete}) & : - \text{parent}(\text{grete}, \text{grete}), \text{parent}(\text{grete}, \text{grete}), \\
& \quad \text{grete} \leftarrow \text{grete} \quad (X = Y = Z = \text{grete}) \\
\text{siblings}(\text{grete}, \text{linda}) & : - \text{parent}(\text{grete}, \text{grete}), \text{parent}(\text{grete}, \text{linda}), \\
& \quad \text{grete} \leftarrow \text{linda} \quad (X = Y = \text{grete}, Z = \text{linda}) \quad \ldots \quad \ldots \\
\text{siblings}(\text{karl}, \text{karl}) & : - \text{parent}(\text{karl}, \text{karl}), \text{parent}(\text{karl}, \text{karl}), \\
& \quad \text{karl} \leftarrow \text{karl} \quad (X = Y = Z = \text{karl})
\end{align*}

Idea: execution of a datalog program \(P \) on a database \(DB \):
iterative deduction of facts until saturation is reached (fixpoint)

Formalization: define a fixpoint operator

- define Operator \(T_P(DB) \): augments \(DB \) with all facts, that can be deduced in one step by applying the rules from \(P \) to \(DB \).

\[T_P(DB) = DB \cup \bigcup_{R \in P} \{ L_0 : L_0 \leftarrow L_1, \ldots, L_n \in \text{Ground}(R; P, DB), \\
L_1, \ldots, L_n \in DB \} \]

- \(T_P \) is called the immediate consequence operator.
- \(T_P(DB) = T_P(T_P^{-1}(DB)) \) iterated application of \(T_P \).

Properties of \(T_P(DB) \)

- The set of facts is monotonically increasing i.e.: \(T_P(DB) \subseteq T_P^{i+1}(DB) \)
- the sequence \(\langle T_P(DB) \rangle \) converges finitely: there exists \(n \) with \(T_P^m(DB) = T_P^n(DB) \) for all \(m \geq n \).
- \(T_P(DB) \) is set of facts, to which \(\langle T_P(DB) \rangle \) converges is the result of the application of \(P \) to \(DB \).

- The operational semantics of a datalog program \(P \) assigns to each database \(DB \) the set of facts \(T_P(DB) \):

\[O[P] : DB \rightarrow T_P(DB). \]

Theorem (Equivalence of semantics)
Assume a program \(P \). Then it holds that \(M[P] = O[P] \). In other words, for any database \(DB \), we have: \[\text{cons}(P^* \wedge DB^*) = T_P(DB) \]
Proof of Theorem

Let P be a program and DB a database. We show

$$\text{cons}(P^* \land DB^*) = T_P^*(DB).$$

(1) We first show $T_P^*(DB) \subseteq \text{cons}(P^* \land DB^*)$. By induction on i, we show that $T_P^i(DB) \subseteq \text{cons}(P^* \land DB^*)$ for every $i \geq 0$. Note that this includes the case where $i = \omega$.

Base case. Assume $i = 0$. Take a fact $L \in T_P^0(DB)$. Then by definition of $T_P^0(DB)$, $L \in DB$. By definition, DB^* is a conjunction of literals and L occurs in it. Hence, by classical logic, $L \in \text{cons}(P^* \land DB^*)$.

The inductive step. Suppose $T_P^i(DB) \subseteq \text{cons}(P^* \land DB^*)$ for $i \geq 0$. We show that $T_P^{i+1}(DB) \subseteq \text{cons}(P^* \land DB^*)$. Recall that $T_P^{i+1}(DB) = T_P(T_P^i(DB))$. Thus by the definition of T_P,

$$T_P^{i+1}(DB) = T_P(DB) \cup \bigcup_{R \in P} \{L_0 : \ L_0 := L_1, \ldots, L_n \in \text{Ground}(R, P, DB),$$

$$L_1, \ldots, L_n \in T_P^i(DB) \}.$$

(2) We show $\text{cons}(P^* \land DB^*) \subseteq T_P^*(DB)$. To this end, we prove that $L \not\in T_P^*(DB)$ implies $L \not\in \text{cons}(P^* \land DB^*)$, for any fact L. We thus simply show that $T_P^*(DB)$ is a model of $P^* \land DB^*$.

This suffices because of the following simple property: if M is a model of a formula F, then any fact $L \not\in M$ is not a logical consequence of F (as witnessed by M itself).

By the induction hypothesis, $T_P^*(DB) \subseteq \text{cons}(P^* \land DB^*)$. Thus it remains to show that $L_0 \in \text{cons}(P^* \land DB^*)$ for any rule $R \in P$ such that there is $L_0 := L_1, \ldots, L_n \in \text{Ground}(R, P, DB)$ with $L_1, \ldots, L_n \in T_P^*(DB)$.

Assume such a rule $R = L_0^0 := L_1^1, \ldots, L_n^1$ in P, and suppose π is the substitution of variables with constants such that applying π to R results in $L_0 := L_1, \ldots, L_n$ i.e. $\pi(L_0^i) = L_j$ for $j \in \{0, \ldots, n\}$.

By construction, in $P^* \land DB^*$ we have the conjunct

$$R^* = \forall x_1 \forall x_2 \ldots \forall x_t((L_1^1 \land L_2^1 \land \cdots \land L_n^1) \Rightarrow L_0^i).$$

Thus, by employing the semantics of classical logic, for any variable substitution π' such that $\{\pi'(L_1^1), \ldots, \pi'(L_n^1)\} \subseteq \text{cons}(P^* \land DB^*)$ we also have $\pi'(L_0^i) \in \text{cons}(P^* \land DB^*)$. Since π is a substitution such that $\{\pi(L_1^1), \ldots, \pi(L_n^1)\} = \{L_1, \ldots, L_n\} \subseteq \text{cons}(P^* \land DB^*)$ by the induction hypothesis, we get $\pi(L_0^i) = L_0 \in \text{cons}(P^* \land DB^*)$.

$T_P^*(DB)$ is a model of DB^* because $DB = T_P^*(DB) \subseteq T_P^*(DB)$ by the definition of $T_P^*(DB)$.

It remains to show that $T_P^*(DB)$ is also a model of P^*. Consider an arbitrary rule $R \in P$. We have to show that $T_P^*(DB)$ is a model of R^* with $R^* = \forall x_1 \forall x_2 \ldots \forall x_t((L_1 \land L_2 \land \cdots \land L_n) \Rightarrow L_0)$.

Consider an arbitrary (ground) variable assignment π on the variables x_1, \ldots, x_t. The only non-trivial case is that all facts $\pi(L_1), \ldots, \pi(L_n)$ are true in $T_P^*(DB)$, i.e., $\{\pi(L_1), \ldots, \pi(L_n)\} \subseteq T_P^*(DB)$.

We have to show that then also $\pi(L_0)$ is true in $T_P^*(DB)$, i.e.,

$$\pi(L_0) \in T_P^*(DB).$$

We know $\pi(L_0) := \pi(L_1), \ldots, \pi(L_n) \in \text{Ground}(R, P, DB)$. Thus by the definition of T_P, $\pi(L_0) \in T_P(T_P^*(DB))$. Since $T_P(T_P^*(DB)) = T_P^*(DB)$ by the definition of $T_P^*(DB)$, we obtain $\pi(L_0) \in T_P^*(DB)$.

Algorithm: INFER

INPUT: datalog program \(P \), database \(DB \)
OUTPUT: \(T^P_\omega(DB) \) \((= \text{cons}(P^* \land DB^*))\)

STEP 1. \(GP := \bigcup_{R \in P} \text{Ground}(R; P, DB) \)
\((* GP \ldots \text{set of all ground instances} *)\)
STEP 2. \(OLD := \{\} ; NEW := DB \)
STEP 3. while \(NEW \neq OLD \) do begin
\(OLD := NEW ; NEW := \text{ComputeTP}(OLD) \); end;
STEP 4. output \(OLD \).

Subroutine ComputeTP

INPUT: Set of facts \(OLD \)
OUTPUT: \(T_P(OLD) \)

STEP 1. \(F := OLD \);
STEP 2. for each rule \(L_0 : - L_1, \ldots, L_n \) in \(GP \) do
\(\text{if } L_1, \ldots, L_n \in OLD \)
\(\text{then } F := F \cup \{ L_0 \} ; \)
STEP 3. return \(F \);

Example

Apply the following program \(P \) to calculate all ancestors of the above given database \(DB \).

\[
\begin{align*}
\text{ancestor}(X,Y) & := \text{parent}(X,Y). \\
\text{ancestor}(X,Z) & := \text{parent}(X,Y), \text{ancestor}(Y,Z). \\
\end{align*}
\]

Step 1. (INFER) build \(GP \)
\[
GP = \{ \text{ancestor}(\text{grete,grete}) := \text{parent}(\text{grete,grete}), \\
\text{ancestor}(\text{grete,linda}) := \text{parent}(\text{grete,linda}), \\
\ldots, \\
\text{ancestor}(\text{grete,grete}) := \text{parent}(\text{grete,grete}), \\
\text{ancestor}(\text{grete,grete}) := \text{parent}(\text{grete,linda}), \\
\text{ancestor}(\text{linda,grete}) := \text{parent}(\text{linda,grete}), \\
\ldots \}.
\]
(There are \(6^2 + 6^3 = 252 \) ground instances.)

Step 2. \(OLD := \{\} , NEW := DB ; \)
Step 3. \(OLD \neq NEW \)
Cycle 1: \(OLD := DB, NEW := TP(OLD) = TP(DB) \)
\(TP(OLD) = OLD \cup \{ \text{ancestor} (A, B) \mid \text{parent} (A, B) \in DB \} \);
Cycle 2: \(OLD := TP(DB) , NEW := TP(OLD) = TP(TP(DB)) \)
\(TP(OLD) = OLD \cup \{ \text{ancestor} (\text{hans,michael}), \text{ancestor} (\text{hans,gerti}), \\
\text{ancestor} (\text{grete,michael}), \text{ancestor} (\text{grete,gerti}) \} \).
Cycle 3: \(TP(OLD) = OLD \), there are no new facts
Step 4. Output of \(OLD \).

The result corresponds to the extension of \(DB \) with the new table \(\text{ancestor} \).
Datalog with negation

- Without negation, datalog is not relational complete because set difference \((R - S)\) cannot be expressed.
- We introduce the negation (\(\text{not}\)) in bodies of rules.
- Restriction on the application of the negation:

 A relation \(R\) must not be defined on the basis of its negation.

- Check for this constraint: with graph-theoretic methods.

Graph representation

Let \(P\) be a datalog program with negated literals in the body of rules.

Definition: dependency graph

\(DEP(P)\) is defined as the directed graph, with:

- nodes \(\ldots\) predicates (predicate symbols) \(p\) in \(P\),
- edges \(\ldots p \rightarrow q\), if there exists a rule in \(P\) where \(p\) is the head atom and \(q\) appears in the body (meaning: “\(p\) depends on \(q\)”).

Mark an edge \(p \rightarrow q\) of \(DEP(P)\) with a star \(\ast\), if \(q\) in the body is negated.

Definition

A datalog program \(P\) with negation is called valid if the graph \(DEP(P)\) has no directed cycle that contains an edge marked with \(\ast\).

Such programs are called **stratified**, since they can be divided into strata with respect to the negation.

Example

The following program \(P\) with the rules:

```prolog
husband(X) :- man(X), married(X).
bachelor(X) :- man(X), not husband(X).
```

is stratified.
The program P with the rules:

- $\text{husband}(X) :- \text{man}(X), \neg \text{bachelor}(X)$.
- $\text{bachelor}(X) :- \text{man}(X), \neg \text{husband}(X)$.

is not stratified.

Stratification

Definition

A stratum is composed by the maximal set of predicates for which the following holds:

1. if a predicate p appears in the head of a rule, that contains a negated predicate q in the body, then p is in a higher stratum than q.
2. if a predicate p appears in the head of a rule, that contains an unnegated (positive) predicate q in the body, then p is in a stratum at least as high as q.

Example

Consider R, S relations of the database DB, P:

- $v(X,Y) :- r(X,X), r(Y,Y)$.
- $u(X,Y) :- s(X,Y), s(Y,Z), \neg v(X,Y)$.
- $w(X,Y) :- \neg u(X,Y), v(Y,X)$.

The level of each predicate:
- s, v level 1
- u, w level 2
- r, w level 3

Algorithm

INPUT: A set of datalog rules.

OUTPUT: the decision whether the program is stratified and the classification of the predicates into strata.

METHOD:

1. initialize the strata for all predicates with 1.
2. do for all rules R with predicate p in the head:
 - if (i) the body of R contains a negated predicate q,
 - (ii) the stratum of p is i, and
 - (iii) the stratum of q is $i \leq j$, then set $i := j + 1$.
 - if (i) the body of R contains an unnegated predicate q,
 - (ii) the stratum of p is i, and
 - (iii) the stratum of q is $i < j$, then set $i := j$.
3. until:
 - status is stable \Rightarrow program is stratified.
 - stratum $n > \#$ predicates \Rightarrow not stratified.
Semantics of datalog with negation

Note: when calculating the strata of a datalog program with negation the following holds:

- **Step 1**: computation of all relations of the first stratum.
- **Step i**: computation of all relations that belong to stratum \(i \).
 \[\Rightarrow \] the relations computed in step \(i - 1 \) are known in step \(i \).

Semantics of datalog with negation is therefore uniquely defined.

Computation of \(P \) from the last example above:

- **Step 1**: compute \(V \) from \(R \)
- **Step 2**: compute \(U \) from \(S \) and \(V \)
- **Step 3**: compute \(W \) from \(U \) and \(V \)

Example

Let \(DB \) be a database that contains information on graphs, with relations \(v(X) \), saying \(X \) is a node and \(e(X, Y) \) saying there is an edge from \(X \) to \(Y \). Write a datalog program that computes all pairs of nodes \((X, Y) \), where \(X \) is a source, \(Y \) is a sink and \(X \) is connected to \(Y \).

\[
\begin{align*}
p(X, Y) & : \text{source}(X), \text{sink}(Y), \text{connection}(X, Y). \\
\text{connection}(X, X) & : v(X). \\
\text{connection}(X, Y) & : e(X, Z), \text{connection}(Z, Y). \\
\text{n_source}(X) & : e(Y, X). \\
\text{source}(X) & : v(X), \neg \text{n_source}(X). \\
\text{n_sink}(X) & : e(X, Y). \\
\text{sink}(X) & : v(X), \neg \text{n_sink}(X).
\end{align*}
\]

Properties of datalog with negation

- Datalog with negation is relational complete:
 - The difference \(D = R - S \) of two (e.g. binary) relations \(R \) and \(S \):
 \[
d(X, Y) : r(X, Y), \not s(X, Y).
\]
- syntactical restrictions of datalog with negation:
 - all variables that appear in the body within a negated literal must also appear in a positive (unnegated) literal
Learning objectives

- Motivation for Datalog (recursive queries)
- Syntax of Datalog
- Semantics of Datalog:
 - logical semantics,
 - operational semantics.
- Datalog with negation:
 - the need for negation,
 - the notions of dependency graph and stratification,
 - semantics of Datalog with negation.