2. Introduction to Datalog

Reinhard Pichler
Institute of Logic and Computation
DBAI Group
TU Wien
13 March, 2018

Motivation

- SQL, relational algebra, relational calculus (both tuple and domain relational calculus) are "relational complete", i.e., they have the full expressive power of relational algebra.
- But: many interesting queries cannot be formulated in these languages
- Example: no recursive queries (SQL now offers a recursive construct)

Example

- Relation parent(PARENT, CHILD), gives information on the parent-child relationship of a certain group of people.
- Problem: look for all ancestors of a certain person.
- Solution: define relation ANCESTOR(X, Y): X is ancestor of Y by generating one generation after the other (one join and one projection each) and finally merge all generations (union):

 \[
 \text{grandparent}(\text{GRANDPARENT}, \text{GRANDCHILD}) := \pi_{1,4}(\text{parent}[\text{CHILD} = \text{PARENT}] \text{parent}) \\
 \text{grandgrandparent}(\text{GRANDGRANDPARENT}, \text{GRANDGRANDCHILD}) := \pi_{1,4}(\text{parent}[\text{CHILD} = \text{GRANDPARENT}] \text{grandparent}) \\
 \ldots
 \]

 \[
 \text{ancestor}(\text{ANCESTOR}, \text{NAME}) := \text{parent} \cup \text{grandparent} \cup \text{grandgrandparent} \cup \ldots
 \]
Possible Solution

- Use of a programming language with an embedded relational complete query language:

```haskell
begin
  result := {};
  newtuples := parent;
  while newtuples ⊈ result do
    begin
      result := result ∪ newtuples;
      newtuples := π₁,₄(newtuples[2 = 1]parent);
    end;
  ancestor := result
end.
```

- Procedural, needs knowledge of a programming language, leaves little room for query optimization.

Better Solution: Datalog

- Prolog-like logical query language,
- allows recursive queries in a declarative way

Example:
- compute all ancestors on the basis of the relation parent
  ```prolog
  ancestor(X,Y) :- parent(X,Y).
  ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
  ```
- use the ancestor predicate to compute the ancestors of a certain person (Hans):
  ```prolog
  hans_ancestor(X) :- ancestor(X,hans).
  ```
- compute the ancestors of a certain person (Hans) directly:
  ```prolog
  hans_ancestor(X) :- parent(X,hans).
  hans_ancestor(X) :- hans_ancestor(Y), parent(X,Y).
  ```

Datalog - Syntax

```
<datalog_program> ::= <datalog_rule> | <datalog_program><datalog_rule>
<datalog_rule> ::= <head> :- <body>
<head> ::= <literal> | <body>, <literal>
<body> ::= <relation_id>(<list_of_args>) | <term> | <list_of_args>, <term>
<relation_id> ::= <symb_const> | <symb_var>
<symb_const> ::= <number> | <lcc> | <lcc><string>
<symb_var> ::= <ucc> | <ucc><string>
(list_of_args) ::= <term> | <list_of_args>, <term>
```

(lcc = lower_case_character; ucc = upper_case_character)

Restrictions on the Datalog Syntax

- name of an existing relation of the database (parent) - can be used only in rule bodies
- name of a new relation defined by the datalog program (ancestor)
- has always the same number of arguments.

comparison predicates:
- =, <>, <, > are treated like known database relations.

variables:
- each variable that appears in the head of a rule has to be bound in the body
- variables that appear as arguments of comparison predicates must appear in the same body in literals without comparison predicates

A datalog query is also called datalog program
Logical Semantics of Datalog

We consider

- *R.* datalog rule of the form \(L_0 \leftarrow L_1, L_2, \ldots, L_n. \)
- \(L_i \) literal of the form \(p_i(t_1, \ldots, t_n) \)
- \(x_1, x_2, \ldots, x_r \) variables in \(R \)
- *P.* datalog program with the rules \(R_1, R_2, \ldots, R_m \)

We construct

\[
R^* = \forall x_1 \forall x_2 \ldots \forall x_r ((L_1 \land L_2 \land \cdots \land L_n) \Rightarrow L_0).
\]

We assign to each datalog program \(P \) the (semantically) well-defined formula \(P^* \) as follows:

\[
P^* = R_1^* \land R_2^* \land \cdots \land R_m^*
\]

We have:

- \(DB^* \) is a conjunction of ground atoms (i.e., the facts)
- \(P^* \) is a conjunction of formulas with implication

Let \(G \) be a conjunction of facts and formulas with implication. Then the set \(\text{cons}(G) \) of facts that follow from \(G \) is uniquely defined.

In other words, we have \(\text{cons}(G) = \{ A \mid A \text{ is a fact with } G \models A \} \).

Definition

The semantics of a datalog program \(P \) is defined as the function \(M[P] \), that assigns to each database \(DB \) the set of all facts that follow from the formula \("P^* \land DB^*" \):

\[
M[P] : DB \to \text{cons}(P^* \land DB^*)
\]

We consider now

- *REL.* a relation of the database.
- \(\langle t_1, \ldots, t_n \rangle \) a tuple of the relation \(REL \).
- \(rel(t_1, \ldots, t_n) \) a fact
- *DB.* database with relations \(REL_1, REL_2, \ldots, REL_k \)

We assign to each database relation \(REL \) the formula

\[
REL^* = \text{conjunction of all facts}
\]

- a relation is an unordered set of tuples
- the assignment \(REL \mapsto REL^* \) is therefore not uniquely defined.
- take an arbitrary order (e.g. lexicographical order) since conjunction is associative and commutative.

We assign to each database \(DB \) the (semantically) well-defined formula \(DB^* \) as follows:

\[
DB^* = REL_1^* \land REL_2^* \land \cdots \land REL_k^*.
\]

Example

Consider the database \(DB \) with relations \(\text{woman(NAME)}, \text{man(NAME)}, \text{parent(PARENT, CHILD)} \) and the datalog program:

\[
\text{grandpa}(X,Y) :- \text{man}(X), \text{parent}(X,Z), \text{parent}(Z,Y).
\]

<table>
<thead>
<tr>
<th>woman (NAME)</th>
<th>man (NAME)</th>
<th>parent (PARENT, CHILD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grete</td>
<td>Hans</td>
<td>Hans, Linda</td>
</tr>
<tr>
<td>Linda</td>
<td>Karl</td>
<td>Grete, Linda</td>
</tr>
<tr>
<td>Gerti</td>
<td>Michael</td>
<td>Karl, Michael</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linda, Michael, Karl, Gerti</td>
</tr>
</tbody>
</table>
Let us compute DB^*, P^* and $\text{cons}(P^* \land DB^*)$:

$$DB^* = REL_1^* \land \cdots \land REL_k^*$$ with $REL_i^* = \text{conjunction of all facts}

$$DB^* = \text{woman(grete)} \land \text{woman(linda)} \land \text{woman(gerti)} \land \text{man(hans)} \land \text{man(karl)} \land \text{man(michael)} \land \text{parent(hans, linda)} \land \text{parent(grete, linda)} \land \text{parent(karl, michael)} \land \text{parent(linda, michael)} \land \text{parent(karl, gerti)} \land \text{parent(linda, gerti)}.$$

$$P^* = R_1^* \land \cdots \land R_m^*$$ with $R_i^* = \forall X_1 \forall X_2 \ldots \forall X_\ell ((L_1 \land \cdots \land L_n) \Rightarrow L_0)$.

$$P^* = \forall X \forall Y \forall Z : ((\text{man}(X) \land \text{parent}(X, Z) \land \text{parent}(Z, Y)) \Rightarrow \text{grandpa}(X, Y)).$$

The new facts in $\text{cons}(P^* \land DB^*)$:

$$\text{grandpa}(\text{hans}, \text{michael}), \text{grandpa}(\text{hans}, \text{gerti}).$$

The datalog program P with

$P = \text{grandpa}(X, Y) :- \text{man}(X), \text{parent}(X, Z), \text{parent}(Z, Y)$

defines a new relation grandpa with the following tuples:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hans</td>
<td>Michael</td>
</tr>
<tr>
<td>Hans</td>
<td>Gerti</td>
</tr>
</tbody>
</table>

Operational Semantics of Datalog

- Datalog rules are seen as inference rules,
- a fact that appears in the head of a rule can be deduced, if the facts in the body of the rule can be deduced.

Example:

facts: parent(linda,michael), parent(linda,gerti)
rule: siblings(michael,gerti) :- parent(linda,michael), parent(linda,gerti).

the following fact can be deduced:

siblings(michael,gerti)

Rules with variables

- A rule R with variables represents all variable-free rules we get from R by substituting the variables with the constant symbols.
- The constant symbols are taken from the database DB and the program P.
- A variable-free rule resulting from such a substitution is called ground instance of R with respect to P and DB.
- We write $\text{Ground}(R, P, DB)$ to denote the set of all ground instances over P and DB of R.
Example:

Compute all relations between siblings with the following rule:

\[\text{siblings}(Y, Z) : = \text{parent}(X, Y), \text{parent}(X, Z), Y < > Z. \]

All 6 ground instances of this rule with respect to \(P \) and \(DB \) from above are (Note that there are 6 constant symbols: \{Grete, Linda, Gerti, Hans, Michael, Karl\}):

\[
\begin{align*}
\text{siblings(grete, grete)} & : = \text{parent(grete, grete)}, \text{parent(grete, grete)}, \\
& \quad \text{grete} < > \text{grete} \quad (X = Y = Z = \text{grete}) \\
\text{siblings(grete, linda)} & : = \text{parent(grete, grete)}, \text{parent(grete, linda)}, \\
& \quad \text{grete} < > \text{linda} \quad (X = Y = \text{grete}, Z = \text{linda}) \\
\text{siblings(karl, karl)} & : = \text{parent(karl, karl)}, \text{parent(karl, karl)}, \\
& \quad \text{karl} < > \text{karl} \quad (X = Y = Z = \text{karl})
\end{align*}
\]

Idea: execution of a datalog program \(P \) on a database \(DB \): iterative deduction of facts until saturation is reached (fixpoint)

Formalization: define a fixpoint operator

- define Operator \(T_P(DB) \): augments \(DB \) with all facts, that can be deduced in one step by applying the rules from \(P \) to \(DB \).

\[
T_P(DB) = DB \cup \bigcup_{R \in P} \{ L_0 \mid L_0 : - L_1, \ldots, L_n \in \text{Ground}(R; P, DB), \\
L_1, \ldots, L_n \in DB \}
\]

- \(T_P \) is called the immediate consequence operator.
- \(T^i_P(DB) = T_P(T^{i-1}_P(DB)) \) iterated application of \(T_P \).

Properties of \(T_P(DB) \)

- The set of facts is monotonically increasing i.e.:

\[
T^i_P(DB) \subseteq T^{i+1}_P(DB)
\]

- the sequence \(\langle T^i_P(DB) \rangle \) converges finitely: there exists \(n \) with \(T^m_P(DB) = T^n_P(DB) \) for all \(m \geq n \).

- \(T^i_P(DB) \) set of facts, to which \(\langle T^i_P(DB) \rangle \) converges is the result of the application of \(P \) to \(DB \).

- The operational semantics of a datalog program \(P \) assigns to each database \(DB \) the set of facts \(T^i_P(DB) \):

\[
\]

Theorem (Equivalence of semantics)

Assume a program \(P \). Then it holds that \(M[P] = O[P] \). In other words, for any database \(DB \), we have:

\[
\text{cons}(P^* \land DB^*) = T^*_P(DB)
\]
Proof of Theorem

Let \(P \) be a program and \(DB \) a database. We show

\[
\text{cons}(P^* \land DB^*) = T_{P}^{\omega}(DB).
\]

(1) We first show \(T_{P}^{\omega}(DB) \subseteq \text{cons}(P^* \land DB^*) \). By induction on \(i \), we show that \(T_{P}^{i}(DB) \subseteq \text{cons}(P^* \land DB^*) \) for every \(i \geq 0 \). Note that this includes the case where \(i = \omega \).

Base case. Assume \(i = 0 \). Take a fact \(L \in T_{P}^{0}(DB) \). Then by definition of \(T_{P}^{0}(DB) \), \(L \in DB \). By definition, \(DB^* \) is a conjunction of literals and \(L \) occurs in it. Hence, by classical logic, \(L \in \text{cons}(P^* \land DB^*) \).

The inductive step. Suppose \(T_{P}^{i}(DB) \subseteq \text{cons}(P^* \land DB^*) \) for \(i \geq 0 \). We show that \(T_{P}^{i+1}(DB) \subseteq \text{cons}(P^* \land DB^*) \). Recall that \(T_{P}^{i+1}(DB) = T_{P}(T_{P}^{i}(DB)) \). Thus by the definition of \(T_{P} \),

\[
T_{P}^{i+1}(DB) = T_{P}^{i}(DB) \cup \bigcup_{R \in P} \{ L_0 : L_0 := L_1, \ldots, L_n \in \text{Ground}(R, P, DB),
L_1, \ldots, L_n \in T_{P}^{i}(DB) \}
\]

(2) We show \(\text{cons}(P^* \land DB^*) \subseteq T_{P}^{\omega}(DB) \). To this end, we prove that \(L \notin T_{P}^{\omega}(DB) \) implies \(L \notin \text{cons}(P^* \land DB^*) \), for any fact \(L \). We thus simply show that \(T_{P}^{\omega}(DB) \) is a model of \(P^* \land DB^* \).

This suffices because of the following simple property: if \(M \) is a model of a formula \(F \), then any fact \(L \notin M \) is not a logical consequence of \(F \) (as witnessed by \(M \) itself).

By the induction hypothesis, \(T_{P}^{\omega}(DB) \subseteq \text{cons}(P^* \land DB^*) \). Thus it remains to show that \(L_0 \in \text{cons}(P^* \land DB^*) \) for any rule \(R \in P \) such that there is \(L_0 := L_1, \ldots, L_n \in \text{Ground}(R, P, DB) \) with \(L_1, \ldots, L_n \in T_{P}^{\omega}(DB) \).

Assume such a rule \(R = L_0^{'} := L_1^{'} , \ldots , L_n^{'} \) in \(P \), and suppose \(\pi \) is the substitution of variables with constants such that applying \(\pi \) to \(R \) results in \(L_0 := L_1, \ldots, L_n \), i.e., \(\pi(L_j^{'}) = L_j \) for \(j = 0, \ldots, n \).

By construction, in \(P^* \land DB^* \) we have the conjunct

\[
R^* = \forall x_1 \forall x_2 \ldots \forall x_i(\{ L_1^{'}, L_2^{'}, \ldots , L_n^{'} \} \Rightarrow L_0^{'}).
\]

Thus, by employing the semantics of classical logic, for any variable substitution \(\pi' \) such that \(\{ \pi'(L_1^{'}) , \ldots , \pi'(L_n^{'}) \} \subseteq \text{cons}(P^* \land DB^*) \) we also have \(\pi'(L_0^{'}) \in \text{cons}(P^* \land DB^*) \). Since \(\pi \) is a substitution such that \(\{ \pi(L_1) , \ldots , \pi(L_n) \} \subseteq \text{cons}(P^* \land DB^*) \) by the induction hypothesis, we get \(\pi(L_0^{'}) = L_0 \in \text{cons}(P^* \land DB^*) \).

\[
T_{P}^{\omega}(DB) \text{ is a model of } DB^* \text{ because } DB = T_{P}^{\omega}(DB) \subseteq T_{P}^{\omega}(DB) \text{ by the definition of } T_{P}^{\omega}(DB).
\]

It remains to show that \(T_{P}^{\omega}(DB) \) is also a model of \(P^* \). Consider an arbitrary rule \(R \in P \). We have to show that \(T_{P}^{\omega}(DB) \) is a model of \(R^* \) with \(R^* = \forall x_1 \forall x_2 \ldots \forall x_i(\{ L_1 \land L_2 \land \ldots \land L_n \} \Rightarrow L_0) \).

Consider an arbitrary (ground) variable assignement \(\pi \) on the variables \(x_1 , \ldots , x_i \). The only non-trivial case is that all facts \(\pi(L_1) , \ldots , \pi(L_n) \) are true in \(T_{P}^{\omega}(DB) \), i.e., \(\{ \pi(L_1) , \ldots , \pi(L_n) \} \subseteq T_{P}^{\omega}(DB) \).

We have to show that then also \(\pi(L_0) \) is true in \(T_{P}^{\omega}(DB) \), i.e., \(\pi(L_0) \in T_{P}^{\omega}(DB) \).

We know \(\pi(L_0) : = \pi(L_1) , \ldots , \pi(L_n) \in \text{Ground}(R, P, DB) \). Thus by the definition of \(T_{P} , \pi(L_0) \in T_{P}(T_{P}^{\omega}(DB)) \). Since \(T_{P}(T_{P}^{\omega}(DB)) = T_{P}^{\omega}(DB) \) by the definition of \(T_{P}^{\omega}(DB) \), we obtain \(\pi(L_0) \in T_{P}^{\omega}(DB) \).
Algorithm: INFER

INPUT: datalog program P, database DB

OUTPUT: $T_P^*(DB) \ (= \ cons(P^* \land DB^*))$

1. **STEP 1.** $GP := \bigcup_{R \in P} \text{Ground}(R; P, DB)$
 (* GP . . . set of all ground instances *)

2. **STEP 2.** $OLD := \{\}; \ NEW := DB$

3. **STEP 3.** while $NEW \neq OLD$ do begin
 $OLD := NEW$;
 $NEW := \text{ComputeTP}(OLD)$;
 end;

4. **STEP 4.** output OLD.

Subroutine ComputeTP

INPUT: Set of facts OLD

OUTPUT: $T_P(OLD)$

1. **STEP 1.** $F := OLD$

2. **STEP 2.** for each rule $L_0 := L_1, \ldots, L_n$ in GP
 if $L_1, \ldots, L_n \in OLD$
 then $F := F \cup \{ L_0 \}$
 end;

3. **STEP 3.** return F;

Example

Apply the following program P to calculate all ancestors of the above given database DB.

- $\text{ancestor}(X, Y) :- \text{parent}(X, Y)$.
- $\text{ancestor}(X, Z) :- \text{parent}(X, Y), \text{ancestor}(Y, Z)$.

Step 1. (INFER) build GP

$$GP = \{ \text{ancestor}(\text{grete}, \text{grete}) :- \text{parent}(\text{grete}, \text{grete}), \text{ancestor}(\text{grete}, \text{linda}) :- \text{parent}(\text{grete}, \text{linda}), \ldots, \text{ancestor}(\text{grete}, \text{grete}) :- \text{parent}(\text{grete}, \text{grete}), \text{ancestor}(\text{grete}, \text{grete}) :- \text{parent}(\text{grete}, \text{linda}), \text{ancestor}(\text{linda}, \text{grete}), \ldots \}.$$ (There are $6^2 + 6^3 = 252$ ground instances.)

Step 2. $OLD := \{\}, \ NEW := DB$

Step 3. $OLD \neq NEW$

Cycle 1: $OLD := DB, NEW := TP(OLD) = TP(DB)$

$$TP(OLD) = OLD \cup \{ \text{ancestor}(A, B) \mid \text{parent}(A, B) \in DB \}.$$

Cycle 2: $OLD := TP(DB), NEW := TP(OLD) = TP(TP(DB))$

$$TP(OLD) = \text{OLD} \cup \{ \text{ancestor}(\text{hans}, \text{michael}), \text{ancestor}(\text{hans}, \text{gerti}), \text{ancestor}(\text{grete}, \text{michael}), \text{ancestor}(\text{grete}, \text{gerti}) \}.$$

Cycle 3: $TP(OLD) = OLD$, there are no new facts

Step 4. Output of OLD.

The result corresponds to the extension of DB with the new table ancestor.
Datalog with negation

Without negation, datalog is not relational complete because set difference \(R - S \) cannot be expressed.

We introduce the negation (\textit{not}) in bodies of rules.

Restriction on the application of the negation:

\begin{quote}
A relation \(R \) must not be defined on the basis of its negation.
\end{quote}

Check for this constraint: with graph-theoretic methods.

Example

The following program \(P \) with the rules:

\begin{align*}
\text{husband}(X) & : - \text{man}(X), \text{married}(X). \\
\text{bachelor}(X) & : - \text{man}(X), \text{not husband}(X).
\end{align*}

is stratified.
The program P with the rules:

\[
\begin{align*}
\text{husband}(X) & : \text{man}(X), \text{not bachelor}(X). \\
\text{bachelor}(X) & : \text{man}(X), \text{not husband}(X).
\end{align*}
\]

is not stratified.

Algorithm

INPUT: A set of datalog rules.

OUTPUT: the decision whether the program is stratified and the classification of the predicates into strata.

METHOD:

1. initialize the strata for all predicates with 1.
2. do for all rules R with predicate p in the head:
 - if (i) the body of R contains a negated predicate q,
 (ii) the stratum of p is i, and
 (iii) the stratum of q is $i \leq j$, then set $i := j + 1$.
 - if (i) the body of R contains an unnegated predicate q,
 (ii) the stratum of p is i, and
 (iii) the stratum of q is j with $i < j$, then set $i := j$.

until:

- status is stable \Rightarrow program is stratified.
- stratum $n > \#$ predicates \Rightarrow not stratified.

Example

Consider R, S relations of the database DB, P:

\[
\begin{align*}
\text{v}(X,Y) & : \text{r}(X,X), \text{r}(Y,Y). \\
\text{u}(X,Y) & : \text{s}(X,Y), \text{s}(Y,Z), \text{not v}(X,Y). \\
\text{w}(X,Y) & : \text{not u}(X,Y), \text{v}(Y,X).
\end{align*}
\]

- $\text{w} \rightarrow \text{w}$ level 3
- $\text{u} \rightarrow \text{u}$ level 2
- $s, v \rightarrow \text{r, s, v}$ level 1
Semantics of datalog with negation

Note: when calculating the strata of a datalog program with negation the following holds:

1. **Step 1:** computation of all relations of the first stratum.
2. **Step i:** computation of all relations that belong to stratum i.
 - the relations computed in step \(i-1\) are known in step \(i\).

Semantics of datalog with negation is therefore uniquely defined.

Computation of \(P\) from the last example above:

1. **Step 1:** compute \(V\) from \(R\)
2. **Step 2:** compute \(U\) from \(S\) and \(V\)
3. **Step 3:** compute \(W\) from \(U\) and \(V\)

Properties of datalog with negation

- Datalog with negation is relational complete:
 - The difference \(D = R - S\) of two (e.g. binary) relations \(R\) and \(S\):
 \[
 d(X,Y) :- r(X,Y), \text{ not } s(X,Y).
 \]

- **Syntactical restrictions of datalog with negation:**
 - all variables that appear in the body within a negated literal must also appear in a positive (unnegated) literal

Example

Let \(DB\) be a database that contains information on graphs, with relations \(v(X)\), saying \(X\) is a node and \(e(X,Y)\) saying there is an edge from \(X\) to \(Y\).

Write a datalog program that computes all pairs of nodes \((X,Y)\), where \(X\) is a source, \(Y\) is a sink and \(X\) is connected to \(Y\).

\[
\begin{align*}
 p(X,Y) & :- source(X), sink(Y), connection(X,Y). \\
 connection(X,X) & :- v(X). \\
 connection(X,Y) & :- e(X,Z), connection(Z,Y). \\
 n_source(X) & :- e(Y,X). \\
 source(X) & :- v(X), \text{ not } n_source(X). \\
 n_sink(X) & :- e(X,Y). \\
 sink(X) & :- v(X), \text{ not } n_sink(X).
\end{align*}
\]
Learning objectives

- Motivation for Datalog (recursive queries)
- Syntax of Datalog
- Semantics of Datalog:
 - logical semantics,
 - operational semantics.
- Datalog with negation:
 - the need for negation,
 - the notions of dependency graph and stratification,
 - semantics of Datalog with negation.