2. Datalog

2.1 Motivation

SQL, relational algebra, relational calculus (both tuple and domain relational calculus) are "relational complete", i.e., they have the full expressive power of relational algebra.

But: many interesting queries cannot be formulated in these languages

Example: no recursive queries (SQL now offers a recursive construct)

Relation parents(PARENT, CHILD), gives information on the parent-child relationship of a certain group of people.

Problem: look for all ancestors of a certain person.

Solution: define relation ANCESTOR(X, Y): X is ancestor of Y by generating one generation after the other (one join and one projection each) and finally merge all generations (union):

\[
\begin{align*}
grandchild(GRANDPARENT, GRANDCHILD) & := \pi_{1,4}(\text{parents}[\text{CHILD} = \text{PARENT}]\text{parents}) \\
grandgrandchild(GRANDGRANDPARENT, GRANDGRANDCHILD) & := \pi_{1,4}(\text{parents}[\text{CHILD} = \text{GRANDPARENT}]\text{grandchild}) \\
\vdots \\
ancestor(ANCESTOR, NAME) & := \text{parents} \cup \text{grandchild} \cup \text{grandgrandchild} \cup \ldots
\end{align*}
\]
Possible Solution

- Use of a programming language with an embedded relational complete query language:

```plaintext
begin
    result := \{\};
    newtuples := parents;
    while newtuples \not\subseteq result do
        begin
            result := result \cup newtuples;
            newtuples := \pi_{1,4}(newtuples[2 = 1]parents);
        end;
    ancestor := result
end.
```

- Procedural, needs knowledge of a programming language, leaves little room for query optimization.

Better Solution: Datalog

- Prolog-like logical query language, allows recursive queries in a declarative way

Example:

- compute all ancestors on the basis of the relation `parents`
  ```plaintext
  ancestor(X,Y) :- parents(X,Y).
  ancestor(X,Z) :- parents(X,Y), ancestor(Y,Z).
  ```

- use the ancestor predicate to compute the ancestors of a certain person (`Hans`):
  ```plaintext
  hans_ancestor(X) :- ancestor(X,hans).
  ```

- compute the ancestors of a certain person (`Hans`) directly:
  ```plaintext
  hans_ancestor(X) :- parents(X,hans).
  hans_ancestor(X) :- hans_ancestor(Y), parents(X,Y).
  ```

Datalog - Syntax

- `relation_id`:
 - name of an existing relation of the database (`parents`) - can be used only in rule bodies
 - name of a new relation defined by the datalog program (`ancestor`)
 - has always the same number of arguments.

comparison predicates:

- `=`, `\neq`, `>`, `<` are treated like known database relations.

variables:

- each variable that appears in the head of a rule has to be bound in the body
- variables that appear as arguments of comparison predicates must appear in the same body in literals without comparison predicates

A datalog query is also called datalog program

Restrictions on the Datalog Syntax

- `<relation_id>`:
 - name of an existing relation of the database (`parents`) - can be used only in rule bodies
 - name of a new relation defined by the datalog program (`ancestor`)
 - has always the same number of arguments.

- comparison predicates:
 - `=`, `\neq`, `>`, `<` are treated like known database relations.

- variables:
 - each variable that appears in the head of a rule has to be bound in the body
 - variables that appear as arguments of comparison predicates must appear in the same body in literals without comparison predicates

A datalog query is also called datalog program
Logical Semantics of Datalog

We consider

\[R \ldots \text{datalog rule of the form } L_0 \leftarrow L_1, L_2, \ldots, L_n, \]

\[L_i \ldots \text{literal of the form } p_i(t_1, \ldots, t_n) \]

\[x_1, x_2, \ldots, x_ℓ \text{ variables in } R \]

\[P \ldots \text{datalog program with the rules } R_1, R_2, \ldots, R_m \]

We construct

\[R^* = \forall x_1 \forall x_2 \ldots \forall x_ℓ ((L_1 \land L_2 \land \cdots \land L_n) \Rightarrow L_0). \]

We assign to each datalog program \(P \) the (semantically) well-defined formula \(P^* \) as follows:

\[P^* = R_1^* \land R_2^* \land \cdots \land R_m^* \]

We have:

\[DB^* \text{ is a conjunction of ground atoms (i.e., the facts)} \]

\[P^* \text{ is a conjunction of formulas with implication} \]

Let \(G \) be a conjunction of facts and formulas with implication. Then the set \(\text{cons}(G) \) of facts that follow from \(G \) is uniquely defined.

In other words, we have \(\text{cons}(G) = \{ A \mid A \text{ is a fact with } G \models A \} \).

Definition

The semantics of a datalog program \(P \) is defined as the function \(M[P] \), that assigns to each database \(DB \) the set of all facts that follow from the formula "\(P^* \land DB^* \)"

\[M[P] : DB \rightarrow \text{cons}(P^* \land DB^*) \]

Example

Consider the database \(DB \) with relations \(\text{woman(NAME)} \), \(\text{man(NAME)} \), \(\text{parents(PARENT, CHILD)} \) and the datalog program:

\[\text{grandpa}(X,Y) \leftarrow \text{man}(X), \text{parents}(X,Z), \text{parents}(Z,Y). \]

\[
\begin{array}{llll}
\text{woman } & \text{man } & \text{parents } \\
\text{Grete} & \text{Hans} & \text{Grete} & \text{Linda} \\
\text{Linda} & \text{Karl} & \text{Grete} & \text{Linda} \\
\text{Gerti} & \text{Michael} & \text{Karl} & \text{Gerti} \\
\end{array}
\]

We consider now

\[REL \ldots \text{a relation of the database.} \]

\[\langle t_1, \ldots, t_n \rangle \ldots \text{a tuple of the relation } REL. \]

\[rel(t_1, \ldots, t_n) \ldots \text{a fact} \]

\[DB \ldots \text{database with relations } REL_1, REL_2, \ldots, REL_k \]

We assign to each database relation \(REL \) the formula

\[REL^* = \text{conjunction of all facts} \]

- a relation is an unordered set of tuples
- the assignment \(REL \mapsto REL^* \) is therefore not uniquely defined.
- take an arbitrary order (e.g. lexicographical order) since conjunction is commutative.

We assign to each database \(DB \) the (semantically) well-defined formula \(DB^* \) as follows:

\[DB^* = REL_1^* \land REL_2^* \land \cdots \land REL_k^*. \]
Let us compute DB^*, P^* and $\text{cons}(P^* \land DB^*)$:

$$DB^* = REL_1^* \land \cdots \land REL_k^*$$

with REL_i^* = conjunction of all facts

$$DB^* = \text{woman}(\text{grete}) \land \text{woman}(\text{linda}) \land \text{woman}(\text{gerti}) \land \text{man}(\text{hans}) \land \text{man}(\text{karl}) \land \text{man}(\text{michael}) \land $$

$$\text{parents}(\text{hans}, \text{linda}) \land \text{parents}(\text{grete}, \text{linda}) \land \text{parents}(\text{karl}, \text{michael}) \land \text{parents}(\text{linda}, \text{michael}) \land \text{parents}(\text{karl}, \text{gerti}) \land \text{parents}(\text{linda}, \text{gerti}) \land $$

$$P^* = R_1^* \land \cdots \land R_m^*$$

with $R_i^* = \forall X_1 \forall X_2 \ldots \forall X_L ((L_1 \land \cdots \land L_n) \Rightarrow L_0)$.

The new facts in $\text{cons}(P^* \land DB^*)$:

- grandpa(hans,michael), grandpa(hans,gerti).

The datalog program P with

$$P = \text{grandpa}(X,Y) :- \text{man}(X), \text{parents}(X,Z), \text{parents}(Z,Y)$$

defines a new relation grandpa with the following tuples:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hans</td>
<td>Michael</td>
</tr>
<tr>
<td>Hans</td>
<td>Gerti</td>
</tr>
</tbody>
</table>

Operational Semantics of Datalog

Datalog rules are seen as inference rules,

- a fact that appears in the head of a rule can be deduced, if the facts in the body of the rule can be deduced.

Example:

- facts: parents(linda,michael), parents(linda,gerti)
- rule: siblings(michael,gerti) :- parents(linda,michael), parents(linda,gerti).

the following fact can be deduced:

$$\text{siblings}(\text{michael}, \text{gerti})$$

Rules with variables

- A rule R with variables represents all variable-free rules we get from R by substituting the variables with the constant symbols.
- The constant symbols are taken from the database DB and the program P.
- A variable-free rule resulting from such a substitution is called ground instance of R with respect to P and DB.
- We write $\text{Ground}(R, P, DB)$ to denote the set of all ground instances over P and DB of R.
Example:

Compute all relations between siblings with the following rule:

\[\text{sibling}(Y, Z) := \text{parents}(X, Y), \text{parents}(X, Z), Y \leftrightarrow Z. \]

All 6 ground instances of this rule with respect to \(P \) and \(DB \) are (Note that there are 6 constant symbols: \(\{ \text{grete}, \text{linda}, \text{gerti}, \text{hans}, \text{michael}, \text{karl} \} \)):

\[
\begin{align*}
\text{sibling}(\text{grete}, \text{grete}) & : - \text{parents}(\text{grete}, \text{grete}), \text{parents}(\text{grete}, \text{grete}), \\
& \quad \text{grete} \leftrightarrow \text{grete} \ (X = Y = Z = \text{grete}) \\
\text{sibling}(\text{grete}, \text{linda}) & : - \text{parents}(\text{grete}, \text{grete}), \text{parents}(\text{grete}, \text{linda}), \\
& \quad \text{grete} \leftrightarrow \text{linda} \ (X = Y = \text{grete}, Z = \text{linda}) \\
\cdots & \\
\text{sibling}(\text{karl}, \text{karl}) & : - \text{parents}(\text{karl}, \text{karl}), \text{parents}(\text{karl}, \text{karl}), \\
& \quad \text{karl} \leftrightarrow \text{karl} \ (X = Y = Z = \text{karl})
\end{align*}
\]

Properties of \(T_P(DB) \)

- The set of facts is monotonically increasing i.e.:

\[
T_P^i(DB) \subseteq T_P^{i+1}(DB)
\]

- the sequence \(\langle T_P(DB) \rangle \) converges finitely: there exists \(n \) with \(T_P^n(DB) = T_P^i(DB) \) for all \(m \geq n \).

- \(T_P^i(DB) \ldots \) set of facts, to which \(\langle T_P(DB) \rangle \) converges is the result of the application of \(P \) to \(DB \).

- The operational semantics of a datalog program \(P \) assigns to each database \(DB \) the set of facts \(T_P^i(DB) \):

\[
O[P] : DB \rightarrow T_P^i(DB).
\]

Theorem (Equivalence of semantics)

Assume a program \(P \). Then it holds that \(M[P] = O[P] \). In other words, for any database \(DB \), we have:

\[
\text{cons}(P^* \land DB^*) = T_P^i(DB)
\]
Proof of Theorem

Let P be a program and DB a database. We show
\[
\text{cons}(P^* \land DB^*) \subseteq T_P^\omega(DB).
\]

(1) We first show $T_P^\omega(DB) \subseteq \text{cons}(P^* \land DB^*)$. By induction on i, we show that $T_P^i(DB) \subseteq \text{cons}(P^* \land DB^*)$ for every $i \geq 0$. Note that this includes the case where $i = \omega$.

Base case. Assume $i = 0$. Take a fact $L \in T_P^0(DB)$. Then by definition of $T_P^0(DB)$, $L \in DB$. By definition, DB^* is a conjunction of literals and L occurs in it. Hence, by classical logic, $L \in \text{cons}(P^* \land DB^*)$.

The inductive step. Suppose $T_P^i(DB) \subseteq \text{cons}(P^* \land DB^*)$ for $i \geq 0$. We show that $T_P^{i+1}(DB) \subseteq \text{cons}(P^* \land DB^*)$. Recall that $T_P^{i+1}(DB) = T_P(T_P^i(DB))$. Thus by the definition of T_P,
\[
T_P^{i+1}(DB) = T_P(DB) \cup \bigcup_{R \in P} \{L_0 \mid L_0 \vdash L_1, \ldots, L_n \in \text{Ground}(R, P, DB),
L_1, \ldots, L_n \in T_P^i(DB)\}
\]

(2) We show $\text{cons}(P^* \land DB^*) \subseteq T_P^\omega(DB)$. To this end, we prove that $L \not\in T_P^\omega(DB)$ implies $L \not\in \text{cons}(P^* \land DB^*)$, for any fact L. We thus simply show that $T_P^\omega(DB)$ is a model of $P^* \land DB^*$.

This suffices because of the following simple property: if M is a model of a formula F, then any fact $L \not\in M$ is not a logical consequence of F (as witnessed by M itself).

By the induction hypothesis, $T_P^i(DB) \subseteq \text{cons}(P^* \land DB^*)$. Thus it remains to show that $L_0 \in \text{cons}(P^* \land DB^*)$ for any rule $R \in P$ such that there is $L_0 \vdash L_1, \ldots, L_n \in \text{Ground}(R, P, DB)$ with $L_1, \ldots, L_n \in T_P^i(DB)$.

Assume such a rule $R = L_0^0 \vdash L_1^1, \ldots, L_n^i$ in P, and suppose π is the substitution of variables with constants such that applying π to R results in $L_0^0 \vdash L_1, \ldots, L_n$, i.e. $\pi(L_j^i) = L_j$ for $j \in \{0, \ldots, n\}$.

By construction, in $P^* \land DB^*$ we have the conjunct
\[
R^* = \forall x_1 \forall x_2 \ldots \forall x_l((L_1^i \land L_2^i \land \cdots \land L_n^i) \Rightarrow L_0^0).
\]

Thus, by employing the semantics of classical logic, for any variable substitution π' such that $\{\pi'(L_1^1), \ldots, \pi'(L_n^i)\} \subseteq \text{cons}(P^* \land DB^*)$ we also have $\pi'(L_0^0) \in \text{cons}(P^* \land DB^*)$. Since π is a substitution such that $\{\pi(L_1^i), \ldots, \pi(L_n^i)\} = \{L_1, \ldots, L_n\} \subseteq \text{cons}(P^* \land DB^*)$ by the induction hypothesis, we get $\pi(L_0^0) = L_0 \in \text{cons}(P^* \land DB^*)$.

$T_P^\omega(DB)$ is a model of DB^* because $DB = T_P^\omega(DB) \subseteq T_P^\omega(DB)$ by the definition of $T_P^\omega(DB)$.

It remains to show that $T_P^\omega(DB)$ is also a model of P^*. Consider an arbitrary rule $R \in P$. We have to show that $T_P^\omega(DB)$ is a model of R^* with $R^* = \forall x_1 \forall x_2 \ldots \forall x_l((L_1 \land L_2 \land \cdots \land L_n) \Rightarrow L_0)$.

Consider an arbitrary (ground) variable assignment π on the variables x_1, \ldots, x_l. The only non-trivial case is that all facts $\pi(L_1), \ldots, \pi(L_n)$ are true in $T_P^\omega(DB)$, i.e., $\{\pi(L_1), \ldots, \pi(L_n)\} \subseteq T_P^\omega(DB)$.

We have to show that then also $\pi(L_0)$ is true in $T_P^\omega(DB)$, i.e., $\pi(L_0) \in T_P^\omega(DB)$.

We know $\pi(L_0) \vdash \pi(L_1), \ldots, \pi(L_n) \in \text{Ground}(R, P, DB)$. Thus by the definition of T_P, $\pi(L_0) \in T_P(T_P^\omega(DB))$. Since $T_P(T_P^\omega(DB)) = T_P^\omega(DB)$ by the definition of $T_P^\omega(DB)$, we obtain $\pi(L_0) \in T_P^\omega(DB)$.

Algorithm: INFER

INPUT: datalog program P, database DB
OUTPUT: $T_p^\infty(DB)$ ($= \text{cons}(P^* \land DB^*)$)

STEP 1. $GP := \bigcup_{R \in P} \text{Ground}(R; P, DB)$, (* GP ... set of all ground instances *)
STEP 2. $OLD := \{\}; NEW := DB$;
STEP 3. while $NEW \neq OLD$ do begin
 $OLD := NEW$;
 $NEW := \text{ComputeTP}(OLD)$;
end;
STEP 4. output OLD.

Subroutine ComputeTP

INPUT: Set of facts OLD
OUTPUT: $T_P(OLD)$

STEP 1. $F := OLD$;
STEP 2. for each rule $L_0 : - L_1, \ldots, L_n$ in GP
do if $L_1, \ldots, L_n \in OLD$
 then $F := F \cup \{L_0\}$;
STEP 3. return F;

Example

Apply the following program P to calculate all ancestors of the above given database DB.

ancestor(X,Y) :- parents(X,Y).
ancestor(X,Z) :- parents(X,Y), ancestor(Y,Z).

Step 1. (INFER) build GP

$GP =$
 \begin{align*}
 \{ & \text{ancestor(grete,grete) :- parents(grete,grete),} \\
 & \text{ancestor(grete,linda) :- parents(grete,linda),} \\
 & \ldots, \\
 & \text{ancestor(grete,grete) :- parents(grete,grete),} \\
 & \text{ancestor(grete,grete) :- parents(grete,linda),} \\
 & \text{ancestor(linda,grete),} \\
 & \ldots \}.
 \end{align*}
(There are $6^2 + 6^3 = 252$ ground instances.)

Step 2. $OLD := \{\}, NEW := DB$;
Step 3. $OLD \neq NEW$
 Cycle 1: $OLD := DB, NEW := TP(OLD) = TP(DB)$
 $TP(OLD) = OLD \cup \{\text{ancestor(A,B) | parents(A,B) \in DB}\}$;
 Cycle 2: $OLD := TP(DB), NEW := TP(OLD) = TP(TP(DB))$
 $TP(OLD) = OLD \cup \{\text{ancestor(hans,michael), ancestor(hans,gerti),} \\
 \text{ancestor(grete,michael), ancestor(grete,gerti)}\}$.
 Cycle 3: $TP(OLD) = OLD$, there are no new facts

Step 4. Output of OLD.

The result corresponds to the extension of DB with the new table ancestor.
1.6. Datalog with negation

Without negation, datalog is not relational complete because set difference \(R - S \) cannot be expressed.

We introduce the negation (not) in bodies of rules.

Restriction on the application of the negation:

- A relation \(R \) must not be defined on the basis of its negation.

Check for this constraint: with graph-theoretic methods.

Graph representation

Let \(P \) be a datalog program with negated literals in the body of rules.

Definition: dependency graph

\(\text{DEP}(P) \) is defined as the directed graph, with:
- nodes ... predicates (predicate symbols) \(p \) in \(P \),
- edges \(p \rightarrow q \), if there exists a rule in \(P \) where \(p \) is the head atom and \(q \) appears in the body (meaning: \(" p \) depends on \(" q \)).

Mark an edge \(p \rightarrow q \) of \(\text{DEP}(P) \) with a star \(" \star \), if \(q \) in the body is negated.

Definition

A datalog program \(P \) with negation is called valid if the graph \(\text{DEP}(P) \) has no directed cycle that contains an edge marked with \(" \star \).

Such programs are called **stratified**, since they can be divided into strata with respect to the negation.

Example

The following program \(P \) with the rules:

\[
\begin{align*}
\text{husband}(X) & :\text{-} \text{man}(X), \text{married}(X). \\
\text{bachelor}(X) & :\text{-} \text{man}(X), \text{not husband}(X).
\end{align*}
\]

is stratified.
The program P with the rules:

$\text{husband}(X) :- \text{man}(X), \not\text{bachelor}(X)$.
$\text{bachelor}(X) :- \text{man}(X), \not\text{husband}(X)$.

is not stratified.

Definition

A stratum is composed by the maximal set of predicates for which the following holds:

1. if a predicate p appears in the head of a rule, that contains a negated predicate q in the body, then p is in a higher stratum than q.
2. if a predicate p appears in the head of a rule, that contains an unnegated (positive) predicate q in the body, then p is in a stratum at least as high as q.

Algorithm

INPUT: A set of datalog rules.
OUTPUT: the decision whether the program is stratified and the classification of the predicates into strata.

METHOD:

1. initialize the strata for all predicates with 1.
2. do for all rules R with predicate p in the head:
 - if (i) the body of R contains a negated predicate q,
 (ii) the stratum of p is i, and
 (iii) the stratum of q is j with $i \leq j$, then set $i := j + 1$.
 - if (i) the body of R contains an unnegated predicate q,
 (ii) the stratum of p is i, and
 (iii) the stratum of q is j with $i < j$, then set $i := j$.

until:
- status is stable \Rightarrow program is stratified.
- stratum $n > \#$ predicates \Rightarrow not stratified.

Example

Consider R, S relations of the database DB, P:

$v(X,Y) :- r(X,X), r(Y,Y)$.
$u(X,Y) :- s(X,Y), s(Y,Z), \not v(X,Y)$.
$w(X,Y) :- \not u(X,Y), v(Y,X)$.

<table>
<thead>
<tr>
<th>v</th>
<th>w</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>u</td>
<td>level 2</td>
</tr>
<tr>
<td>s</td>
<td>v</td>
<td>level 1</td>
</tr>
<tr>
<td>r</td>
<td>r, s, v</td>
<td>level 1</td>
</tr>
</tbody>
</table>
Semantics of datalog with negation

Note: when calculating the strata of a datalog program with negation the following holds:

Step 1: computation of all relations of the first stratum.
Step i: computation of all relations that belong to stratum i.
⇒ the relations computed in step i − 1 are known in step i.

Semantics of datalog with negation is therefore uniquely defined.

Computation of P from the last example above:

Step 1: compute V from R
Step 2: compute U from S and V
Step 3: compute W from U and V

Example

Let DB be a database that contains information on graphs, with relations v(X), saying X is a node and e(X,Y) saying there is an edge from X to Y. Write a datalog program that computes all pairs of nodes (X,Y), where X is a source, Y is a sink and X is connected to Y.

p(X,Y) :- source(X), sink(Y), connection(X,Y).

connection(X,X) :- v(X).

n_source(X) :- e(Y,X).
source(X) :- v(X), not n_source(X).

n_sink(X) :- e(X,Y).
sink(X) :- v(X), not n_sink(X).
Learning objectives

- Motivation for Datalog (recursive queries)
- Syntax of Datalog
- Semantics of Datalog:
 - logical semantics,
 - operational semantics.
- Datalog with negation:
 - the need for negation,
 - the notions of dependency graph and stratification,
 - semantics of Datalog with negation.