Coping with High Complexity: Structure Matters

Reinhard Pichler
Vienna University of Technology
SCCC 2013

Roadmap

I. High complexity everywhere
II. Parameterized Complexity
III. What is a Parameter?
IV. How to Make Use of Parameters?
V. Conclusion and Research Opportunities

A starting point

Part I: High complexity everywhere

Theory of Computation: 1930s
– What can be computed?

Theory of Tractability: 1970s
– What can be computed efficiently?

Turing
Cook
Karp
Computational hardness

NP-completeness:
• small solutions
• easy to verify
• huge search space

thousands of NP-complete problems

NP-complete problems

Combinatorial auctions (e.g. London Transport)
Scheduling (e.g. work schedules)
Graph layout problems (e.g. circuit design)

Satisfiability

Is the following formula \(\varphi \) satisfiable?
\[
\varphi = (a \lor b) \land (b \lor c) \land (\neg a \lor d) \land (\neg b \lor \neg c \lor \neg d)
\]

very expressive NP-complete problem

Satisfiability

Is the following formula \(\varphi \) satisfiable?
\[
\varphi = (a \lor b) \land (b \lor c) \land (\neg a \lor d) \land (\neg b \lor \neg c \lor \neg d)
\]

Work(8-9) \land Work(9-10) \land Work(10-11) \rightarrow Break(11-12)
Work(8-9) \land Work(10-11) \rightarrow (Break(9-10) \lor Work(9-10))
The hierarchy of complexity

Intractable

PSPACE
PH
NP
P

How to deal with intractability

Incomplete methods
- Approximation algorithms
- Heuristics
- Randomized algorithms

Exact methods
- Brute force
- “Islands of tractability”
- ...

Islands of tractability

Easy to solve special cases

For the Satisfiability problem
- Horn formulas:
 \[
 \text{Work}(8-9) \land \text{Work}(9-10) \land \text{Work}(10-11) \rightarrow \text{Break}(11-12)
 \]
- Krom formulas:
 \[
 \neg \text{Work}(8-9) \lor \neg \text{Break}(8-9)
 \]

However: Such “islands” are not robust!
Summary of Part I

- High complexity is ubiquitous
- There are many methods to tackle intractable problems, ...
- … but can we have a method that is
 - efficient,
 - exact and
 - robust?

Part II:
Parameterized Complexity

Parameterized Complexity

Main idea:
Exploit structural properties of problem instances.

- efficient,
- exact and
- robust.

Example: subway emergencies

Problem:
emergency teams for every line segment

For example:
There has to be a team either at Santa Ana or at Los Héroes to cover the line segment in between.
Vertex Cover

- Given a graph G and integer k, is there a set of vertices S of size at most k such that for every edge $\{a, b\}$, S contains a or b?
- NP-complete
- the best known exact algorithms require exponential time

Real-world versus random

108 stations, connected

108 nodes, connected

The classical point of view

Classical Complexity Theory

- measures complexity only in terms of size of an instance
- one-dimensional: $O(f(n))$
- tractable means polynomial time

Criticism:

We (almost) always know more about the input than its number of bits.
The parameterized point of view

Parameterized Complexity Theory
- takes structural properties of problem instances into account (parameter k)
- multi-dimensional: $O(f(n,k))$
- tractability depends on parameter

Benefit: Allows a more fine-grained notion of tractability.

Fixed-parameter tractability (FPT)
- ideal outcome of a parameterized complexity analysis
- $O(f(k) \cdot n^d)$
- example: $2^k \cdot n^2$
- consequence: tractable for parameter of bounded size.

Example: Vertex Cover with bounded treewidth
The class XP

- “second prize”
- $O(n^{f(k)})$
- example: n^k
- consequence: less favorable than FPT but still tractable for parameter of bounded size

Example: Conjunctive query evaluation with queries of bounded hypertree-width

Comparison: FPT and XP

Example: input size 100

<table>
<thead>
<tr>
<th></th>
<th>FPT</th>
<th>XP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^k \times 100^2$</td>
<td>100^k</td>
<td></td>
</tr>
</tbody>
</table>

classical point of view: $2^{100} > 10^{10}$

Summary of Part II

- Real-world problems often have structure
- **Classical** complexity only considers the size of a problem instance
- **Parameterized** complexity takes problem parameters into account
 - Exploit inherent structure of problem instances
Part III:
What is a Parameter?

Boolean Satisfiability Revisited

$$\varphi = (a \lor b) \land (b \lor c) \land (\neg a \lor d) \land (\neg b \lor \neg c \lor \neg d)$$

- Clause size = 3
- Positive clause size = 2
- Negative clause size = 3
- Number of non-Horn clauses = 2
- Number a variable occurs positively = 2
- Number of variables that occur as positive literals = 4
- … as negative literals … = 4
- etc.

Parameterized Complexity Analysis

- Parameter “number of clauses”
 - $1.24^k \ast \text{poly}(n)$
- Parameter “number of variables”
 - $1.49^k \ast \text{poly}(n)$
- Parameter “clause size”
 - NP-complete for $k=3$
 - $O(2^{f(n)})$
Generalization of Special Cases

- **SAT**
 - almost Horn / almost Krom ⇒ backdoors
- **Graph Problems**
 - almost trees ⇒ treewidth
- **CSPs / CQs**
 - almost acyclic ⇒ hypertree-width

Minimal Model Satisfiability (MMSAT)

Instance: CNF formulas φ and π.
Question: Is there a subset minimal model of φ that also satisfies π?

- Important subtask in non-monotonic reasoning.
- MMSAT captures the complexity of computing a minimal model.

Minimal Model Satisfiability

- **k** maximum weight of the minimal model
- **d** clause size
- **d⁺,d⁻** positive/negative clause size
- **h** number of non-Horn clauses
- **p** number a variable occurs positively
- **v⁺,v⁻** number of variables that occur as positive/negative literals in φ or in π
- **d−⁺** positive clause size in π
- **||π||** length of π
- **b** size of a strong Horn backdoor set

Summary of Part III

- **Any characteristics** of problem instances may serve as parameters.
- **Usefulness** of a parameter depends on:
 - FPT (or at least XP) result
 - Application context
Part IV: How to Make Use of Parameters?

Toolbox of Parameterized Complexity

Hardness Tools
- W[i]-hardness
- Iterative compression
- Kernel lower bounds
- Color coding
- Graph minors

Algorithmic Tools
- Bounded search trees
- Logical meta-theorems
- Graph minors

Tree Decomposition
- Tree with a vertex set (= “bag”) associated with every node.
- For every edge (v,w): there is a bag containing both v and w.
- For every v: the nodes that contain v form a connected subtree.
Tree Decomposition

- Tree with a vertex set ("bag") associated with every node.
- For every edge \((v, w)\): there is a bag containing both \(v\) and \(w\).
- For every \(v\): the nodes that contain \(v\) form a connected subtree.

Graph

- Tree with a vertex set ("bag") associated with every node.
- For every edge \((v, w)\): there is a bag containing both \(v\) and \(w\).
- For every \(v\): the nodes that contain \(v\) form a connected subtree.

Structure

- Tree with a set of domain elements ("bag") associated with every node.
- For every tuple \((a_1, \ldots, a_k)\) in any relation \(R_i\): there is a bag containing \(\{a_1, \ldots, a_k\}\).
- For every \(a\): the nodes that contain \(a\) form a connected subtree.
Treewidth

- The width of a tree decomposition is the maximum bag size – 1.
- The treewidth of G is the minimum width over all tree decompositions of G.
- For fixed k, it is feasible in linear time to decide / compute tree decomposition of width ≤ k. [Bodlaender, 1996]

Treewidth of a CNF Formula

- Represent CNF formula F as finite structure A(F) over signature \(\tau = \{ \text{cl}, \text{var}, \text{pos}, \text{neg} \} \)
 - cl(c), var(x): c is a clause (x is a variable) in F
 - pos(x,c), neg(x,c): x occurs unnegated (negated) in clause c
- Treewidth of F is defined as the treewidth of A(F)

Remark: this corresponds to the incidence graph of F.

Treewidth of CNF: Example

Let \(F = (x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor \neg x_3 \lor x_4) \)

- Then A(F) consists of:
 - cl(c_1), cl(c_2)
 - var(x_1), var(x_2), var(x_3), var(x_4)
 - pos(x_1,c_1), pos(x_3,c_1), pos(x_2,c_2), pos(x_4, c_2)
 - neg(x_2,c_1), neg(x_3,c_2)
Treewidth of CNF: Example

- $cl(c_1), cl(c_2)$
- $var(x_1), var(x_2), var(x_3), var(x_4)$
- $pos(x_1,c_1), pos(x_2,c_1), pos(x_2,c_2), pos(x_4,c_2)$
- $neg(x_2,c_1), neg(x_3,c_2)$

F has treewidth = 2.

Monadic Second-Order Logic (MSO)

- MSO extends first-order logic by the use of set variables.
- An MSO formula allows the following atoms:
 - Relational atoms, e.g. $R(x_1,\ldots,x_n)$.
 - Equational atoms, e.g. $x=y$.
 - Atoms based on set variables, e.g. $X(y)$.

Courcelle's Theorem: Any property of finite structures which is definable in MSO can be decided in time $O(f(k)*n)$, where n is the size of the structure and k is its treewidth.

From MSO to Algorithms

Various (automatic) constructions of FPT-algorithms from MSO-encodings exist:
- Using correspondence between finite tree automata and MSO on trees [Courcelle 1990; Arnborg et al. 1991; Flum et al. 2001]
- Finite model theory (k-types) [Grohe 1999]
- Datalog [Gottlob, P., Wei 2007]
- Games [Kneis, Langer, Rossmanith, 2011]
- New automata models (Courcelle, Durand 2011)
- Answer-set programming [Bliem, P., Woltran 2013]
Applying Courcelle's Theorem

Theorem (folklore):
SAT is FPT w.r.t. treewidth.

Proof: MSO-encoding.
Let F be a CNF formula and X a set of variables.

Encoding of $X\models F$:

\[
(\forall c)\text{cl}(c) \rightarrow (\exists z)(\text{pos}(z,c) \land X(z)) \lor (\neg\text{pos}(z,c) \land \neg X(z))
\]

Encoding of SAT:

\[
(\exists X) X\models F
\]

Minimal Model Satisfiability

- Instance: CNF formulas F and π
- Question: Is there a subset minimal model of φ that also satisfies π?

Theorem [Gottlob, P., Wei, 2006]:
Minimal Model SAT is FPT w.r.t. treewidth.

Proof: MSO-encoding.

Encoding of $Y \subseteq X$:

\[
\forall x (Y(x) \rightarrow X(x)) \land \exists y (Y(y) \land \neg Y(y))
\]

Encoding of Minimal Model SAT:

\[
\exists X, X\models \varphi \land X\models \pi \land \forall Y (Y \subseteq X \rightarrow \neg Y\models \varphi)
\]
Treewidth as a Key to Tractable Reasoning

- Minimal models
- Various forms of closed-world reasoning
- Disjunctive logic programming
- Propositional abduction

[Gotlob, P., Wei, 2006]

Part V:
Conclusion and Research Opportunities

Conclusion

Parameterized complexity is a viable way to tackle intractable problems:

- **Real-world** problems often have structure
- **Classical** complexity only considers the size of a problem instance
- **Parameterized** complexity takes problem parameters into account

\[\text{Papers containing “parameterized complexity” or “fixed-parameter tractable” published per year.} \]

\[\text{Source: Google Scholar} \]
Research Opportunities

- Parameterized complexity theory:
 - New algorithmic methods
 - Kernelization (formal model of preprocessing)
 - Relationship with other approaches (approximation, heuristics)

- Further applications