8. PSPACE

Reinhard Pichler

Institut für Informationssysteme
Arbeitsbereich DBAI
Technische Universität Wien

16 June, 2015

Motivation

PSPACE captures unrestricted alternation. Therefore, ...
- it generalizes the polynomial hierarchy,
- it is the class of many strategy games, decision making, etc.,
- it has QSAT (QBF) as natural complete problem.

QSAT (QBF)

INSTANCE: Boolean expression φ in CNF with variables x_1, \ldots, x_n.

QUESTION: Is there a truth value for the variable x_1 such that for both
truth values of x_2 there is a truth value for x_3 and so on up to x_n, such
that φ is satisfied by the overall truth assignment?

Notation

An instance of QSAT is written as $\exists x_1 \forall x_2 \exists x_3 \cdots Q x_n \varphi$, where Q is \forall if n
is even and \exists if n is odd.

Theorem

QSAT is PSPACE-complete.
Proof of the PSPACE-Membership of QSAT

Remark. We only prove the PSPACE-membership here. The hardness will be proved below via the complexity of First-Order Logic.

Let an arbitrary QBF be given as $\psi \equiv \exists x_1 \forall x_2 \exists x_3 \cdots Qx_n \varphi$. All possible truth assignments of the variables can be represented by the leaves in a full binary tree of depth n (="semantic tree"): The left subtree of the root contains all truth assignments T with $T(x_1) = \text{false}$, while the right subtree of the root contains all truth assignments T with $T(x_1) = \text{true}$.

Analogously, for every $i \geq 1$, the subtrees at depth $i + 1$, whose root is the first child of its parent, contains all truth assignments T with $T(x_{i+1}) = \text{false}$, while the subtrees at depth $i + 1$, whose root is the second child of its parent, contains all truth assignments T with $T(x_{i+1}) = \text{true}$.

Proof of the PSPACE-Membership of QSAT (continued)

The linear space bound on the evaluation of the Boolean circuit follows immediately from the following observation: At any time, the algorithm only needs to store (the label of) exactly 1 gate of the tree, namely the current gate g of the evaluation.

Implicitly, we thus have the entire path from g to the root. If the path contains a gate which is the first child of its parent h, then it is clear that the second child of h has not been visited yet. If the path contains a gate which is the second child of h, then it is clear that the value of the first child of h is true for an AND-gate h and false for an OR-gate h.

The only difficulty remaining is that the circuit C has exponential size. Observe that both, the construction of C and the evaluation of C work in polynomial space. Hence, the combination of these two algorithms is feasible in PSPACE – by the same idea as in the proof that the composition of two log-space computations is feasible in log-space.
Complexity Theory

8. PSPACE

8.1. QSAT (QBF)

PSPACE vs. PH

Proposition

QSAT is a generalization of the $\Sigma_i P$-complete problem QSAT$_i$ for any value of i.

Corollary

$PH \subseteq PSPACE$

Remark

It is not known if PH is properly included in PSPACE. Most probably, PH \subset PSPACE holds, because PH = PSPACE would imply that the polynomial hierarchy collapses (since there exist PSPACE-complete problems).

Games

Observation

PSPACE is the class of many strategy games, decision making, etc. QSAT can be considered as a two-person game:

- two players: \exists and \forall
- players move alternatingly (\exists first)
- a move: determining the truth value of a variable
- \exists tries to make the formula φ true while \forall tries to make it false.
- after n moves either \exists or \forall wins.

Decision making can sometimes be considered as a game against nature.

Complexity of Query Evaluation

Decision Problems

For (Boolean) queries of a certain query language (e.g., SQL, datalog, XPath, XQuery, etc.), there are three main kinds of decision problems:

Data complexity refers to the following decision problem:

Let Q be some fixed query.

INSTANCE: An input database D.

QUESTION: Does query Q yield a non-empty result over the DB D?

Query complexity refers to the following decision problem:

Let D be some fixed input database.

INSTANCE: A query Q.

QUESTION: Does query Q yield a non-empty result over the DB D?

Combined complexity refers to the following decision problem:

INSTANCE: An input database D and a query Q.

QUESTION: Does query Q yield a non-empty result over the DB D?

Definition

A term is a constant or a variable.

For a given input schema $R = \{R_1, \ldots, R_n\}$, the base formulae are either equality atoms $s = t$ or atoms of the form $R(t_1, \ldots, t_n)$, where the t_i are terms and α is the arity of R. A first-order query over R is either a base formula or a formula of the following form:

1. $(\varphi \land \psi)$, where φ and ψ are formulae over R;
2. $(\varphi \lor \psi)$, where φ and ψ are formulae over R;
3. $\neg \varphi$, where φ is a formula over R;
4. $\exists x \varphi$, where x is a variable and φ is a formula over R;
5. $\forall x \varphi$, where x is a variable and φ is a formula over R.

Remark

First-order queries essentially correspond to SQL without GROUP BY, (aggregate) functions and arithmetic.
PSPACE-Hardness of First-Order Queries

Proof of the PSPACE-Hardness

We prove the hardness by reduction from an arbitrary language \(L \) in PSPACE. To this end, we define a fixed database \(D \). Moreover, we describe a reduction \(R \) which, for every string \(w \), constructs a First-Order sentence \(R(w) \) such that \(w \in L \iff R(w) \) evaluates to true over \(D \).

Let \(T = (K, \Sigma, \delta, s) \) be a single-string Turing machine that decides \(L \) in polynomial space. W.l.o.g., we assume that on any positive instance \(w \), the TM \(T \) has exactly one accepting configuration, say \((\text{"yes"}, \delta, \bigcup \subseteq \cdots) \). Assume that the computation on input \(w \) requires at most \(d \cdot n^k \) space with \(n = |w| \) and constants \(d, k \). Then the computation takes at most \(N = c^d \cdot n^k \) steps for some constant \(c \).

We first define the (fixed) input database \(D \): it just contains two unary relations \(K \) and \(\Sigma \) with the states and symbols, respectively, of \(T \).

Now let \(w \) be an arbitrary instance of \(L \). We have to construct an FO formula \(R(w) \). This construction is based on well-known ideas.

Proof of the PSPACE-Hardness (continued)

Configurations. Every configuration can be represented by a vector of length \(M = d \cdot n^k + 1 \): we represent \((q, u, v)\) with \(u = u_1, \ldots, u_\alpha \) and \(v = v_1, \ldots, v_\beta \) as \((u_1, \ldots, u_\alpha, q, v_1, \ldots, v_\beta, \bigcup \subseteq \cdots)\).

Encoding of \(\text{PATH}(a, b, i) \). For every \(i \in \{0, \ldots, \log N\} \) we define a formula \(\psi_i(x_1, \ldots, x_M, y_1, \ldots, y_M) \) with free variables \(x_1, \ldots, x_M, y_1, \ldots, y_M \), s.t. \(\psi_i \) is true in \(D \iff (x_1, \ldots, x_M) \) is instantiated to (the representation of) some configuration \(C_1, (y_1, \ldots, y_M) \) is instantiated to (the representation of) some configuration \(C_2 \), and there is a path of length at most \(2^i \) from \(C_1 \) to \(C_2 \) in the configuration graph \(G(T,w) \).

Reduction from \(L \) to FO evaluation. Suppose that we have defined the predicates \(\psi_i(x_1, \ldots, x_M, y_1, \ldots, y_M) \). Let \(j = \log N \). Moreover, let \((a_1, \ldots, a_M)\) be the (representation of the) initial configuration \(C_0 \) on input \(w \) and let \((b_1, \ldots, b_M)\) be the accepting configuration \(C_{\text{\"yes"}} \).

We define \(\psi^* = \psi_j(a_1, \ldots, a_M, b_1, \ldots, b_M) \).

Then we have \(x \in L \iff \psi^* \) is true over \(D \).
PSPACE-Membership of First-Order Queries

Proof of the PSPACE-Membership (continued)

Let \(D \) be an arbitrary input database and let \(\varphi \) be an arbitrary first-order sentence. Moreover, let all constants in \(\varphi \) and all elements in \(D \) be from the domain \(\text{dom} \). We prove the PSPACE-membership by reducing the problem of evaluating \(\varphi \) over \(D \) to the QSAT problem.

1. Restricting the domain to \(\{0, 1\} \). Let \(\text{dom} = \{a_1, \ldots, a_n\} \). Then these elements can be encoded by bit-vectors of size \(m \approx \log(n) \). Let \(\vec{b}_i \) denote the encoding of \(a_i \). Then we transform \(D \) into \(D' \) by replacing any \(\alpha \)-ary relation \(r \) by an \((\alpha \cdot m)\)-ary relation \(r' \).

PSPACE-Hardness of First-Order Queries

Proof of the PSPACE-Hardness (continued)

Base Case. \(\psi_0(x_1, \ldots, x_M, y_1, \ldots, y_M) \) is defined as a big quantifier-free formula in DNF where each disjunct represents a valid combination of values for \((x_1, \ldots, x_M)\) and \((y_1, \ldots, y_M)\), i.e., either they represent the same configuration or they correspond to the transition of \(T \) in one step. For every \(\ell \in \{1, \ldots, M - 1\} \), \(\psi_0 \) thus contains disjuncts:

\[
D = \Sigma(x_1) \land \cdots \land \Sigma(x_{\ell}) \land K(x_{\ell+1}) \land \Sigma(x_{\ell+2}) \land \cdots \land \Sigma(x_M) \land
x_1 = y_1 \land \cdots \land x_M = y_M.
\]

For each transition \((a, a', b, \rightarrow)\) in \(\delta \), \(\psi_0 \) contains the following disjuncts (cursor movements and \(\leftarrow \) are treated analogously):

\[
D = \Sigma(x_1) \land x_1 = y_1 \land \cdots \land \Sigma(x_{\ell-1}) \land x_{\ell-1} = y_{\ell-1} \land
x_{\ell} = a \land x_{\ell+1} = q \land \Sigma(x_{\ell+2}) \land
y_{\ell} = b \land y_{\ell+1} = x_{\ell+2} \land y_{\ell+2} = q' \land
\Sigma(x_{\ell+3}) \land x_{\ell+3} = y_{\ell+3} \land \cdots \land \Sigma(x_M) \land x_M = y_M.
\]
PSPACE-Membership of First-Order Queries

Proof of the PSPACE-Membership (continued)

3. Replacing first-order variables by propositional variables. The only atoms occurring in ϕ′′ are equality atoms s = t, where the terms s, t are either variables (which can take the value 0 or 1) or the constants 0, 1. We identify 0 with the truth value false and 1 with the truth value true. Then we can transform ϕ′′ into the QSAT formula ψ by replacing the equality atoms by “equivalent” propositional formulae in the obvious way:

\[x = y \iff x \iff y \]
\[x = 0, 0 = x \iff \neg x \]
\[0 = 1, 1 = 0 \iff \text{false} \]
\[x = 1, 1 = x \iff x \]
\[0 = 0, 1 = 1 \iff \text{true} \]

Clearly, ϕ evaluates to true over D ⇔ ϕ′ evaluates to true over D′ ⇔ ϕ′′ evaluates to true independently of any database ⇔ ψ is true.

Conjunctive Queries

Definition

Conjunctive queries (CQs) are a special case of first-order queries whose only connective is ∧ and whose only quantifier is ∃ (i.e., ∀, ¬ and ∨ are excluded). Alternatively, CQs can be considered as a single datalog rule

\[Q : r(u) \iff r_1(u_1) \land \ldots \land r_n(u_n) \]

where \(n \geq 0 \); \(r_1, \ldots, r_n \) are (not necessarily distinct) extensional relation symbols and \(u, u_1, \ldots, u_n \) are lists of terms of appropriate length. Moreover, all variables in \(u \) occur in at least one \(u_i \).

In a Boolean conjunctive query, the head of the rule \(Q \) is the 0-ary intensional relation symbol true() (rather than some arbitrary term \(r(u) \)).

Remark. Conjunctive queries correspond to select-project-join queries in the relational algebra, i.e., unnested select-from-where queries in SQL.

Discussion

Easy Consequences

PSPACE-hardness of QSAT. The above proof of the PSPACE-hardness of FO evaluation together with the above reduction from FO evaluation to QSAT immediately yields the PSPACE-hardness of QSAT.

Narrowing FO evaluation and PSPACE-hardness.

- The first 2 steps in the above reduction from FO evaluation to QSAT allowed us to transform an arbitrary FO formula ϕ over a database with arbitrary finite domain into an FO formula ψ over the domain \{0, 1\}, s.t. the atomic formulas of ψ are equalities only. Moreover, negation can be shifted immediately in front of the equalities.

- Equalities and negated equalities over \{0, 1\} can be represented by relations eq and noteq in the obvious way (this works for any finite domain), i.e., eq = {(0, 0), (1, 1)} and noteq = {(0, 1), (1, 0)}.

- It follows that FO evaluation remains PSPACE-hard even if we disallow equalities and negation in the FO formulas.

Conjunctive Queries

Theorem

The query complexity and the combined complexity of conjunctive queries are NP-complete.

Proof

NP-Membership (of the combined complexity). For each variable \(u \) of the query, we guess a domain element to which \(u \) is instantiated. Then we check whether all the resulting ground atoms in the query body exist in \(D \). This check is obviously feasible in polynomial time.

Hardness (of the query complexity). We reduce the NP-complete 3-Colorability problem to our problem. For this purpose, we consider an input database over the binary relation symbol Edge.
NP-Hardness of query complexity

Since we are considering the query complexity, the database D is fixed (but arbitrarily chosen). We choose D with a single relation $Edge = \{(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)\}$

Now let $G = (V, E)$ be an arbitrary instance of the 3-Colorability problem. From this, we define the Boolean conjunctive query Q as follows. Q contains the variables $X = \{x_i | v_i \in V\}$. Moreover, we set

$$ans() \leftarrow \bigwedge_{[v_i, v_j] \in E} Edge(x_i, x_j)$$

Clearly, this reduction is feasible in logarithmic space. The correctness is seen as follows: Q is true over the DB D \Leftrightarrow The variables in X can be instantiated to values $\{1, 2, 3\}$, s.t. Q contains only ground atoms occurring in D \Leftrightarrow The graph G has a valid 3-coloring.

Learning Objectives

- The power of unrestricted alternation (in QBF)
- PSPACE as the complexity class of many strategy games
- The relationship of PSPACE and PH
- Complexity of query evaluation, first-order queries