6. The Polynomial Hierarchy

EXACT TSP

Problem EXACT TSP

INSTANCE: \(n \) cities 1, \ldots, \(n \), a nonnegative integer distance \(d_{ij} \) between any two cities \(i \) and \(j \) (such that \(d_{ij} = d_{ji} \)), and an integer \(B \).

QUESTION: Is the length of the shortest tour equal to \(B \)?

Complexity of EXACT TSP

EXACT TSP can be considered as the intersection of two problems – one in NP and one in co-NP:

- in NP: TSP(D) (= asking if the shortest tour has length \(\leq B \)).
- in co-NP: TSP COMPLEMENT (= asking if the shortest tour has length \(\geq B \)).

Definition

A language \(L \) is in the class DP iff there are two languages \(L_1 \in \text{NP} \) and \(L_2 \in \text{co-NP} \) such that \(L = L_1 \cap L_2 \).

Remark. Note that DP is not \(\text{NP} \cap \text{co-NP} \! \). (Most likely DP is not even contained in \(\text{NP} \cup \text{co-NP} \).)

Proposition

- EXACT TSP is DP-complete.
- All exact cost versions of the NP-complete optimization problems studied in the lecture are DP-complete, e.g. INDEPENDENT SET (i.e.: is the size of the biggest independent set equal to some \(K \)?), VERTEX COVER, CLIQUE, etc.
SAT-UNSAT

Problem SAT-UNSAT

INSTANCE: two Boolean expressions (φ, φ') (possibly both in 3-CNF).

QUESTION: Is it true that φ is satisfiable and φ' is unsatisfiable?

Proposition

SAT-UNSAT is DP-complete.

Proof of Membership

Let $L_1 = \{ (\varphi, \psi) \in \text{PROP} \mid \varphi \text{ satisfiable and } \psi \text{ arbitrary propositional formula} \}$

Let $L_2 = \{ (\varphi, \psi) \in \text{PROP} \mid \varphi \text{ arbitrary propositional formula and } \psi \text{ unsatisfiable} \}$

Clearly $L_1 \in \text{NP}$, $L_2 \in \text{co-NP}$, and SAT-UNSAT = $L_1 \cap L_2$.

Further DP-complete problems

“Critical Problems”

CRITICAL SAT

INSTANCE: Propositional formula φ in CNF

QUESTION: Is it true that φ is unsatisfiable but deleting any clause makes φ satisfiable?

CRITICAL HAMILTON PATH

INSTANCE: (Directed or undirected) graph $G = (V, E)$

QUESTION: Is it true that G has no Hamilton path but addition of any edge creates a Hamilton path?

CRITICAL 3-COLORABILITY

INSTANCE: Undirected graph $G = (V, E)$

QUESTION: Is it true that G has no 3-coloring but deletion of any node makes it 3-colorable?

Proof of Hardness

Let L be an arbitrary language in DP, i.e., there exists a language $L_1 \in \text{NP}$ and a language $L_2 \in \text{co-NP}$ with $L = L_1 \cap L_2$.

Let x be an arbitrary instance of L. We reduce x to the following instance $R(x)$ of SAT-UNSAT:

$L_1 \in \text{NP}$ and $L_2 \in \text{co-NP} \Rightarrow$

there exists a reduction R_1 from L_1 to 3-SAT and

there exists a reduction R_2 from L_2 to co-3-SAT.

We define $R(x) := (R_1(x), R_2(x))$.

Clearly, $R(x)$ is a positive instance of SAT-UNSAT \iff

$R_1(x)$ is satisfiable and $R_2(x)$ is unsatisfiable \iff

(by the correctness of R_1 and R_2)

$x \in L_1$ and $x \in L_2 \iff$

$x \in L$.

Remark

The above problems are called “critical” because the input x is “critical” with respect to some property, i.e., x has some property but the slightest modification of x does not.
Oracle Machines

Motivation

- Intuitively, an oracle is a subroutine with 0 cost (we count the cost of the oracle as 1 for the call – but we neglect the cost of the computation carried out by the oracle). ⇒ We can study complexity in a setting where a part of the computation comes “for free”.
- Oracles allow us to isolate orthogonal (independent) sources of complexity, i.e. we can answer questions like: Suppose that we know the complexity of some sub-task A for solving problem B. What is the remaining complexity of problem B?

Oracle Machines

Definition

An oracle Turing machine M' has the following additional features:
- an additional tape (= query tape)
- three additional states: query state $q?$, answer states q_{YES}, q_{NO}

Suppose that M' has an oracle for the problem A. Then the call of the oracle works as follows: If M' is in state $q?$, then M' decides if the string z on the query tape is a positive instance of A or not.
⇒ M' either enters state q_{YES} or q_{NO} in one step.

Notation. For any time complexity class C and oracle A (where A is either a problem or a class of problems) we write C^A for the problems which can be decided by a TM within the time bound of C, where the TM is allowed to use an oracle for (any problem in the class) A.

Examples. P^{SAT}, NP^{SAT}, P^{NP}, NP^{NP}, ...

The Polynomial Hierarchy

Definition

The polynomial hierarchy is a sequence of classes:

- $\Delta_0^P = \Sigma_0^P = \Pi_0^P = P$
- $i \geq 0 : \Delta_{i+1}^P = P^{\Sigma_i^P}$
$\Sigma_{i+1}^P = NP^{\Sigma_i^P}$
$\Pi_{i+1}^P = co-NP^{\Sigma_i^P}$
- Cumulative polynomial hierarchy: $PH = \bigcup_{i \geq 0} \Sigma_i^P$

In the literature also the following notation is used: Δ_i^P, Σ_i^P, Π_i^P

Properties of the Polynomial Hierarchy

- special case $i = 1$:
 $\Delta_1^P = P^{P_{\Sigma_0^P}} = P^P = P$
 $\Sigma_1^P = NP^{\Sigma_0^P} = NP^P = NP$
 $\Pi_1^P = co-NP^{\Sigma_0^P} = co-NP$

- special case $i = 2$:
 $\Delta_2^P = P^{P_{\Sigma_1^P}} = P^{NP}$
 $\Sigma_2^P = NP^{\Sigma_1^P} = NP^{NP}$
 $\Pi_2^P = co-NP^{\Sigma_1^P} = co-NP^{NP}$

$\Delta_i^P \subseteq \Sigma_i^P \subseteq \Delta_{i+1}^P \subseteq \Sigma_{i+1}^P \subseteq \Delta_{i+2}^P$
Characterization via Certificates

Theorem

- Let L be a language and $i \geq 1$. Then $L \in \Sigma_i P$ iff there is a polynomially balanced relation R (i.e., there exists k, s.t. $(x, y) \in R$ implies $|y| \leq |x|^k$), such that the language \(\{ x \# y \mid (x, y) \in R \} \) is in $\Pi_{i-1} P$ and
 \[
 L = \{ x \mid \text{there exists a } y \text{ with } |y| \leq |x|^k \text{ s.t. } (x, y) \in R \}
 \]

- Let L be a language and $i \geq 1$. Then $L \in \Pi_i P$ iff there is a polynomially balanced relation R such that the language \(\{ x \# y \mid (x, y) \in R \} \) is in $\Sigma_{i-1} P$ and
 \[
 L = \{ x \mid \text{for all } y \text{ with } |y| \leq |x|^k, (x, y) \in R \}
 \]

Remark. Of course, in the definition of $\Sigma_i P$, we could omit the condition $|y| \leq |x|^k$, since we talk about a polynomially balanced relation R.

Proof (continued)

\Rightarrow Suppose that $L \in \Sigma_i P$, i.e., L is decided by a nondeterministic, polynomial-time TM M with an oracle for some language $K \in \Sigma_{i-1} P$. We must show that an appropriate relation R exists.

By the induction hypothesis, there exists a binary relation S, s.t. the language \(\{ u \# v \mid (u, v) \in S \} \) is in $\Pi_{i-2} P$ and $K = \{ u \mid \text{there exists a } v \text{ with } |v| \leq |u|^k \text{ s.t. } (u, v) \in S \}$.

We construct a relation R as follows: We know that $x \in L$ iff there exists an accepting computation of M (with oracle for K) on x. We define R, s.t. $(x, y) \in R$, iff y is a “certificate” of x in the following sense:

1. y encodes the non-deterministic choices of a successful computation of the TM M as in the construction of succinct certificates for NP.
2. In addition, y contains a certificate v_j for every successful call u_j to the oracle $K \in \Sigma_{i-1} P$.

Proof

It suffices to prove the correctness of the characterization of $\Sigma_i P$ for every i. The correctness of the characterization of $\Pi_i P$ follows immediately by the equality $\Pi_i P = \text{co-} \Sigma_i P$.

The correctness proof for $\Sigma_i P$ proceeds by induction on i.

Recall that $\Sigma_1 P = \text{NP}$. Hence, for $i = 1$, the theorem corresponds to the characterization of NP via succinct certificates. For $i > 1$, we show both directions separately:

\Leftarrow Suppose that such a relation R exists. We must show that $L \in \Sigma_i P$. Indeed, L is decided by the following nondeterministic, polynomial-time Turing machine with $\Sigma_{i-1} P$-oracle:

1. On input x, guess an appropriate y.
2. Check by means of a $\Pi_{i-1} P$ oracle if $(x, y) \in R$ (or, equivalently, check by a $\Sigma_{i-1} P$ oracle if $(x, y) \not\in R$).

\Rightarrow We must check that the first part of y indeed encodes a successful computation of the TM M. This can be done in polynomial time (as in the construction of succinct certificates for NP).

2. We must check for polynomially many pairs (u_j, v_j) that $(u_j, v_j) \in S$ holds. Each such test is in $\Pi_{i-2} P$. Hence, in total, these tests are in $\Delta_{i-1} P \subseteq \Pi_{i-1} P$ (actually, they are even in $\Pi_{i-2} P$).

3. For all “no”-queries u_j to the K-oracle, we must check that indeed $u_j \not\in K$. Since $K \in \Sigma_{i-1} P$, each test $u_j \not\in K$ is in $\Pi_{i-1} P$.

All these tests together can be done by a single $\Pi_{i-1} P$ computation since the co-query “there exists a j with $u_j \in K$” is in $\Sigma_{i-1} P$:

Guess j and v_j and check in $\Pi_{i-2} P$ that $(u_j, v_j) \in S$. The correctness proof for $\Pi_i P$ follows immediately by the equality $\Pi_i P = \text{co-} \Sigma_i P$.
Characterization via Certificates and Alternation

Definition
A relation $R \subseteq (\Sigma^*)^{i+1}$ is said to be polynomially balanced if whenever $(x, y_1, \ldots, y_i) \in R$, it holds that $|y_1|, \ldots, |y_i| \leq |x|^k$ for some k.

Corollary, part 1
Let L be a language and $i \geq 1$. Then $L \in \Sigma_i P$ iff there is a polynomially balanced, polynomial-time decidable $(i+1)$-ary relation R such that

$$L = \{ x \mid \exists y_1 \forall y_2 \exists y_3 \cdots Qy_i \text{ such that } (x, y_1, \ldots, y_i) \in R \}$$

where Q is \forall if i is even and \exists if i is odd.

Proof idea
Use the above theorem and proceed by induction on i. Repeatedly replace languages in $\Pi_j P$ and $\Sigma_j P$ by their certificate forms as in the theorem.

Properties of PH

Definition
We say that the polynomial hierarchy collapses to the i-th level if $\Delta_i P = \Sigma_i P = \Pi_i P = \Sigma_i P$ holds for every $j > i$.

Remark. It is unknown whether PH is indeed an infinite hierarchy, i.e.: $\Sigma_0 P \subset \Sigma_1 P \subset \Sigma_2 P \subset \ldots$ is generally believed but not known.

Proposition
- If for some $i \geq 1$, $\Sigma_i P = \Pi_i P$, then the polynomial hierarchy collapses to the i-th level. In particular, if $NP = co-NP$, then the polynomial hierarchy collapses to the first level.
- $P = NP$ iff $P = PH$.
- Notice that it can be the case that $P \neq NP$ and $NP \neq co-NP$ but PH collapses to the second level (not expected to happen, though).

QBFs: Quantified Boolean Formulae

QSAT$_i$
"quantified satisfiability with i alternating blocks of quantifiers":

INSTANCE: Boolean expression φ with the Boolean variables partitioned into i sets X_1, \ldots, X_i.

QUESTION: Is it true that there exists a partial truth assignment for the variables X_1 such that for all partial truth assignments for X_2 there exists a partial truth assignment for X_3 . . . φ is satisfied by the overall truth assignment?

Notation
A QSAT$_i$-formula is given in the form $\exists X_1 \forall X_2 \exists X_3 \cdots QX_i \varphi$, where Q is \forall if i is even and \exists if i is odd.
ΣₐP-Completeness

Theorem

For all i ≥ 1, QSATᵢ is ΣₐP-complete.

Proof of ΣₐP-membership

Recall the characterization of ΣₐP via certificates: A language L is in ΣₐP iff there is a polynomially balanced, polynomial-time decidable (i + 1)-ary relation R, s.t. \(L = \{ x \mid \exists y_1 \forall y_2 \exists y_3 \ldots Q_y \psi \text{ such that } (x, y_1, \ldots, y_i) \in R \} \).

For a QSATᵢ-formula \(\psi = \exists X_1 \forall X_2 \exists X_3 \cdot \cdot \cdot QX_i \varphi \), we take as certificates \((y_1, \ldots, y_i) \) combinations of variable assignments to the alternating blocks \(X_1, X_2, \ldots, X_i \) of variables (where each \(y_j \) is an assignment on the variables in \(X_j \)) s.t. the formula \(\varphi \) is true in the overall assignment.

Proof of ΣₐP-hardness (continued)

Now let \(x \) be an arbitrary instance of the decision problem corresponding to the language \(L \). Moreover, let \(\hat{X} \) denote the values of the variables in \(X \) corresponding to the string \(x \). By \(\varphi(\hat{X}) \) we denote the result of substituting in \(\varphi \) the corresponding Boolean values \(\hat{X} \) for \(X \). We define the desired instance of QSATᵢ as \(\psi = \exists Y_1 \forall Y_2 \ldots \exists Y_i \exists Z \varphi(\hat{X}) \).

For the correctness proof, we observe: Let \(y_1, \ldots, y_i \) be arbitrary strings with Boolean “encoding” \(\hat{Y}_1, \ldots, \hat{Y}_i \) and suppose that we substitute these values \(\hat{Y}_1, \ldots, \hat{Y}_i \) for the variables \(Y_1, \ldots, Y_i \) in \(\varphi \). Then the resulting expression \(\varphi(\hat{X}, \hat{Y}_1, \ldots, \hat{Y}_i) \) is satisfiable (i.e., there exist an appropriate assignment to the variables in \(Z \)) iff \((x, y_1, \ldots, y_i) \in R \).

It remains to show that \(x \in L \iff \psi \) is a positive instance of QSATᵢ. Indeed, \(x \in L \) iff there is a \(y_1 \) s.t. for all \(y_2, \ldots, y_i \) there is a \(y_i \) s.t. \((x, y_1, \ldots, y_i) \in R \). In terms of \(\psi \), this means that for these values of \(\hat{X} \) there are values \(\hat{Y}_1 \) for \(Y_1 \) s.t. for all values \(\hat{Y}_2 \) for \(Y_2, \ldots \) there are values \(\hat{Y}_i \) for \(Y_i \) and there are values \(\hat{Z} \) for \(Z \) s.t. the resulting formula \(\varphi(\hat{X}, \hat{Y}_1, \ldots, \hat{Y}_i, \hat{Z}) \) is true, i.e., \(\psi \) is a positive instance of QSATᵢ.

Further Complete Problems

Theorem

We only consider the case that \(i \) is odd. The case that \(i \) is even is treated analogously. Let \(L \) be an arbitrary language in \(\SigmaₐP \). Hence, there exists a polynomially balanced, polynomial-time decidable \((i + 1) \)-ary relation \(R \), s.t. \(L = \{ x \mid \exists y_1 \forall y_2 \exists y_3 \ldots Q_y \psi \text{ such that } (x, y_1, \ldots, y_i) \in R \} \).

There exists a polynomial-time deterministic TM \(M \) accepting \(x\#y_1\#\ldots\#y_i \iff (x, y_1, \ldots, y_i) \in R \). Following the proof of the Cook-Levin Theorem, there exists a Boolean formula \(\varphi \) that captures the computations of \(M \). We split the variables in \(\varphi \) into \(i + 2 \) classes:

- Variable set \(X \): all propositional variables in \(\varphi \) encoding the first part (before the first \(\# \)) of the input string to \(M \).
- Variable sets \(Y_1 \) to \(Y_i \): encode the remaining input string.
- Variable set \(Z \) captures all other aspects of the computation of \(M \).

Theorem

For all \(i \geq 1 \) even, the QSATᵢ problem remains \(\SigmaₐP \)-complete even if the instances \(\exists X_1 \forall X_2 \exists X_3 \ldots \forall X_i \varphi \) are restricted s.t. \(\varphi \) is in 3-DNF.

For all \(i \geq 1 \) odd, the QSATᵢ problem remains \(\SigmaₐP \)-complete even if the instances \(\exists X_1 \forall X_2 \exists X_3 \ldots \exists X_i \varphi \) are restricted s.t. \(\varphi \) is in 3-CNF.

Theorem

MINIMAL MODEL SAT: Given a propositional formula \(\varphi \) in CNF and an atom \(x \), is \(x \) true in some (subset) minimal model of \(\varphi \)?

MINIMAL MODEL SAT is \(\Sigma₂P \)-complete.
MINIMAL MODEL SAT

Proof of the Σ_2^P-memberhship

We have to show that MINIMAL MODEL SAT can be decided by an NP-algorithm using an NP-oracle (or, equivalently, a co-NP-oracle).

1. Guess a truth assignment I, s.t. x is true in I. Let $Y \subseteq X$ denote the variables which are true in I.
2. Check that I is true in I.
3. Check (with an oracle) that there does not exist a “smaller” satisfying truth assignment J of ψ, i.e., let Z denote the variables true in J, then $Z \not\subseteq Y$ for any satisfying truth assignment J of ψ.

The check in step 3 can be done by a co-NP-oracle, i.e.: checking that there does exist a ‘smaller’ satisfying truth assignment J of ψ can be clearly done in NP.

MINIMAL MODEL SAT

Proof of the Σ_2^P-hardness (continued)

"⇒" Suppose that $\psi = (\exists x_1, \ldots, x_k)(\forall y_1, \ldots, y_l) \varphi$ is true. Then there exists a partial assignment I on $\{x_1, \ldots, x_k\}$, s.t. for any values assigned to $\{y_1, \ldots, y_l\}$, the formula φ is true (or, equivalently, $\neg \varphi$ is false).

We define the truth assignment J appropriate to χ as follows:

$$J(x_i) = I(x_i) \quad \text{and} \quad J(y_j) = I(x_{j'}) \quad \text{for every} \ i, j,$$

$$J(y_j) = \text{true} \quad \text{for every} \ j, \text{and} \ J(z) = \text{true}.$$

We claim that J is a minimal model of χ where z is true.

Clearly, J is a model (i.e., satisfiying truth assignment) of χ since all conjuncts ($\neg x_i \Leftrightarrow x_{j'}$) and the disjunct $(y_1 \land \cdots \land y_l \land z)$ are true in I. Moreover, $J(z) = \text{true}$ by definition. It remains to show that there does not exist a strictly “smaller” model of χ.

Suppose to the contrary that there exists a model J' of χ, s.t. J' is strictly smaller than J. Then there exists a variable $x_i, x_{j'}, y_j$ or $z,$ s.t. this variable is true in J and false in J'. We distinguish 3 cases:
Further Properties of PH

Theorem
If there is a PH-complete problem, then the polynomial hierarchy collapses to some finite level.

Proof
Assume L is PH-complete. Then $L \in \Sigma_i P$ for some i. But then any $L' \in \Sigma_{i+1} P$ reduces to L. This means that $\Sigma_i P = \Sigma_{i+1} P$ since each level is closed under reductions. Thus PH collapses to the i-th level.

By the above theorem, PH probably has no complete problems. But of course each level of PH does (namely QSAT$_i$).

Restrictions on the Oracle Calls

Motivation
We consider two kinds of restrictions:

1. Number of oracle calls.
 - In DP, only 2 calls to an oracle are allowed.
 - Many natural problems require only $O(\log n)$ oracle calls, since they come down to finding the optimal value via binary search, e.g.: max. size of a clique, max./min. cardinality of a model, etc.

2. Adaptive vs. non-adaptive calls:
 - adaptive: The i-th question to the oracle may depend on the result of the previous $(i-1)$ calls to the oracle.
 - non-adaptive: otherwise.

Examples in $P^{NP[\log n]}$

CARD-MINIMAL MODEL SAT
INSTANCE: Boolean formula φ and an atom z.
QUESTION: Is z true in a cardinality-minimal model of φ?

Proof of $P^{NP[\log n]}$-membership

1. Compute the size K of a cardinality-minimal model of φ. This can be done by a binary search asking questions like “Does φ have a model of size $\leq k$?”. For this task, we need $\log n$ calls to an NP-oracle, where n = number of variables in φ.

2. Finally, ask an NP-oracle: “Is z true in some model I of φ, s.t. I sets exactly K variables to true?”

Analogously: CARD-MAXIMAL MODEL SAT
Examples of Optimization Problems in $\text{FP}^{\text{NP}[\log n]}$

Some graph problems

- **MIN-VERTEX COVER, MAX-CLIQUE, MAX-INDEP.-SET**: Given a graph $G = (V, E)$, what is the size of the smallest vertex cover (resp. the biggest clique or the biggest independent set)?
- **CHROMATIC NUMBER**: Given a graph $G = (V, E)$, what is the smallest number k, s.t. G has a k-coloring?

Some SAT-related problems

- **CARD-MINIMAL-MODEL, CARD-MAXIMAL-MODEL**: Given a Boolean formula φ, what is the size of a minimal (resp. maximal) model of φ?
- **MAX-SAT**: Given a Boolean formula φ in CNF, what is the maximal number of clauses that can be satisfied by a truth assignment?

Examples in P^{NP} (Continued)

LEX-MINIMAL MODEL SAT

INSTANCE: Boolean formula φ, order (x_1, \ldots, x_n) of the variables in φ.
QUESTION: Is x_n true in the lexicographically smallest model of φ?

Proof of P^{NP}-membership

LEX-MINIMAL MODEL SAT can be decided by the following program with n calls to an NP-oracle.

\[
\text{for } i := 1 \text{ to } n \text{ do } \\
\text{ check if } \varphi \text{ has a model } \mathcal{I}, \text{ s.t. (for all } j < i: \mathcal{I}(x_j) = v_j \text{) and } \mathcal{I}(x_i) = 0; \\
\text{ if yes then set } v_i := 0, \text{ otherwise set } v_i := 1; \\
\text{ if } v_n = 1 \text{ then return true else return false.}
\]

Analogously: **LEX-MAXIMAL MODEL SAT**

Examples of Optimization Problems in FP^{NP}

Some graph problems

- **MIN-WEIGHT-VERTEX COVER, MAX-WEIGHT-CLIQUE, MAX-WEIGHT-INDEP.-SET**: Given a graph $G = (V, E)$ and weights w_i of the vertices, what is the size of the minimal total weight of a vertex cover, etc.?
- **TSP**: What is the length of the shortest tour through the n cities?

Some SAT-related problems

- **WEIGHT-MINIMAL-MODEL, WEIGHT-MAXIMAL-MODEL**
- **MAX-WEIGHT-SAT**: Given a Boolean formula φ in CNF and vector (w_1, \ldots, w_m) of weights of the clauses (c_1, \ldots, c_m) in φ, what is the maximal total weight of clauses that can be simultaneously satisfied by a truth assignment?
Proof (continued)

"⊆": Suppose that a language L is decided by a TM M with polynomially many non-adaptive SAT queries. Then L can be decided with logarithmically many adaptive NP queries as follows:

- In $O(\log n)$ queries determine the precise number K of “yes” answers to the non-adaptive queries. This can be done by binary search using the oracle: “Given a set of Boolean expressions, does it have satisfying truth assignments for at least k of them?"
- Ask the NP query: “Do there exist K satisfiable Boolean expressions such that if all other expressions were unsatisfiable (at this point, we know that they must be), then M would end up accepting?”

Remark. A succinct certificate for the last query consists of indices i_1, \ldots, i_K of Boolean expressions and models I_1, \ldots, I_K of them.

Learning Objectives

- Oracle machines
- Complexity classes: DP, Δ_1^P, Σ_1^P, Π_1^P, PH
- The intuition of these classes and complete problems
- Restrictions on the oracle calls: $\Delta_2^P[\log n] = P^{\text{NP}[\log n]} = P^{\text{NP}}$
- Problem reductions in Σ_2^P
- Properties of PH (sufficient conditions for PH to collapse)
- Characterization of Σ_1^P and Π_1^P via certificates
- The power of alternation: limited alternation in QSAT$_i$