Complexity Theory
VU 181.142, SS 2018

5. NP-Completeness

Reinhard Pichler

Institut für Informationssysteme
Arbeitsbereich DBAI
Technische Universität Wien

24 April, 2018
Outline

5. NP-Completeness
5.1 Some Variants of Satisfiability
5.2 CIRCUIT SAT
5.3 NOT-ALL-EQUAL-SAT
5.4 1-IN-3-SAT
5.5 Some Graph Problems
5.6 3-COLORABILITY
5.7 HAMILTON-PATH, etc.
5.8 Summary
Some Variants of Satisfiability

We have already encountered several versions of satisfiability problems:

- intractable: SAT, 3-SAT
- tractable: 2-SAT, HORNSAT

We shall encounter further intractable versions of satisfiability problems:

- restricted (but still intractable) versions of SAT
- CIRCUIT SAT
- Not-all-equal SAT (NAESAT)
- (MONOTONE) 1-IN-3-SAT
- strongly related problem: HITTING SET
Narrowing NP-complete languages

An NP-complete language can sometimes be narrowed down by transformations which eliminate certain features of the language but still preserve NP-completeness.

Restricting **SAT** to formulae in CNF and a further restriction to **3-SAT** are typical examples. Generally, **k-SAT** (i.e., formulae are restricted to CNF with exactly k literals in each clause) is NP-complete for any $k \geq 3$.

Here is another example of narrowing an NP-complete language:

Proposition

3-SAT remains NP-complete even if the Boolean expressions φ in 3-CNF are restricted such that

- each variable appears at most three times in φ and
- each literal appears at most twice in φ.
Proof

The reduction consists in rewriting an arbitrary instance φ of 3-SAT in such a way that the forbidden features are eliminated.

Consider a variable x appearing $k > 3$ times in φ.

(i) Replace the first occurrence of x in φ by x_1, the second by x_2, and so on where x_1, \ldots, x_k are new variables.

(ii) Add clauses $(\neg x_1 \lor x_2), (\neg x_2 \lor x_3), \ldots, (\neg x_k \lor x_1)$ to φ.

Let φ' be the result of systematically modifying φ in this way. Clearly, φ' has the desired syntactic properties.

Now φ is satisfiable iff φ' is satisfiable:
For each x appearing $k > 3$ times in φ, the truth values of x_1, \ldots, x_k are the same in each truth assignment satisfying φ'.
Boolean Circuits

Syntax of Boolean circuits

- A Boolean circuit is a directed graph $C = (V, E)$ where $V = \{1, 2, \ldots, n\}$ is the set of gates and C is acyclic (with $i < j$ for all edges $(i, j) \in E$).

- All gates i have a sort $s(i) \in \{\text{true, false, } \land, \lor, \neg\} \cup \{x_1, x_2, \ldots\}$.
 - If $s(i) \in \{\text{true, false}\} \cup \{x_1, x_2, \ldots\}$, the indegree of i is 0 (inputs).
 - If $s(i) = \neg$ then the indegree of i is 1.
 - If $s(i) \in \{\lor, \land\}$ then the indegree of i is 2.

- Gate n is the output of the circuit.

Remark. $\{x_1, x_2, \ldots\}$ are variables whose value can be true or false.
Boolean Circuits

Semantics

Let C be a Boolean circuit and let $X(C)$ denote the set of variables appearing in the circuit C. A truth assignment for C is a function $T : X(C) \rightarrow \{\text{true, false}\}$.

The truth value $T(i)$ for each gate i is defined inductively:

- If $s(i) = \text{true}$, $T(i) = \text{true}$ and if $s(i) = \text{false}$, $T(i) = \text{false}$.
- If $s(i) = x_j \in X(C)$, then $T(i) = T(x_j)$.
- If $s(i) = \neg$, then $T(i) = \text{true}$ if $T(j) = \text{false}$, else $T(i) = \text{false}$ where (j, i) is the unique edge entering i.
- If $s(i) = \land$, then $T(i) = \text{true}$ if $T(j) = T(j') = \text{true}$ else $T(i) = \text{false}$ where (j, i) and (j', i) are the two edges entering i.
- If $s(i) = \lor$, then $T(i) = \text{true}$ if $T(j) = \text{true}$ or $T(j') = \text{true}$ else $T(i) = \text{false}$ where (j, i) and (j', i) are the two edges entering i.
- $T(C) = T(n)$, i.e. the value of the circuit C.

CIRCUIT SAT

INSTANCE: Boolean circuit \(C \) with variables \(X(C) \)

QUESTION: Does there exist a truth assignment \(T : X(C) \rightarrow \{\text{true, false}\} \) such that \(T(C) = \text{true} \)?

Theorem

CIRCUIT SAT *is NP-complete.*

Proof of NP-Membership

Consider the following NP-algorithm:

1. Guess a truth assignment \(T : X(C) \rightarrow \{\text{true, false}\} \).
2. Check that \(T(C) = \text{true} \) holds.
Proof of NP-Hardness

We prove the NP-hardness by a reduction from \textbf{SAT}: Let an arbitrary instance of \textbf{SAT} be given by a Boolean formula \(\varphi \) over the variables \(X = \{ x_1, \ldots, x_k \} \). We construct the following Boolean circuit \(C(\varphi) \):

- The variables \(X(C) \) in \(C(\varphi) \) are precisely the variables \(X \).
- For every subexpression \(\psi \) of \(\varphi \), \(C(\varphi) \) contains a gate \(g(\psi) \). The output gate of \(C(\varphi) \) is the gate \(g(\varphi) \).
- The sort and the incoming arcs of each gate \(g(\psi) \) in \(C(\varphi) \) are defined inductively:
 - If \(\psi \) is a variable \(x_i \) then \(g(\psi) \) is an input gate of sort \(s(g(\psi)) = x_i \)
 - If \(\psi = \neg \psi' \) then \(s(g(\psi)) = \neg \) with an incoming arc from \(g(\psi') \).
 - If \(\psi = \psi_1 \land \psi_2 \) (resp. \(\psi = \psi_1 \lor \psi_2 \)), then \(s(g(\psi)) = \land \) (resp. \(s(g(\psi)) = \lor \)) with incoming arcs from \(g(\psi_1) \) and \(g(\psi_2) \).
Reduction from SAT to 3-SAT

Motivation

- We have already seen how an arbitrary propositional formula φ can be transformed efficiently into a sat-equivalent formula ψ in 3-CNF.
- This transformation (first into CNF and then into 3-CNF) is intuitive and clearly works in polynomial time. However, the log-space complexity of this transformation is not immediate.
- We now give an alternative transformation by reducing CIRCUIT SAT to 3-SAT. In total, we thus have:

$$\text{SAT} \leq_L \text{CIRCUIT SAT} \leq_L \text{3-SAT}$$
Reduction from **CIRCUIT SAT** to **3-SAT**

Let an arbitrary instance of **CIRCUIT SAT** be given by a Boolean circuit \(C \). We construct the following instance \(\varphi(C) \) of **SAT** (\(\varphi \) is in CNF with some clauses smaller than 3. The transformation into 3-CNF is obvious):

The formula \(\varphi(C) \) uses all variables of \(C \). Moreover, for each gate \(g \) of \(C \), \(\varphi(C) \) has a new variable \(g \) and the following clauses.

1. If \(g \) is a variable gate \(x \): \((g \lor \neg x), (\neg g \lor x)\). \([g \leftrightarrow x]\)
2. If \(g \) is a **true** (resp. **false**) gate: \(g \) (resp. \(\neg g \)).
3. If \(g \) is a **NOT** gate with a predecessor \(h \):
 \((\neg g \lor \neg h), (g \lor h)\). \([g \leftrightarrow \neg h]\)
4. If \(g \) is an **AND** gate with predecessors \(h, h' \):
 \((\neg g \lor h), (\neg g \lor h'), (g \lor \neg h \lor \neg h')\). \([g \leftrightarrow (h \land h')]\)
5. If \(g \) is an **OR** gate with predecessors \(h, h' \):
 \((\neg g \lor h \lor h'), (g \lor \neg h'), (g \lor \neg h)\). \([g \leftrightarrow (h \lor h')]\)
6. If \(g \) is also the output gate: \(g \).
NAESAT

Not-all-equal SAT (NAESAT)

INSTANCE: Boolean formula φ in 3-CNF

QUESTION: Does there exist a truth assignment T appropriate to φ, such that the 3 literals in each clause do not have the same truth value?

Remark. Clearly $\text{NAESAT} \subseteq \text{3-SAT}$.

Theorem

NAESAT is NP-complete.
Proof of NP-Hardness

Recall the Boolean formula $\varphi(C)$ resulting from the reduction of CIRCUIT SAT to 3-SAT. For all one- and two-literal clauses in the resulting CNF-formula $\varphi(C)$, we add the same literal z (possibly twice) to make them 3-literal clauses.

The resulting formula $\varphi_z(C)$ fulfills the following equivalence:

$$\varphi_z(C) \in \text{NAESAT} \iff C \in \text{CIRCUIT SAT}.$$

"⇒" If a truth assignment T satisfies $\varphi_z(C)$ in the sense of NAESAT, so does the complementary truth assignment \overline{T}.

Thus, z is false in either T or \overline{T} which implies that $\varphi(C)$ is satisfied by either T or \overline{T}. Thus C is satisfiable.
Proof of NP-Hardness (continued)

“⇐” If C is satisfiable, then there is a truth assignment T satisfying $\varphi(C)$. Let us then extend T for $\varphi_z(C)$ by assigning $T(z) = \text{false}$. By assumption, T is a satisfying truth assignment of $\varphi(C)$ and, therefore, also of $\varphi_z(C)$. Hence, in no clause of $\varphi_z(C)$ all literals are false. It remains to show that in no clause of $\varphi_z(C)$ all literals are true:

(i) Clauses for $\text{true}/\text{false}/\text{NOT}/\text{variable}$ gates contain z that is false.

(ii) For AND gates the clauses are: $(\neg g \lor h \lor z)$, $(\neg g \lor h' \lor z)$, $(g \lor \neg h \lor \neg h')$ where in the first two z is false, and in the third all three cannot be true as then the first two clauses would be false.

(iii) For OR gates the clauses are: $(\neg g \lor h \lor h')$, $(g \lor \neg h' \lor z)$, $(g \lor \neg h \lor z)$ where in the last two z is false, and in the first all three cannot be true as then the last two clauses would be false.
1-IN-3-SAT

INSTANCE: Boolean formula \(\varphi \) in 3-CNF

QUESTION: Does there exist a truth assignment \(T \) appropriate to \(\varphi \), such that in each clause, exactly one literal is **true** in \(T \)?

MONOTONE 1-IN-3-SAT

INSTANCE: Boolean formula \(\varphi \) in 3-CNF, s.t. the clauses in \(\varphi \) contain only unnegated atoms.

QUESTION: Does there exist a truth assignment \(T \) appropriate to \(\varphi \), such that in each clause, exactly one literal is **true** in \(T \)?

Theorem

Both 1-IN-3-SAT and MONOTONE 1-IN-3-SAT are NP-complete.
1-IN-3-SAT

Remarks

- Clearly 1-IN-3-SAT \subseteq NAESAT \subseteq 3-SAT. The instances of these 3 problems are the same, namely 3-CNF formulae. However, the positive instances of 1-IN-3-SAT are a proper subset of NAESAT, which in turn are a proper subset of the positive instances of 3-SAT.

- Note that the NP-completeness of any of these 3 problems does not immediatetely imply the NP-completeness of any of the other problems, since it is a priori not clear if further constraining the positive instances makes things easier or harder.

- MONOTONE 1-IN-3-SAT is a special case of 1-IN-3-SAT, i.e., the instances of the former are a proper subset of the latter while the question remains the same. The NP-hardness of the special case immediately implies the NP-hardness of the general case.
Proof of the NP-hardness of \textbf{1-IN-3-SAT}

We prove the NP-hardness by a reduction from \textbf{4-SAT}:
Let φ be an arbitrary instance of \textbf{4-SAT}, i.e., φ is in 4-CNF.
We construct an instance ψ of \textbf{1-IN-3-SAT} as follows:

For every clause $l_1 \lor l_2 \lor l_3 \lor l_4$ in φ, let $a_1, a_2, a_3, a_4, b_1, b_2, c_1, c_2, d$ be 9 fresh propositional variables. Then ψ contains the following 7 clauses:

1. $l_1 \lor a_1 \lor b_1$
2. $l_2 \lor a_2 \lor b_1$
3. $a_1 \lor a_2 \lor c_1$
4. $l_3 \lor a_3 \lor b_2$
5. $l_4 \lor a_4 \lor b_2$
6. $a_3 \lor a_4 \lor c_2$
7. $b_1 \lor b_2 \lor d$

\textbf{Idea.} These seven clauses guarantee that in a legal 1-in-3 assignment of ψ, the clause $l_1 \lor \cdots \lor l_4$ must be \textbf{true}:

By (1) – (3): If l_1 and l_2 are \textbf{false}, then b_1 must be \textbf{true}.

By (4) – (6): If l_3 and l_4 are \textbf{false}, then b_2 must be \textbf{true}.

However, by (7), it is not allowed that both b_1 and b_2 are \textbf{true}.
Proof of the NP-hardness of **MONOTONE 1-IN-3-SAT**

We show how an arbitrary instance φ of **1-IN-3-SAT** can be transformed into an equivalent instance ψ of **MONOTONE 1-IN-3-SAT**:

Let $X = \{x_1, \ldots, x_n\}$ be the variables in φ. Then the variables in ψ are $X \cup \{x_i' \mid 1 \leq i \leq n\} \cup \{a, b, c\}$. In φ, we replace every negative literal of the form $\neg x_i$ (for some i) by the unnegated atom x_i'.

Moreover, for every $i \in \{1, \ldots, n\}$, we add the following 3 clauses:

1. $x_i \lor x_i' \lor a$
2. $x_i \lor x_i' \lor b$
3. $a \lor b \lor c$

Idea. These three clauses guarantee that in a legal 1-in-3 assignment of ψ, the variables x_i and x_i' have complementary truth values. Hence, x_i' indeed encodes $\neg x_i$.
HITTING SET

INSTANCE: Set $T = \{t_1, \ldots, t_p\}$, family $(V_i)_{1 \leq i \leq n}$ of subsets of T, i.e.: for all $i \in \{1, \ldots, n\}$, $V_i \subseteq T$.

QUESTION: Does there exist a set $W \subseteq T$, s.t. $|W \cap V_i| = 1$ for all $i \in \{1, \ldots, n\}$? (A set W with this property is called a “hitting set”).

Corollary

HITTING SET is NP-complete.

Proof of the NP-hardness

By reduction from MONOTONE 1-IN-3-SAT: Let an instance of MONOTONE 1-IN-3-SAT be given by the 3-CNF formula φ over the variables X. We define the following instance of HITTING SET:

$T = X$. Moreover, suppose that φ contains n clauses. Then there are n sets $(V_i)_{1 \leq i \leq n}$. If the i-th clause in φ is $l_1 \lor l_2 \lor l_3$, then $V_i = \{l_1, l_2, l_3\}$.
Some Graph Problems

We have already proved the NP-completeness of the following graph problems:

- INDEPENDENT SET
- CLIQUE
- VERTEX COVER

We shall now show the following results:

- **3-COLORABILITY** is NP-complete.
- **HAMILTON-PATH** \leq_L HAMILTON-CYCLE \leq_L TSP(D)
INDEPENDENT SET

INSTANCE: Undirected graph $G = (V, E)$ and integer K.

QUESTION: Does there exist an independent set I of size $\geq K$?
i.e., $I \subseteq V$, s.t. for all $i, j \in I$ with $i \neq j$, $[i, j] \notin E$.

CLIQUE

INSTANCE: Undirected graph $G = (V, E)$ and integer K.

QUESTION: Does there exist a clique C of size $\geq K$?
i.e., $C \subseteq V$, s.t. for all $i, j \in C$ with $i \neq j$, $[i, j] \in E$.

VERTEX COVER

INSTANCE: Undirected graph $G = (V, E)$ and integer K.

QUESTION: Does there exist a vertex cover N of size $\leq K$?
i.e., $N \subseteq V$, s.t. for all $[i, j] \in E$, either $i \in N$ or $j \in N$.
Decision Problems

3-COLORABILITY

INSTANCE: Undirected graph $G = (V, E)$

QUESTION: Does G have a 3-coloring? i.e., an assignment of one of 3 colors to each of the vertices in V such that any two vertices i, j connected by an edge $[i, j] \in E$ do not have the same color?

k-COLORABILITY (for fixed value k)

INSTANCE: Undirected graph $G = (V, E)$

QUESTION: Does G have a k-coloring? i.e., an assignment of one of k colors to each of the vertices in V such that any two vertices i, j connected by an edge $[i, j] \in E$ do not have the same color?
Theorem

The k-COLORABILITY-problem is NP-complete for any fixed $k \geq 3$. The 2-COLORABILITY-problem is in P.

Proof

NP-Membership of k-COLORABILITY:
1. Guess an assignment $f : V \rightarrow \{1, \ldots, k\}$
2. Check for every edge $[i, j] \in E$ that $f(i) \neq f(j)$.

P-Membership of 2-COLORABILITY: (w.l.o.g., G is connected)
1. Start by assigning an arbitrary color to an arbitrary vertex $v \in V$.
2. Suppose that the vertices in $S \subset V$ have already been assigned a color. Choose $x \in S$ and assign to all vertices adjacent to x the opposite color. G is 2-colorable iff step 2 never leads to a contradiction.
NP-Hardness Proof of 3-COLORABILITY

By reduction from **NAESAT**: Let an arbitrary instance of **NAESAT** be given by a Boolean formula $\varphi = c_1 \land \ldots \land c_m$ in 3-CNF with variables x_1, \ldots, x_n. We construct the following graph $G(\varphi)$:

Let $V = \{a\} \cup \{x_i, \neg x_i \mid 1 \leq i \leq n\} \cup \{l_{i1}, l_{i2}, l_{i3} \mid 1 \leq i \leq m\}$, i.e. $|V| = 1 + 2n + 3m$.

For each variable x_i in φ, we introduce a triangle $[a, x_i, \neg x_i]$, i.e. all these triangles share the node a.

For each clause c_i in φ, we introduce a triangle $[l_{i1}, l_{i2}, l_{i3}]$. Moreover, each of these vertices l_{ij} is further connected to the node corresponding to this literal, i.e.: if the j-th literal in c_i is of the form x_α (resp. $\neg x_\alpha$) then we introduce an edge between l_{ij} and x_α (resp. $\neg x_\alpha$).
Example

The 3-CNF formula $\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor x_3 \lor \neg x_4)$ is reduced to the following graph:
Example

The 3-CNF formula $\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor x_3 \lor \neg x_4)$ is reduced to the following graph:

Let red = false and green = true. The above 3-coloring corresponds to $T(x_1) = T(\neg x_2) = T(\neg x_3) = T(\neg x_4) = true$.
Correctness of the Problem Reduction

Proof (continued)

“⇐” Suppose that G has a 3-coloring with colors $\{0, 1, 2\}$. W.l.o.g., the node a has the color 2. This induces a truth assignment T via the colors of the nodes x_i: if the color is 1, then $T(x_i) = \text{true}$ else $T(x_i) = \text{false}$. We claim that T is a legal NAESAT-assignment. Indeed, if in some clause, all literals had the value false (resp. true), then we could not use the color 0 (resp. 1) for coloring the triangle $[l_{i_1}, l_{i_2}, l_{i_3}]$, a contradiction.

“⇒” Suppose that there exists an NAESAT-assignment T of φ. Then we can extract a 3-coloring for G from T as follows:

(i) Node a is colored with color 2.

(ii) If $T(x_i) = \text{true}$, then color x_i with 1 and $\neg x_i$ with 0 else vice versa.

(iii) From each $[l_{i_1}, l_{i_2}, l_{i_3}]$, color two literals having opposite truth values with 0 (true) and 1 (false). Color the third with 2.
HAMILTON-PATH

INSTANCE: (directed or undirected) graph \(G = (V, E) \)

QUESTION: Does \(G \) have a Hamilton path?
i.e., a path visiting all vertices of \(G \) exactly once.

HAMILTON-CYCLE

INSTANCE: (directed or undirected) graph \(G = (V, E) \)

QUESTION: Does \(G \) have a Hamilton cycle?
i.e., a cycle visiting all vertices of \(G \) exactly once.

TSP(D)

INSTANCE: \(n \) cities 1, \ldots, \(n \) and a nonnegative integer distance \(d_{ij} \)
between any two cities \(i \) and \(j \) (such that \(d_{ij} = d_{ji} \)), and an integer \(B \).

QUESTION: Is there a tour through all cities of length at most \(B \)?
i.e., a permutation \(\pi \) s.t. \(\sum_{i=1}^{n} d_{\pi(i)\pi(i+1)} \leq B \) with \(\pi(n + 1) = \pi(1) \).
Theorem

HAMILTON-PATH, HAMILTON-CYCLE, and TSP(D) are NP-complete.

Proof

We shall show the following chain of reductions:

\[\text{HAMILTON-PATH} \leq_L \text{HAMILTON-CYCLE} \leq_L \text{TSP(D)} \]

It suffices to show NP-membership for the *hardest* problem:
1. Guess a tour \(\pi \) through the \(n \) cities.
2. Check that \(\sum_{i=1}^{n} d_{\pi(i)\pi(i+1)} \leq B \) with \(\pi(n+1) = \pi(1) \).

Likewise, it suffices to prove the NP-hardness of the *easiest* problem.

The NP-hardness of **HAMILTON-PATH** (by a reduction from **3-SAT**) is quite involved and is therefore omitted here (see Papadimitriou's book).
HAMILTON-PATH VS. HAMILTON-CYCLE

HAMILTON-PATH \(\leq_L\) HAMILTON-CYCLE

(We only consider undirected graphs). Let an arbitrary instance of HAMILTON-PATH be given by the graph \(G = (V, E)\). We construct an equivalent instance \(G' = (V', E')\) of HAMILTON-CYCLE as follows:

Let \(V' := V \cup \{z\}\) for some new vertex \(z\) and \(E' := E \cup \{[v, z] \mid v \in V\}\). G has a Hamilton path \(\iff\) G' has a Hamilton cycle

“\(\Rightarrow\)” Suppose that G has a Hamilton path \(\pi\) starting at vertex \(a\) and ending at \(b\). Then \(\pi \cup \{z\}\) is clearly a Hamilton cycle in \(G'\).

“\(\Leftarrow\)” Let \(C\) be a Hamilton cycle in \(G'\). In particular, \(C\) goes through \(z\). Let \(a\) and \(b\) be the two neighboring nodes of \(z\) in this cycle. Then \(C \setminus \{z\}\) is a Hamilton path (starting at vertex \(a\) and ending at \(b\)) in \(G\).
HAMILTON-CYCLE vs. TSP(D)

HAMILTON-CYCLE \leq_L TSP(D)

Let an arbitrary instance of HAMILTON-CYCLE be given by the graph $G = (V, E)$. We construct an equivalent instance of TSP(D) as follows:

Let $V = \{1, \ldots, n\}$. Then our instance of TSP(D) has n cities. Moreover, for any two cities $i \neq j$, the distance is defined as

$$d_{ij} = \begin{cases}
1 & \text{if } [i, j] \in E \\
2 & \text{otherwise}
\end{cases}$$

Finally, we set $B = n$.

Clearly, there is no tour through all cities of length $< B = n$. Moreover, the Hamilton cycles in G are precisely the tours of length B. Hence, G has a Hamilton cycle \iff there exists a tour of length $\leq B$.
Summary of Reductions

SAT

4-SAT

3-SAT

1-in-3-SAT

CIRCUIT-SAT

IND-SET

HAM-P.

VC

NAESAT

HITTING SET

3-COL

MON 1-in-3-SAT

CLQ

HAM-C.

TSP(D)
Learning Objectives

- The concept of NP-completeness and its characterizations in terms of succinct certificates.
- You should now be familiar with the intuition of NP-completeness (and recognize NP-complete problems)
- Basic techniques to prove problems NP-complete
- A basic repertoire of NP-complete problems (in particular, versions of SAT and some graph problems) to be used in further NP-completeness proofs.
- Reductions, reductions, reductions, . . .