Complexity Theory
VU 181.142, SS 2016

5. NP-Completeness

Reinhard Pichler

Institut für Informationssysteme
Arbeitsbereich DBAI
Technische Universität Wien

19 April, 2016
Outline

5. NP-Completeness
5.1 Some Variants of Satisfiability
5.2 CIRCUIT SAT
5.3 NOT-ALL-EQUAL-SAT
5.4 1-IN-3-SAT
5.5 Some Graph Problems
5.6 3-COLORABILITY
5.7 HAMILTON-PATH, etc.
5.8 Summary
Some Variants of Satisfiability

We have already encountered several versions of satisfiability problems:

- **intractable**: SAT, 3-SAT
- **tractable**: 2-SAT, HORNSAT
Some Variants of Satisfiability

We have already encountered several versions of satisfiability problems:

- intractable: SAT, 3-SAT
- tractable: 2-SAT, HORNSAT

We shall encounter further intractable versions of satisfiability problems:

- restricted (but still intractable) versions of SAT
- CIRCUIT SAT
- Not-all-equal SAT (NAESAT)
- (MONOTONE) 1-IN-3-SAT
- strongly related problem: HITTING SET
Narrowing NP-complete languages

An NP-complete language can sometimes be narrowed down by transformations which eliminate certain features of the language but still preserve NP-completeness.

Restricting SAT to formulae in CNF and a further restriction to 3-SAT are typical examples. Generally, k-SAT (i.e., formulae are restricted to CNF with exactly k literals in each clause) is NP-complete for any $k \geq 3$.
Narrowing NP-complete languages

An NP-complete language can sometimes be narrowed down by transformations which eliminate certain features of the language but still preserve NP-completeness.

Restricting SAT to formulae in CNF and a further restriction to 3-SAT are typical examples. Generally, k-SAT (i.e., formulae are restricted to CNF with exactly \(k \) literals in each clause) is NP-complete for any \(k \geq 3 \).

Here is another example of narrowing an NP-complete language:

Proposition

3-SAT remains NP-complete even if the Boolean expressions \(\varphi \) in 3-CNF are restricted such that

- each variable appears at most three times in \(\varphi \) and
- each literal appears at most twice in \(\varphi \).
Proof

The reduction consists in rewriting an arbitrary instance φ of 3-SAT in such a way that the forbidden features are eliminated.

Consider a variable x appearing $k > 3$ times in φ.

(i) Replace the first occurrence of x in φ by x_1, the second by x_2, and so on where x_1, \ldots, x_k are new variables.

(ii) Add clauses $(\neg x_1 \lor x_2), (\neg x_2 \lor x_3), \ldots, (\neg x_k \lor x_1)$ to φ.

Let φ' be the result of systematically modifying φ in this way. Clearly, φ' has the desired syntactic properties.

Now φ is satisfiable iff φ' is satisfiable:
For each x appearing $k > 3$ times in φ, the truth values of x_1, \ldots, x_k are the same in each truth assignment satisfying φ'.
Boolean Circuits

Syntax of Boolean circuits

- A Boolean circuit is a directed graph \(C = (V, E) \) where
 \(V = \{1, 2, \ldots, n\} \) is the set of gates and
 \(C \) is acyclic (with \(i < j \) for all edges \((i, j) \in E \)).

- All gates \(i \) have a sort \(s(i) \in \{\text{true}, \text{false}, \land, \lor, \neg\} \cup \{x_1, x_2, \ldots\} \).
 - If \(s(i) \in \{\text{true}, \text{false}\} \cup \{x_1, x_2, \ldots\} \), the indegree of \(i \) is 0 (inputs).
 - If \(s(i) = \neg \) then the indegree of \(i \) is 1.
 - If \(s(i) \in \{\lor, \land\} \) then the indegree of \(i \) is 2.

- Gate \(n \) is the output of the circuit.

Remark. \(\{x_1, x_2, \ldots\} \) are variables whose value can be true or false.
Boolean Circuits

Semantics

Let C be a Boolean circuit and let $X(C)$ denote the set of variables appearing in the circuit C. A truth assignment for C is a function $T : X(C) \rightarrow \{\text{true}, \text{false}\}$.

The truth value $T(i)$ for each gate i is defined inductively:

- If $s(i) = \text{true}$, $T(i) = \text{true}$ and if $s(i) = \text{false}$, $T(i) = \text{false}$.
- If $s(i) = x_j \in X(C)$, then $T(i) = T(x_j)$.
- If $s(i) = \neg$, then $T(i) = \text{true}$ if $T(j) = \text{false}$, else $T(i) = \text{false}$ where (j, i) is the unique edge entering i.
- If $s(i) = \land$, then $T(i) = \text{true}$ if $T(j) = T(j') = \text{true}$ else $T(i) = \text{false}$ where (j, i) and (j', i) are the two edges entering i.
- If $s(i) = \lor$, then $T(i) = \text{true}$ if $T(j) = \text{true}$ or $T(j') = \text{true}$ else $T(i) = \text{false}$ where (j, i) and (j', i) are the two edges entering i.
- $T(C) = T(n)$, i.e. the value of the circuit C.
CIRCUIT SAT

INSTANCE: Boolean circuit \(C \) with variables \(X(C) \)
QUESTION: Does there exist a truth assignment \(T : X(C) \rightarrow \{ \text{true, false} \} \) such that \(T(C) = \text{true} \)?

Theorem

CIRCUIT SAT is \text{NP-complete}.

Proof of NP-Membership

Consider the following NP-algorithm:

1. Guess a truth assignment \(T : X(C) \rightarrow \{ \text{true, false} \} \).
2. Check that \(T(C) = \text{true} \) holds.
Proof of NP-Hardness

We prove the NP-hardness by a reduction from **SAT**: Let an arbitrary instance of **SAT** be given by a Boolean formula φ over the variables $X = \{x_1, \ldots, x_k\}$. We construct the following Boolean circuit $C(\varphi)$:

- **The variables $X(C)$** in $C(\varphi)$ are precisely the variables X.
- **For every subexpression ψ of φ, $C(\varphi)$ contains a gate $g(\psi)$. The output gate of $C(\varphi)$ is the gate $g(\varphi)$.**
- **The sort and the incoming arcs of each gate $g(\psi)$ in $C(\varphi)$ are defined inductively:**
 - If ψ is a variable x_i then $g(\psi)$ is an input gate of sort $s(g(\psi)) = x_i$
 - If $\psi = \neg \psi'$ then $s(g(\psi)) = \neg$ with an incoming arc from $g(\psi')$.
 - If $\psi = \psi_1 \land \psi_2$ (resp. $\psi = \psi_1 \lor \psi_2$), then $s(g(\psi)) = \land$ (resp. $s(g(\psi)) = \lor$) with incoming arcs from $g(\psi_1)$ and $g(\psi_2)$.
Reduction from SAT to 3-SAT

Motivation

- We have already seen how an arbitrary propositional formula φ can be transformed efficiently into a sat-equivalent formula ψ in 3-CNF.
- This transformation (first into CNF and then into 3-CNF) is intuitive and clearly works in polynomial time. However, the log-space complexity of this transformation is not immediate.
- We now give an alternative transformation by reducing CIRCUIT SAT to 3-SAT. In total, we thus have:

$$\text{SAT} \leq_L \text{CIRCUIT SAT} \leq_L \text{3-SAT}$$
Reduction from **CIRCUIT SAT** to **3-SAT**

Let an arbitrary instance of **CIRCUIT SAT** be given by a Boolean circuit C. We construct the following instance $\varphi(C)$ of **SAT** (φ is in CNF with some clauses smaller than 3. The transformation into 3-CNF is obvious):

The formula $\varphi(C)$ uses all variables of C. Moreover, for each gate g of C, $\varphi(C)$ has a new variable g and the following clauses.

1. If g is a variable gate x: $(g \lor \neg x), (\neg g \lor x)$.
 \[g \leftrightarrow x\]

2. If g is a **true** (resp. **false**) gate: g (resp. $\neg g$).

3. If g is a NOT gate with a predecessor h:
 $(\neg g \lor \neg h), (g \lor h)$.
 \[g \leftrightarrow \neg h\]

4. If g is an AND gate with predecessors h, h':
 $(\neg g \lor h), (\neg g \lor h'), (g \lor \neg h \lor \neg h')$.
 \[g \leftrightarrow (h \land h')\]

5. If g is an OR gate with predecessors h, h':
 $(\neg g \lor h \lor h'), (g \lor \neg h'), (g \lor \neg h)$.
 \[g \leftrightarrow (h \lor h')\]

6. If g is also the output gate: g.

Reinhard Pichler

19 April, 2016
Not-all-equal SAT (NAESAT)

INSTANCE: Boolean formula φ in 3-CNF

QUESTION: Does there exist a truth assignment T appropriate to φ, such that the 3 literals in each clause do not have the same truth value?

Remark. Clearly $\text{NAESAT} \subset \text{3-SAT}$.

Theorem

NAESAT is NP-complete.
NAESAT

Proof of NP-Hardness

Recall the Boolean formula $\varphi(C)$ resulting from the reduction of CIRCUIT SAT to 3-SAT. For all one- and two-literal clauses in the resulting CNF-formula $\varphi(C)$, we add the same literal z (possibly twice) to make them 3-literal clauses.

The resulting formula $\varphi_z(C)$ fulfills the following equivalence:

$$\varphi_z(C) \in \text{NAESAT} \iff C \in \text{CIRCUIT SAT}.$$

“⇒” If a truth assignment T satisfies $\varphi_z(C)$ in the sense of NAESAT, so does the complementary truth assignment \overline{T}.

Thus, z is false in either T or \overline{T} which implies that $\varphi(C)$ is satisfied by either T or \overline{T}. Thus C is satisfiable.
Proof of NP-Hardness (continued)

“⇐” If C is satisfiable, then there is a truth assignment T satisfying $\varphi(C)$. Let us then extend T for $\varphi_z(C)$ by assigning $T(z) = \text{false}$.

By assumption, T is a satisfying truth assignment of $\varphi(C)$ and, therefore, also of $\varphi_z(C)$. Hence, in no clause of $\varphi_z(C)$ all literals are false.

It remains to show that in no clause of $\varphi_z(C)$ all literals are true:

(i) Clauses for true/false/NOT/variable gates contain z that is false.

(ii) For AND gates the clauses are: $(\neg g \lor h \lor z)$, $(\neg g \lor h' \lor z)$, $(g \lor \neg h \lor \neg h')$ where in the first two z is false, and in the third all three cannot be true as then the first two clauses would be false.

(iii) For OR gates the clauses are: $(\neg g \lor h \lor h')$, $(g \lor \neg h' \lor z)$, $(g \lor \neg h \lor z)$ where in the last two z is false, and in the first all three cannot be true as then the last two clauses would be false.
1-IN-3-SAT

INSTANCE: Boolean formula φ in 3-CNF

QUESTION: Does there exist a truth assignment T appropriate to φ, such that in each clause, exactly one literal is true in T?

MONOTONE 1-IN-3-SAT

INSTANCE: Boolean formula φ in 3-CNF, s.t. the clauses in φ contain only unnegated atoms.

QUESTION: Does there exist a truth assignment T appropriate to φ, such that in each clause, exactly one literal is true in T?

Theorem

Both 1-IN-3-SAT and MONOTONE 1-IN-3-SAT are NP-complete.
Remarks

- Clearly $\textbf{1-IN-3-SAT} \subset \textbf{NAESAT} \subset \textbf{3-SAT}$. The instances of these 3 problems are the same, namely 3-CNF formulae. However, the positive instances of $\textbf{1-IN-3-SAT}$ are a proper subset of \textbf{NAESAT}, which in turn are a proper subset of the positive instances of $\textbf{3-SAT}$.

- Note that the NP-completeness of any of these 3 problems does not immediatetely imply the NP-completeness of any of the other problems, since it is a priori not clear if further constraining the positive instances makes things easier or harder.

- $\textbf{MONOTONE 1-IN-3-SAT}$ is a special case of $\textbf{1-IN-3-SAT}$, i.e., the instances of the former are a proper subset of the latter while the question remains the same. The NP-hardness of the special case immediately implies the NP-hardness of the general case.
Proof of the NP-hardness of 1-IN-3-SAT

We prove the NP-hardness by a reduction from 4-SAT: Let φ be an arbitrary instance of 4-SAT, i.e., φ is in 4-CNF. We construct an instance ψ of 1-IN-3-SAT as follows:

For every clause $l_1 \lor l_2 \lor l_3 \lor l_4$ in φ, let $a_1, a_2, a_3, a_4, b_1, b_2, c_1, c_2, d$ be 9 fresh propositional variables. Then ψ contains the following 7 clauses:

(1) $l_1 \lor a_1 \lor b_1$
(2) $l_2 \lor a_2 \lor b_1$
(3) $a_1 \lor a_2 \lor c_1$
(4) $l_3 \lor a_3 \lor b_2$
(5) $l_4 \lor a_4 \lor b_2$
(6) $a_3 \lor a_4 \lor c_2$
(7) $b_1 \lor b_2 \lor d$

Idea. Suppose that in a truth assignment T of φ all literals in the clause $l_1 \lor \cdots \lor l_4$ are false:

By (1) – (3): If l_1 and l_2 are false, then b_1 must be true.

By (4) – (6): If l_3 and l_4 are false, then b_2 must be true.

However, by (7), it is not allowed that both b_1 and b_2 are true.
Proof of the NP-hardness of **MONOTONE 1-IN-3-SAT**

We show how an arbitrary instance \(\varphi \) of **1-IN-3-SAT** can be transformed into an equivalent instance \(\psi \) of **MONOTONE 1-IN-3-SAT**:

Let \(X = \{x_1, \ldots, x_n\} \) be the variables in \(\varphi \). Then the variables in \(\psi \) are \(X \cup \{x'_i \mid 1 \leq i \leq n\} \cup \{a, b, c\} \). In \(\varphi \), we replace every negative literal of the form \(\neg x_i \) (for some \(i \)) by the unnegated atom \(x'_i \).

Moreover, for every \(i \in \{1, \ldots, n\} \), we add the following 3 clauses:

1. \(x_i \lor x'_i \lor a \)
2. \(x_i \lor x'_i \lor b \)
3. \(a \lor b \lor c \)

Idea. These three clauses guarantee that in a legal 1-in-3 assignment of \(\psi \), the variables \(x_i \) and \(x'_i \) have complementary truth values. Hence, \(x'_i \) indeed encodes \(\neg x_i \).
HITTING SET

INSTANCE: Set \(T = \{t_1, \ldots, t_p\} \), family \((V_i)_{1 \leq i \leq n}\) of subsets of \(T \), i.e.:
for all \(i \in \{1, \ldots, n\} \), \(V_i \subseteq T \).

QUESTION: Does there exist a set \(W \subseteq T \), s.t. \(|W \cap V_i| = 1\) for all \(i \in \{1, \ldots, n\}\)? (A set \(W \) with this property is called a “hitting set”).

Corollary

HITTING SET \(\text{is NP-complete.} \)

Proof of the NP-hardness

By reduction from MONOTONE 1-IN-3-SAT: Let an instance of MONOTONE 1-IN-3-SAT be given by the 3-CNF formula \(\varphi \) over the variables \(X \). We define the following instance of HITTING SET:

\(T = X \). Moreover, suppose that \(\varphi \) contains \(n \) clauses. Then there are \(n \) sets \((V_i)_{1 \leq i \leq n}\). If the \(i \)-th clause in \(\varphi \) is \(l_1 \lor l_2 \lor l_3 \), then \(V_i = \{l_1, l_2, l_3\} \).
Some Graph Problems

We have already proved the NP-completeness of the following graph problems:

- **INDEPENDENT SET**
- **CLIQUE**
- **VERTEX COVER**

We shall now show the following results:

- **3-COLORABILITY** is NP-complete.
- **HAMILTON-PATH** \leq_L **HAMILTON-CYCLE** \leq_L **TSP(D)**
INDEPENDENT SET

INSTANCE: Undirected graph $G = (V, E)$ and integer K.

QUESTION: Does there exist an independent set I of size $\geq K$?

i.e., $I \subseteq V$, s.t. for all $i, j \in I$ with $i \neq j$, $[i, j] \not\in E$.

CLIQUE

INSTANCE: Undirected graph $G = (V, E)$ and integer K.

QUESTION: Does there exist a clique C of size $\geq K$?

i.e., $C \subseteq V$, s.t. for all $i, j \in C$ with $i \neq j$, $[i, j] \in E$.

VERTEX COVER

INSTANCE: Undirected graph $G = (V, E)$ and integer K.

QUESTION: Does there exist a vertex cover N of size $\leq K$?

i.e., $N \subseteq V$, s.t. for all $[i, j] \in E$, either $i \in N$ or $j \in N$.
Decision Problems

3-COLORABILITY

INSTANCE: Undirected graph $G = (V, E)$

QUESTION: Does G have a 3-coloring? i.e., an assignment of one of 3 colors to each of the vertices in V such that any two vertices i, j connected by an edge $[i, j] \in E$ do not have the same color?

k-COLORABILITY (for fixed value k)

INSTANCE: Undirected graph $G = (V, E)$

QUESTION: Does G have a k-coloring? i.e., an assignment of one of k colors to each of the vertices in V such that any two vertices i, j connected by an edge $[i, j] \in E$ do not have the same color?
Theorem

The k-COLORABILITY problem is NP-complete for any fixed $k \geq 3$. The 2-COLORABILITY problem is in P.

Proof

NP-Membership of k-COLORABILITY:
1. Guess an assignment $f : V \rightarrow \{1, \ldots, k\}$
2. Check for every edge $[i, j] \in E$ that $f(i) \neq f(j)$.

P-Membership of 2-COLORABILITY: (w.l.o.g., G is connected)
1. Start by assigning an arbitrary color to an arbitrary vertex $v \in V$.
2. Suppose that the vertices in $S \subset V$ have already been assigned a color. Choose $x \in S$ and assign to all vertices adjacent to x the opposite color. G is 2-colorable iff step 2 never leads to a contradiction.
NP-Hardness Proof of 3-COLORABILITY

By reduction from NAESAT: Let an arbitrary instance of NAESAT be given by a Boolean formula $\varphi = c_1 \land \ldots \land c_m$ in 3-CNF with variables x_1, \ldots, x_n. We construct the following graph $G(\varphi)$:

Let $V = \{a\} \cup \{x_i, \neg x_i \mid 1 \leq i \leq n\} \cup \{l_{i_1}, l_{i_2}, l_{i_3} \mid 1 \leq i \leq m\}$, i.e. $|V| = 1 + 2n + 3m$.

For each variable x_i in φ, we introduce a triangle $[a, x_i, \neg x_i]$, i.e. all these triangles share the node a.

For each clause c_i in φ, we introduce a triangle $[l_{i_1}, l_{i_2}, l_{i_3}]$. Moreover, each of these vertices l_{ij} is further connected to the node corresponding to this literal, i.e.: if the j-th literal in c_i is of the form x_α (resp. $\neg x_\alpha$) then we introduce an edge between l_{ij} and x_α (resp. $\neg x_\alpha$)
Example

The 3-CNF formula \(\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor x_3 \lor \neg x_4) \) is reduced to the following graph:
Example

The 3-CNF formula $\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor x_3 \lor \neg x_4)$ is reduced to the following graph:

Let red = \text{false} and green = \text{true}. The above 3-coloring corresponds to $T(x_1) = T(\neg x_2) = T(\neg x_3) = T(\neg x_4) = \text{true}$.
Correctness of the Problem Reduction

Proof (continued)

“⇐” Suppose that G has a 3-coloring with colors $\{0, 1, 2\}$. W.l.o.g., the node a has the color 2. This induces a truth assignment T via the colors of the nodes x_i: if the color is 1, then $T(x_i) = \text{true}$ else $T(x_i) = \text{false}$. We claim that T is a legal \textbf{NAESAT}-assignment. Indeed, if in some clause, all literals had the value \text{false} (resp. \text{true}), then we could not use the color 0 (resp. 1) for coloring the triangle $[l_{i1}, l_{i2}, l_{i3}]$, a contradiction.

“⇒” Suppose that there exists an \textbf{NAESAT}-assignment T of φ. Then we can extract a 3-coloring for G from T as follows:

(i) Node a is colored with color 2.
(ii) If $T(x_i) = \text{true}$, then color x_i with 1 and $\neg x_i$ with 0 else vice versa.
(iii) From each $[l_{i1}, l_{i2}, l_{i3}]$, color two literals having opposite truth values with 0 (\text{true}) and 1 (\text{false}). Color the third with 2.
HAMILTON-PATH

INSTANCE: (directed or undirected) graph $G = (V, E)$

QUESTION: Does G have a *Hamilton path*?

* i.e., a path visiting all vertices of G exactly once.

HAMILTON-CYCLE

INSTANCE: (directed or undirected) graph $G = (V, E)$

QUESTION: Does G have a *Hamilton cycle*?

* i.e., a cycle visiting all vertices of G exactly once.

TSP(D)

INSTANCE: n cities $1, \ldots, n$ and a nonnegative integer distance d_{ij} between any two cities i and j (such that $d_{ij} = d_{ji}$), and an integer B.

QUESTION: Is there a tour through all cities of length at most B?

* i.e., a permutation π s.t. $\sum_{i=1}^{n} d_{\pi(i)\pi(i+1)} \leq B$ with $\pi(n + 1) = \pi(1)$.
Complexity

Theorem

HAMILTON-PATH, HAMILTON-CYCLE, and TSP(D) are NP-complete.

Proof

We shall show the following chain of reductions:

\[\text{HAMILTON-PATH} \leq_L \text{HAMILTON-CYCLE} \leq_L \text{TSP(D)} \]

It suffices to show NP-membership for the hardest problem:
1. Guess a tour \(\pi \) through the \(n \) cities.
2. Check that \(\sum_{i=1}^{n} d_{\pi(i)\pi(i+1)} \leq B \) with \(\pi(n+1) = \pi(1) \).

Likewise, it suffices to prove the NP-hardness of the easiest problem. The NP-hardness of HAMILTON-PATH (by a reduction from 3-SAT) is quite involved and is therefore omitted here (see Papadimitriou’s book).
HAMILTON-PATH \textbf{vs.} HAMILTON-CYCLE

\begin{center}
\begin{tabular}{|c|}
\hline
HAMILTON-PATH \leq_L HAMILTON-CYCLE \\
\hline
\end{tabular}
\end{center}

(We only consider undirected graphs). Let an arbitrary instance of HAMILTON-PATH be given by the graph $G = (V, E)$. We construct an equivalent instance $G' = (V', E')$ of HAMILTON-CYCLE as follows:

Let $V' := V \cup \{z\}$ for some new vertex z and $E' := E \cup \{[v, z] \mid v \in V\}$.

G has a Hamilton path $\iff G'$ has a Hamilton cycle

\Rightarrow Suppose that G has a Hamilton path π starting at vertex a and ending at b. Then $\pi \cup \{z\}$ is clearly a Hamilton cycle in G'.

\Leftarrow Let C be a Hamilton cycle in G'. In particular, C goes through z. Let a and b be the two neighboring nodes of z in this cycle. Then $C \setminus \{z\}$ is a Hamilton path (starting at vertex a and ending at b) in G.

Reinhard Pichler

19 April, 2016
HAMILTON-CYCLE vs. TSP(D)

HAMILTON-CYCLE \(\leq_L \) TSP(D)

Let an arbitrary instance of **HAMILTON-CYCLE** be given by the graph \(G = (V, E) \). We construct an equivalent instance of **TSP(D)** as follows:

Let \(V = \{1, \ldots, n\} \). Then our instance of **TSP(D)** has \(n \) cities. Moreover, for any two cities \(i \neq j \), the distance is defined as

\[
 d_{ij} = \begin{cases}
 1 & \text{if } [i, j] \in E \\
 2 & \text{otherwise}
 \end{cases}
\]

Finally, we set \(B = n \).

Clearly, there is no tour through all cities of length \(< B = n \).

Moreover, the Hamilton cycles in \(G \) are precisely the tours of length \(B \).

Hence, \(G \) has a Hamilton cycle \(\iff \) there exists a tour of length \(\leq B \).
Summary of Reductions

- **SAT**
 - 4-SAT
 - 1-in-3-SAT
 - MON 1-in-3-SAT
 - HITTING SET
 - 3-SAT
 - INDEPENDENT SET
 - VERTEX COVER
 - CLIQUE
 - HAM.-PATH
 - HAM.-CYCLE
 - TSP(D)
 - CIRCUIT-SAT
 - NAESAT
 - 3-COL
Learning Objectives

- The concept of NP-completeness and its characterizations in terms of succinct certificates.
- You should now be familiar with the intuition of NP-completeness (and recognize NP-complete problems)
- Basic techniques to prove problems NP-complete
- A basic repertoire of NP-complete problems (in particular, versions of SAT and some graph problems) to be used in further NP-completeness proofs.
- Reductions, reductions, reductions, ...