5. NP-Completeness

5.1 Some Variants of Satisfiability

We have already encountered several versions of satisfiability problems:

- **intractable**: SAT, 3-SAT
- **tractable**: 2-SAT, HORNSAT

We shall encounter further intractable versions of satisfiability problems:

- restricted (but still intractable) versions of SAT
- CIRCUIT SAT
- Not-all-equal SAT (NAESAT)
- (MONOTONE) 1-IN-3-SAT
- strongly related problem: HITTING SET
Narrowing NP-complete languages

An NP-complete language can sometimes be narrowed down by transformations which eliminate certain features of the language but still preserve NP-completeness.

Restricting SAT to formulae in CNF and a further restriction to 3-SAT are typical examples. Generally, k-SAT (i.e., formulae are restricted to CNF with exactly k literals in each clause) is NP-complete for any k ≥ 3.

Proof

The reduction consists in rewriting an arbitrary instance φ of 3-SAT in such a way that the forbidden features are eliminated.

Consider a variable x appearing k > 3 times in φ.

(i) Replace the first occurrence of x in φ by x₁, the second by x₂, and so on where x₁, …, xₖ are new variables.

(ii) Add clauses (¬x₁ ∨ x₂), (¬x₂ ∨ x₃), …, (¬xₖ ∨ x₁) to φ.

Let φ' be the result of systematically modifying φ in this way. Clearly, φ' has the desired syntactic properties.

Now φ is satisfiable if φ' is satisfiable:

For each x appearing k > 3 times in φ, the truth values of x₁, …, xₖ are the same in each truth assignment satisfying φ'.

Boolean Circuits

Syntax of Boolean circuits

A Boolean circuit is a directed graph C = (V, E) where V = {1, 2, …, n} is the set of gates and C is acyclic (with i < j for all edges (i, j) ∈ E).

All gates i have a sort s(i) ∈ {true, false, ∧, ∨, ¬} ∪ {x₁, x₂, …}.­

- If s(i) ∈ {true, false} ∪ {x₁, x₂, …}, the indegree of i is 0 (inputs).
- If s(i) = ¬ then the indegree of i is 1.
- If s(i) ∈ {∨, ∧} then the indegree of i is 2.

Gate n is the output of the circuit.

Remark. {x₁, x₂, …} are variables whose value can be true or false.
Complexity Theory 5. NP-Completeness 5.2. CIRCUIT SAT

CIRCUIT SAT

 INSTANCE: Boolean circuit C with variables $X(C)$

 QUESTION: Does there exist a truth assignment $T : X(C) \to \{\text{true, false}\}$ such that $T(C) = \text{true}$?

Theorem

CIRCUIT SAT is NP-complete.

Proof of NP-Membership

Consider the following NP-algorithm:

1. Guess a truth assignment $T : X(C) \to \{\text{true, false}\}$.
2. Check that $T(C) = \text{true}$ holds.

Proof of NP-Hardness

We prove the NP-hardness by a reduction from SAT: Let an arbitrary instance of SAT be given by a Boolean formula φ over the variables $X = \{x_1, \ldots, x_k\}$. We construct the following Boolean circuit $C(\varphi)$:

- The variables $X(C)$ in $C(\varphi)$ are precisely the variables X.
- For every subexpression ψ of φ, $C(\varphi)$ contains a gate $g(\psi)$. The output gate of $C(\varphi)$ is the gate $g(\varphi)$.
- The sort and the incoming arcs of each gate $g(\psi)$ in $C(\varphi)$ are defined inductively:
 - If ψ is a variable x_i, then $g(\psi)$ is an input gate of sort $s(g(\psi)) = x_i$.
 - If $\psi = \neg \psi'$ then $s(g(\psi)) = \neg$ with an incoming arc from $g(\psi')$.
 - If $\psi = \psi_1 \land \psi_2$ (resp. $\psi = \psi_1 \lor \psi_2$), then $s(g(\psi)) = \land$ (resp. $s(g(\psi)) = \lor$) with incoming arcs from $g(\psi_1)$ and $g(\psi_2)$.

Reduction from SAT to 3-SAT

Motivation

- We have already seen how an arbitrary propositional formula φ can be transformed efficiently into a sat-equivalent formula ψ in 3-CNF.
- This transformation (first into CNF and then into 3-CNF) is intuitive and clearly works in polynomial time. However, the log-space complexity of this transformation is not immediate.
- We now give an alternative transformation by reducing CIRCUIT SAT to 3-SAT. In total, we thus have: $\text{SAT} \leq_L \text{CIRCUIT SAT} \leq_L \text{3-SAT}$
Reduction from CIRCUIT SAT to 3-SAT

Let an arbitrary instance of **CIRCUIT SAT** be given by a Boolean circuit C. We construct the following instance $\varphi(C)$ of **SAT** (φ is in CNF with some clauses smaller than 3. The transformation into 3-CNF is obvious):

The formula $\varphi(C)$ uses all variables of C. Moreover, for each gate g of C, $\varphi(C)$ has a new variable g and the following clauses.

1. If g is a variable gate x: $(g \lor \neg x), (\neg g \lor x)$. [$g \leftrightarrow x$]
2. If g is a true (resp. false) gate: g (resp. $\neg g$).
3. If g is a NOT gate with a predecessor h: $(\neg g \lor \neg h), (g \lor h)$. [$g \leftrightarrow \neg h$]
4. If g is an AND gate with predecessors h, h': $(\neg g \lor h), (\neg g \lor h'), (g \lor \neg h \lor \neg h')$. [$g \leftrightarrow (h \land h')$]
5. If g is an OR gate with predecessors h, h': $(\neg g \lor h \lor h'), (g \lor \neg h \lor h'), (g \lor \neg h)$. [$g \leftrightarrow (h \lor h')$]
6. If g is also the output gate: g.

NAESAT

Not-all-equal SAT (NAESAT)

INSTANCE: Boolean formula φ in 3-CNF

QUESTION: Does there exist a truth assignment T appropriate to φ, such that the 3 literals in each clause do not have the same truth value?

Remark. Clearly NAESAT \subset 3-SAT.

Theorem

NAESAT is NP-complete.

Proof of NP-Hardness

Recall the Boolean formula $\varphi(C)$ resulting from the reduction of **CIRCUIT SAT** to 3-SAT. For all one- and two-literal clauses in the resulting CNF-formula $\varphi(C)$, we add the same literal z (possibly twice) to make them 3-literal clauses.

The resulting formula $\varphi_2(C)$ fulfills the following equivalence:

$\varphi_2(C) \in\text{NAESAT} \iff C \in \text{CIRCUIT SAT}$.

“\Rightarrow” If a truth assignment T satisfies $\varphi_2(C)$ in the sense of NAESAT, so does the complementary truth assignment \overline{T}.

Thus, z is false in either T or \overline{T} which implies that $\varphi(C)$ is satisfied by either T or \overline{T}. Thus C is satisfiable.
1-IN-3-SAT

INSTANCE: Boolean formula φ in 3-CNF
QUESTION: Does there exist a truth assignment T appropriate to φ, such that in each clause, exactly one literal is true in T?

MONOTONE 1-IN-3-SAT

INSTANCE: Boolean formula φ in 3-CNF, s.t. the clauses in φ contain only unnegated atoms.
QUESTION: Does there exist a truth assignment T appropriate to φ, such that in each clause, exactly one literal is true in T?

Theorem
Both 1-IN-3-SAT and MONOTONE 1-IN-3-SAT are NP-complete.

Proof of the NP-hardness of 1-IN-3-SAT

We prove the NP-hardnes by a reduction from 4-SAT:
Let φ be an arbitrary instance of 4-SAT, i.e., φ is in 4-CNF.
We construct an instance ψ of 1-IN-3-SAT as follows:
For every clause $l_1 \lor l_2 \lor l_3 \lor l_4$ in φ, let $a_1, a_2, a_3, a_4, b_1, b_2, c_1, c_2, d$ be 9 fresh propositional variables. Then ψ contains the following 7 clauses:

1. $l_1 \lor a_1 \lor b_1$
2. $l_2 \lor a_2 \lor b_1$
3. $a_1 \lor a_2 \lor c_1$
4. $l_3 \lor a_3 \lor b_2$
5. $l_4 \lor a_4 \lor b_2$
6. $a_3 \lor a_4 \lor c_2$
7. $b_1 \lor b_2 \lor d$

Idea. Suppose that in a truth assignment T of φ all literals in the clause $l_1 \lor \ldots \lor l_4$ are false.
By (1) – (3): If l_1 and l_2 are false, then b_1 must be true.
By (4) – (6): If l_3 and l_4 are false, then b_2 must be true.
However, by (7), it is not allowed that both b_1 and b_2 are true.

Proof of the NP-hardness of MONOTONE 1-IN-3-SAT

We show how an arbitrary instance φ of 1-IN-3-SAT can be transformed into an equivalent instance ψ of MONOTONE 1-IN-3-SAT:
Let $X = \{x_1, \ldots, x_n\}$ be the variables in φ. Then the variables in ψ are $X \cup \{x'_i | 1 \leq i \leq n\} \cup \{a, b, c\}$. In φ, we replace every negative literal of the form $\neg x_i$ (for some i) by the unnegated atom x'_i.
Moreover, for every $i \in \{1, \ldots, n\}$, we add the following 3 clauses:

1. $x_i \lor x'_i \lor a$
2. $x_i \lor x'_i \lor b$
3. $a \lor b \lor c$

Idea. These three clauses guarantee that in a legal 1-in-3 assignment of ψ, the variables x_i and x'_i have complementary truth values. Hence, x'_i indeed encodes $\neg x_i$.

Remarks

- Clearly 1-IN-3-SAT \subset NAESAT \subset 3-SAT. The instances of these 3 problems are the same, namely 3-CNF formulae. However, the positive instances of 1-IN-3-SAT are a proper subset of NAESAT, which in turn are a proper subset of the positive instances of 3-SAT.
- Note that the NP-completeness of any of these 3 problems does not immediately imply the NP-completeness of any of the other problems, since it is a priori not clear if further constraining the positive instances makes things easier or harder.
- MONOTONE 1-IN-3-SAT is a special case of 1-IN-3-SAT, i.e., the instances of the former are a proper subset of the latter while the question remains the same. The NP-hardness of the special case immediately implies the NP-hardness of the general case.
Complexity Theory 5. NP-Completeness 5.5. Some Graph Problems

HITTING SET

INSTANCE: Set $T = \{t_1, \ldots, t_p\}$, family $(V_i)_{1 \leq i \leq n}$ of subsets of T, i.e.: for all $i \in \{1, \ldots, n\}$, $V_i \subseteq T$.

QUESTION: Does there exist a set $W \subseteq T$, s.t. $|W \cap V_i| = 1$ for all $i \in \{1, \ldots, n\}$? (A set W with this property is called a “hitting set”).

Corollary

HITTING SET is NP-complete.

Proof of the NP-hardness

By reduction from MONOTONE 1-IN-3-SAT: Let an instance of MONOTONE 1-IN-3-SAT be given by the 3-CNF formula φ over the variables X. We define the following instance of HITTING SET:

$T = X$. Moreover, suppose that φ contains n clauses. Then there are n sets $(V_i)_{1 \leq i \leq n}$. If the i-th clause in φ is $l_1 \lor l_2 \lor l_3$, then $V_i = \{l_1, l_2, l_3\}$.

Decision Problems

INDEPENDENT SET

INSTANCE: Undirected graph $G = (V, E)$ and integer K.

QUESTION: Does there exist an independent set I of size $\geq K$? i.e., $I \subseteq V$, s.t. for all $i, j \in I$ with $i \neq j$, $[i, j] \notin E$.

CLIQUE

INSTANCE: Undirected graph $G = (V, E)$ and integer K.

QUESTION: Does there exist a clique C of size $\geq K$? i.e., $C \subseteq V$, s.t. for all $i, j \in C$ with $i \neq j$, $[i, j] \in E$.

VERTEX COVER

INSTANCE: Undirected graph $G = (V, E)$ and integer K.

QUESTION: Does there exist a vertex cover N of size $\leq K$? i.e., $N \subseteq V$, s.t. for all $[i, j] \in E$, either $i \in N$ or $j \in N$.

Some Graph Problems

We have already proved the NP-completeness of the following graph problems:

- (INDEPENDENT SET)
- (CLIQUE)
- (VERTEX COVER)

We shall now show the following results:

- **3-COLORABILITY** is NP-complete.
- **HAMILTON-PATH \(\leq_L \) HAMILTON-CYCLE \(\leq_L \) TSP(D)
Complexity Theory 5. NP-Completeness 5.6. 3-COLORABILITY

Theorem

The k-COLORABILITY-problem is NP-complete for any fixed $k \geq 3$. The 2-COLORABILITY-problem is in P.

Proof

NP-Membership of k-COLORABILITY:
1. Guess an assignment $f : V \rightarrow \{1, \ldots, k\}$
2. Check for every edge $[i,j] \in E$ that $f(i) \neq f(j)$.

P-Membership of 2-COLORABILITY: (w.l.o.g., G is connected)
1. Start by assigning an arbitrary color to an arbitrary vertex $v \in V$.
2. Suppose that the vertices in $S \subset V$ have already been assigned a color. Choose $x \in S$ and assign to all vertices adjacent to x the opposite color.

G is 2-colorable if and only if step 2 never leads to a contradiction.

Example

The 3-CNF formula $\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor x_3 \lor \neg x_4)$ is reduced to the following graph:

NP-Hardness Proof of 3-COLORABILITY

By reduction from NAESAT: Let an arbitrary instance of NAESAT be given by a Boolean formula $\varphi = c_1 \land \ldots \land c_m$ in 3-CNF with variables x_1, \ldots, x_n. We construct the following graph $G(\varphi)$:

Let $V = \{a\} \cup \{x_i, \neg x_i \mid 1 \leq i \leq n\} \cup \{l_{1i}, l_{2i}, l_{3i} \mid 1 \leq i \leq m\}$, i.e. $|V| = 1 + 2n + 3m$.

For each variable x_i in φ, we introduce a triangle $[a, x_i, \neg x_i]$, i.e. all these triangles share the node a.

For each clause c_i in φ, we introduce a triangle $[l_{1i}, l_{2i}, l_{3i}]$. Moreover, each of these vertices l_{ij} is further connected to the node corresponding to this literal, i.e.: if the j-th literal in c_i is of the form x_k (resp. $\neg x_k$) then we introduce an edge between l_{ij} and x_k (resp. $\neg x_k$)

Example

The 3-CNF formula $\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor x_3 \lor \neg x_4)$ is reduced to the following graph:

Let red $= \text{false}$ and green $= \text{true}$. The above 3-coloring corresponds to $T(x_1) = T(\neg x_2) = T(\neg x_3) = T(\neg x_4) = \text{true}$.
Correctness of the Problem Reduction

Proof (continued)

“⇐” Suppose that \(G \) has a 3-coloring with colors \{0, 1, 2\}. W.l.o.g., the node \(a \) has the color 2. This induces a truth assignment \(T \) via the colors of the nodes \(x_i \): if the color is 1, then \(T(x_i) = \text{true} \) else \(T(x_i) = \text{false} \). We claim that \(T \) is a legal NAESAT-assignment. Indeed, if in some clause, all literals had the value \text{false} \ (resp. \text{true} \), then we could not use the color 0 (resp. 1) for coloring the triangle \([l_1, l_2, l_3]\), a contradiction.

“⇒” Suppose that there exists a \text{NAESAT}-assignment \(\varphi \). Then we can extract a 3-coloring for \(G \) from \(T \) as follows:

1. Node \(a \) is colored with color 2.
2. If \(T(x_i) = \text{true} \), then color \(x_i \) with 1 and \(\neg x_i \) with 0 else vice versa.
3. From each \([l_1, l_2, l_3]\), color two literals having opposite truth values with 0 (true) and 1 (false). Color the third with 2.

Complexity

Theorem

HAMILTON-PATH, HAMILTON-CYCLE, and TSP(D) are NP-complete.

Proof

We shall show the following chain of reductions:

\[
\text{HAMILTON-PATH} \leq_L \text{HAMILTON-CYCLE} \leq_L \text{TSP(D)}
\]

It suffices to show \text{NP-membership} for the hardest problem:

1. Guess a tour \(\pi \) through the \(n \) cities.
2. Check that \(\sum_{i=1}^{n} d_{\pi(i)\pi(i+1)} \leq B \) with \(\pi(n+1) = \pi(1) \).

Likewise, it suffices to prove the \text{NP-hardness} of the easiest problem. The \text{NP-hardness} of HAMILTON-PATH (by a reduction from 3-SAT) is quite involved and is therefore omitted here (see Papadimitriou’s book).
HAMILTON-CYCLE vs. TSP(D)

HAMILTON-CYCLE \leq_L TSP(D)

Let an arbitrary instance of HAMILTON-CYCLE be given by the graph \(G = (V,E) \). We construct an equivalent instance of TSP(D) as follows:

Let \(V = \{1, \ldots, n\} \). Then our instance of TSP(D) has \(n \) cities. Moreover, for any two cities \(i \neq j \), the distance is defined as

\[
d_{ij} = \begin{cases}
1 & \text{if } [i,j] \in E \\
2 & \text{otherwise}
\end{cases}
\]

Finally, we set \(B = n \).

Clearly, there is no tour through all cities of length \(< B = n \).

Moreover, the Hamilton cycles in \(G \) are precisely the tours of length \(B \).

Hence, \(G \) has a Hamilton cycle \(\iff \) there exists a tour of length \(\leq B \).

Learning Objectives

- The concept of NP-completeness and its characterizations in terms of succinct certificates.
- You should now be familiar with the intuition of NP-completeness (and recognize NP-complete problems)
- Basic techniques to prove problems NP-complete
- A basic repertoire of NP-complete problems (in particular, versions of SAT and some graph problems) to be used in further NP-completeness proofs.
- Reductions, reductions, reductions, ...