Complexity Theory
VU 181.142, SS 2016

1. General Information

Reinhard Pichler
Institut für Informationssysteme
Arbeitsbereich DBAI
Technische Universität Wien

01 March, 2016

Classes

- **Language.** This lecture will probably be held in English.
- **Time.** Throughout the term: Tuesdays, 11:00 – 13:00.
- **Place.**
 - Classes will be held in the Seminarraum 188/2 (Favoritenstraße 9-11, 4th floor).
 - The quiz at the beginning of the semester will be in the main building, HS 11 Paul Ludwik.

Prerequisites and Admission

- **Prerequisites.**
 - This course is designed for master’s students.
 - It is highly recommended to attend this course after the course Formale Methoden der Informatik (185.291).
- **Knowledge and skills required.**
 - basic knowledge in mathematical logic
 - introduction to complexity theory
 - in particular, the central concept of “problem reduction”
- **Admission.**
 - primarily for master’s students!
 - positive assessment in a quiz is required
 - each student has at most two attempts
Quiz

Goal.
- ensure that students have the required knowledge and skills
- basic knowledge in mathematical logic and complexity theory;
- in particular, the central concept of “problem reduction”.

Organization.
- Student’s card required!!
- closed book (no material allowed)
- Being able to solve all questions of the exercise sheet of block 1 (complexity theory part) of the course “Formale Methoden der Informatik” clearly suffices for the quiz.
- max. 20 points; passed with \(\geq 10 \).

Time and place.
- Thursday, 3 March 2016, 16:00 - 18:00: HS 11 Paul Ludwik
- Thursday, 10 March 2016, 16:00 - 18:00: HS 11 Paul Ludwik
- 60 min actual working time

Communication

- (during, after) classes
- Course Homepage: http://www.dbai.tuwien.ac.at/staff/pichler/complexity
- TISS: please check your mail address in TISS

Course Overview

Further details on topics from “Formale Methoden”

- Logarithmic Space
- Boolean Logic, proof of the Cook-Levin Theorem
- More NP-Completeness

Further topics

- The polynomial hierarchy
- The class PSPACE
- Applications (Database Theory, Abduction, ...)
- Fixed-Parameter Tractability

References

- Further references (articles from journals, conferences, ...) see course homepage
References

- Further references (articles from journals, conferences, . . .): see course homepage

Assessment

Components

- Quiz
- Homework and Reading assignments
- Exam

Final Mark

- Quiz, Homework, and reading assignments: 50%
- Written exam: 50%
- Requirements for positive assessment:
 - quiz + homework + reading: 40 (out of 80)
 - exam: 40 (out of 80)
- Marks 1–4:
 1 [140, 160], 2 [120, 140], 3 [100, 120], 4 [80, 100]

Homework and Reading Assignments

- 5 Homework assignments: max. 10 credits each
- 2 Reading assignments: max. 5 credits each
- maximum in total: 60 credits
(normal, no excuses are accepted if a student misses a homework or a reading assignment).
- Submission: per mail in electronic form
(use of Latex is strongly encouraged)
- Submission deadline:
 - will be unambiguously stated on the problem sheet and/or on the course homepage (normally, 1–2 weeks are allotted for each homework and reading assignment)
 - late submission: -2 credits per day of delay
Homework and Reading Assignments (cont’d)

- **good practice.**
 - discuss the problems with other students
 - team up to solve the problems
 - write down the solutions in your own words

- **bad practice.**
 - copy other students’ solutions
 - search for solutions on the web and copy them

ECTS Breakdown

3 ECTS corresponds to 75h of work for “standard students” fulfilling the prerequisites (i.e., VU Formale Methoden der Informatik - 185.291).

- quiz: 2h
- 12 classes (including preparation): 30h
- reading assignments (2×): 8h
- homework assignments (5×): 20h
- exam preparation: 15h

```
in total: 75h
```