Exercise 1 (5 credits) Recall the \(\Sigma_2^p \)-hardness proof of the Abduction Solvability problem by reduction from \(\text{QSAT}_2 \): Let an arbitrary instance of the \(\text{QSAT}_2 \) problem be given by the formula \(\varphi = (\exists X)(\forall Y)\psi(X, Y) \) with \(X = \{x_1, \ldots, x_k\} \) and \(Y = \{y_1, \ldots, y_l\} \). Moreover, let \(X' = \{x'_1, \ldots, x'_k\} \), \(R = \{r_1, \ldots, r_k\} \), and \(t \) be fresh variables. Then we define an instance of Solvability as \(P = (V, H, M, T) \) with

\[
V = X \cup Y \cup X' \cup R \cup \{t\} \\
H = X \cup X' \\
M = R \cup \{t\} \\
T = \{\psi(X, Y) \rightarrow t\} \cup \{\neg x_i \lor \neg x'_i, x_i \rightarrow r_i, x'_i \rightarrow r_i \mid 1 \leq i \leq k\}
\]

Give a rigorous correctness proof of this problem reduction, i.e., \(\varphi \equiv \text{true} \iff \text{Sol}(P) \neq \emptyset \).

Hint. As usual, prove both directions of the equivalence separately. It is convenient to use the notation from the lecture: For \(A \subseteq X \), let \(A' \) denote the set \(\{x' \mid x \in A\} \).

For the “\(\Rightarrow \)”-direction, you start off with a partial assignment \(I \) on \(X \). Let \(I^{-1}(\text{true}) = A \). Then it can be shown that \(S = A \cup (X \setminus A)' \) is a solution of \(P \). In order to show that \(S \) is indeed a solution, you must prove carefully the two conditions that (1) \(T \cup S \) is satisfiable and (2) \(T \cup S \models M \).

For the “\(\Leftarrow \)”-direction, first show that a solution \(S \) of \(P \) contains exactly one of \(\{x_i, x'_i\} \). This is due to the clauses \(\{\neg x_i \lor \neg x'_i, x_i \rightarrow r_i, x'_i \rightarrow r_i \mid 1 \leq i \leq k\} \) in \(T \). Hence, \(S \) must be of the form \(S = A \cup (X \setminus A)' \) for some \(A \subseteq X \). It remains to show that for the assignment \(I \) on \(X \) with \(I^{-1}(\text{true}) = A \), every extension \(J \) of \(I \) to the variables \(Y \) satisfies the formula \(\psi(X, Y) \).

Exercise 2 (5 credits) Recall the \(\Sigma_2^p \)-hardness proof of the Abduction Relevance problem by reduction from the Solvability problem: Let an arbitrary instance of the Solvability problem be given by the PAP \(P = (V, H, M, T) \). W.l.o.g., let \(T \) consist of a single formula...
\(\varphi \) and let \(h, h', m' \) be fresh variables. Then we define an instance of the Relevance (resp. the Necessity) problem with the following PAP \(\mathcal{P}' = (V', H', M', T') \):

\[
\begin{align*}
V' &= V \cup \{ h, h', m' \} \\
H' &= H \cup \{ h, h' \} \\
M' &= M \cup \{ m' \} \\
T' &= \{ \neg h \lor \varphi \} \cup \{ h' \lor m \mid m \in M \} \cup \{ \neg h \lor \neg h', h \rightarrow m', h' \rightarrow m' \}
\end{align*}
\]

This reduction fulfills the following equivalences:

\[\mathcal{P} \text{ has at least one solution iff } h \text{ is relevant in } \mathcal{P}' \text{ iff } h' \text{ is not necessary in } \mathcal{P}'. \]

Give a rigorous proof of these equivalences.

Hints.

- Show both directions of the first equivalence separately:

 For the “\(\Rightarrow \)”-direction, you start off with a solution \(S \) of \(\mathcal{P} \) and construct a solution \(S' \) of \(\mathcal{P}' \) with \(h \in S' \). Prove carefully that \(S' \) is indeed a solution of \(\mathcal{P}' \), i.e. (1) \(T' \cup S' \) is satisfiable and (2) \(T' \cup S' \models M' \).

 For the “\(\Leftarrow \)”-direction, you start off with a solution \(S' \) of \(\mathcal{P}' \), s.t. \(h \in S' \) and construct a solution \(S \) of \(\mathcal{P} \). Prove carefully that \(S \) is indeed a solution of \(\mathcal{P} \), i.e. (1) \(T \cup S \) is satisfiable and (2) \(T \cup S \models M \).

- The second equivalence follows easily from the clauses \(\{ \neg h \lor \neg h', h \rightarrow m', h' \rightarrow m' \} \) in \(T' \), i.e., every solution of \(\mathcal{P}' \) contains exactly one of \(\{ h, h' \} \).