Exercise 1 (5 credits) Recall the following characterizations of the complexity classes $\Sigma_i P$ and $\Pi_i P$ for $i \geq 1$.

Theorem.

- Let L be a language and $i \geq 1$. Then $L \in \Sigma_i P$ iff there is a polynomially balanced relation R such that the language $\{x \# y \mid (x, y) \in R\}$ is in $\Pi_{i-1} P$ and
 $$L = \{x \mid \text{there exists a } y \text{ with } |y| \leq |x|^k \text{ s.t. } (x, y) \in R\}$$

- Let L be a language and $i \geq 1$. Then $L \in \Pi_i P$ iff there is a polynomially balanced relation R such that the language $\{x \# y \mid (x, y) \in R\}$ is in $\Sigma_{i-1} P$ and
 $$L = \{x \mid \text{for all } y \text{ with } |y| \leq |x|^k, (x, y) \in R\}$$

Corollary.

- Let L be a language and $i \geq 1$. Then $L \in \Sigma_i P$ iff there is a polynomially balanced, polynomial-time decidable $(i+1)$-ary relation R such that
 $$L = \{x \mid \exists y_1 \exists y_2 \exists y_3 \cdots Q y_i \text{ such that } (x, y_1, \ldots, y_i) \in R\}$$
 where Q is \forall if i is even and \exists if i is odd.

- Let L be a language and $i \geq 1$. Then $L \in \Pi_i P$ iff there is a polynomially balanced, polynomial-time decidable $(i+1)$-ary relation R such that
 $$L = \{x \mid \forall y_1 \exists y_2 \exists y_3 \cdots Q y_i \text{ such that } (x, y_1, \ldots, y_i) \in R\}$$
 where Q is \exists if i is even and \forall if i is odd.

Give a rigorous proof of this corollary. It suffices to prove the correctness of the characterization of $\Sigma_i P$. The characterization of $\Pi_i P$ follows immediately.
Hint. Use the above theorem and proceed by induction on i.

Exercise 2 (5 credits) Recall the Σ_2^P-hardness proof of MINIMAL MODEL SAT by reduction from the QSAT$_2$-problem: Let an arbitrary instance of QSAT$_2$ be given by the QBF

$$\psi = (\exists x_1, \ldots, x_k)(\forall y_1, \ldots, y_l)\varphi$$

Now let $\{x'_1, \ldots, x'_k, z\}$ be fresh propositional variables. Then we construct an instance of MINIMAL MODEL SAT by the variable z and the formula

$$\chi = \bigwedge_{i=1}^k (\neg x_i \leftrightarrow x'_i) \land (\neg \varphi \lor (y_1 \land \ldots \land y_l \land z))$$

Recall from the lecture that we have already proved the following implication:

ψ is true (in every interpretation) \Rightarrow z is true in a minimal model of χ.

Give a rigorous proof also of the opposite direction, i.e.:

z is true in a minimal model of χ \Rightarrow ψ is true (in every interpretation).

Hint. Let J be a minimal model of χ and let z be true in J.

- First show that then $J(y_j) = \text{true}$ for every j.

- Second, let I be the truth assignment obtained by restricting J to the variables $\{x_1, \ldots, x_k\}$. Show that (by the minimality of J) I is indeed a partial assignment on $\{x_1, \ldots, x_k\}$ s.t. for any values assigned to $\{y_1, \ldots, y_l\}$, the formula φ is true.