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Complexity and expressive power of logi
 programming � 3A pure logi
 program 
onsists of a set of rules , also 
alled de�nite Horn 
lauses.Ea
h su
h rule has the form head  body, where head is a logi
al atom and body isa 
onjun
tion of logi
al atoms. The logi
al semanti
s of su
h a rule is given by theimpli
ation body ) head (for a more pre
ise a

ount, see Se
tion 2). Note that thesemanti
s of a pure logi
 program is 
ompletely independent of the order in whi
hits 
lauses are given, and of the order of the single atoms in ea
h rule body.With the advent of the programming language Prolog [Colmerauer et al. 1973℄,the paradigm of logi
 programming be
ame soon ready for pra
ti
al use. Manyappli
ations in di�erent areas were and are su

essfully implemented in Prolog.Note that Prolog is | in a sense | only an approximation to fully de
larative logi
programming. In fa
t, the 
lause mat
hing and ba
ktra
king algorithms at the 
oreof Prolog are sensitive to the ordering of the 
lauses in a program and of the atomsin a rule body.While Prolog has be
ome a popular programming language taught in many 
om-puter s
ien
e 
urri
ula, resear
h fo
uses more on pure logi
 programming and onextensions thereof. Even in some appli
ation areas su
h as knowledge represen-tation (a sub�eld of arti�
ial intelligen
e) and databases there is a predominantneed for full de
larativeness, and hen
e for pure logi
 programming. In knowledgerepresentation, de
larative extensions of pure logi
 programming, su
h as negationin rule bodies and disjun
tion in rule heads, are used to formalize 
ommon sensereasoning. In the database 
ontext, the query language datalog was designed andintensively studied (see [Ullman 1988; Ullman 1989; Ceri et al. 1990℄).There are many interesting 
omplexity results on logi
 programming. Theseresults are not limited to \
lassi
al" 
omplexity theory but also 
omprise expres-siveness results in the sense of des
riptive 
omplexity theory . For example, it wasshown that (a slight extension of) datalog 
annot just express some, but a
tuallyall polynomially 
omputable queries on ordered databases and only those. Thusdatalog pre
isely expresses or 
aptures the 
omplexity 
lass P on ordered databases.Similar results were obtained for many variants and extensions of datalog. It turnedout that all major variants of datalog 
an be 
hara
terized by suitable 
omplexity
lasses. As a 
onsequen
e, 
omplexity theory has be
ome a very important tool for
omparing logi
 programming formalisms.This paper surveys various 
omplexity and expressiveness results on di�erentforms of (purely de
larative) logi
 programming. The aim of the paper is twofold.First, a broad survey and many pointers to the literature are given. Se
ond, inorder to give a 
avor of 
omplexity issues in logi
 programming, a few fundamen-tal topi
s are explained in greater detail, in parti
ular, the basi
 results on plainlogi
 programming (Se
tion 4) and some fundamental issues related to des
riptive
omplexity (Se
tion 7). These two se
tions are written in a more tutorial styleand 
ontain several proofs, while the other se
tions are written in a rather su

in
tsurvey style.Note that the present paper does not 
onsist of an en
y
lopedi
 listing of allpublished 
omplexity results on logi
 programming, but rather of a more or lesssubje
tive 
hoi
e of results. Many interesting results are not mentioned for spa
ereasons, e.g., results on abdu
tive logi
 programming [Eiter et al. 1997a; Inoue andSakama 1993; Sakama and Inoue 1994b; Marek et al. 1996℄, on intuitionisti
 logi
programming [Bonner 1990; Bonner 1997℄, and on Prolog [Dikovsky 1993℄; see also



4 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkovother surveys, e.g., [Cadoli and S
haerf 1993; S
hlipf 1995a℄.The paper is organized as follows. Se
tion 2 de�nes syntax and semanti
s of logi
programs, des
ribe datalog and introdu
e 
omplexity measures. Computationalmodels and 
omplexity notation are dis
ussed in Se
tion 3. Se
tion 4 presentsthe main 
omplexity results on plain logi
 programming and datalog. Se
tion 5dis
usses various semanti
s for logi
 programming with negation and respe
tive
omplexity results. Se
tion 6 deals with disjun
tive logi
 programming. Se
tion 7studies the expressive power of datalog and logi
 programming with 
omplex values.Se
tion 8 
hara
terizes the 
omplexity of uni�
ation. Se
tion 9 deals with logi
programming extended by equality. Finally, Se
tion 10 des
ribes 
omplexity resultson 
onstraint logi
 programming.This arti
le is an extended version of [Dantsin et al. 1997℄.2. PRELIMINARIESIn this se
tion, we introdu
e some basi
 
on
epts of logi
 programming. Due tospa
e reasons, the presentation is ne
essarily su

in
t; for a more detailed treat-ment, see [Lloyd 1987; Apt 1990; Apt and Bol 1994; Baral and Gelfond 1994℄.We use letters p; q; : : : for predi
ate symbols, X;Y; Z; : : : for variables, f; g; h; : : :for fun
tion symbols, and a; b; 
; : : : for 
onstants; a bold fa
e version of a letterdenotes a list of symbols of the respe
tive type. In logi
 programs, we sometimesdenote predi
ate and fun
tion symbols by arbitrary strings.2.1 Syntax of logi
 programsLogi
 programs are formulated in a language L of predi
ates and fun
tions of non-negative arity; 0-ary fun
tions are 
onstants . A language L is fun
tion-free if it
ontains no fun
tions of arity greater than 0.A term is indu
tively de�ned as follows: ea
h variable X and ea
h 
onstant 
 isa term, and if f is an n-ary fun
tion symbol and t1; : : : tn are terms, then f(t1;: : : ; tn) is a term. A term is ground if no variable o

urs in it. The Herbranduniverse of L, denoted UL, is the set of all ground terms whi
h 
an be formed withthe fun
tions and 
onstants in L.An atom is a formula p(t1; : : : ; tn), where p is a predi
ate symbol of arity n andea
h ti is a term. An atom is ground if all ti are ground. The Herbrand base of alanguage L, denoted BL, is the set of all ground atoms that 
an be formed withpredi
ates from L and terms from UL.A Horn 
lause is a rule of the formA0  A1; : : : ; Am (m � 0);where ea
h Ai is an atom. The parts on the left and on the right of \ " are 
alledthe head and the body of the rule, respe
tively. A rule r of the form A0  , i.e.,whose body is empty, is 
alled a fa
t , and if A0 is a ground atom, then r is 
alleda ground fa
t .A logi
 program is a �nite set of Horn 
lauses. A 
lause or logi
 program isground if it 
ontains no variables.With ea
h logi
 program P , we asso
iate the language L(P ) that 
onsists of thepredi
ates, fun
tions and 
onstants o

urring in P . If no 
onstant o

urs in P , weadd some 
onstant to L(P ) to have a non-empty domain. Unless stated otherwise,



Complexity and expressive power of logi
 programming � 5L(P ) is the underlying language, and we use simpli�ed notation UP and BP forUL(P ) and BL(P ), respe
tively.A Herbrand interpretation of a logi
 program P is any subset I � BP of itsHerbrand base. Intuitively, the atoms in I are true, while all others are false. AHerbrand model of P is a Herbrand interpretation of P su
h that for ea
h ruleA0  A1; : : : ; Am in P , this interpretation satis�es the logi
al formula 8X((A1 ^� � � ^ Am)) A0), where X is a list of the variables in the rule.Propositional logi
 programs are logi
 programs in whi
h all predi
ates have arity0, i.e., all atoms are propositional ones.Example 1. Here is an example of a propositional logi
 program, whi
h 
apturesknowledge (in a simpli�ed form) about a steam engine equipped with three signalgauges. shut down  overheatshut down  leakleak  valve 
losed; pressure lossvalve 
losed  signal 1pressure loss  signal 2overheat  signal 3signal 1  signal 2  Informally, the rules of the program tell that the system has to be shut downif it is in a dangerous state. Su
h states are 
onne
ted to 
auses and signals byrespe
tive rules. The fa
ts signal 1 and signal 2 state that signals #1 and #2,respe
tively, are being observed.Note that if P is a propositional logi
 program then BP is a set of propositionalatoms. Any interpretation of P is a subset of BP .2.2 Semanti
s of logi
 programsThe notions of a Herbrand interpretation and model 
an be generalized for in�nitesets of 
lauses in a natural way. Let P be a set (�nite or in�nite) of ground 
lauses.Su
h a set P de�nes an operator TP : 2BP ! 2BP , where 2BP denotes the set of allHerbrand interpretations of P , byTP (I) = fA0 2 BP j P 
ontains a rule A0  A1; : : : ; Amsu
h that fA1; : : : ; Amg � I holds g:This operator is 
alled the immediate 
onsequen
e operator ; intuitively, it yields allatoms that 
an be derived by a single appli
ation of some rule in P given the atomsin I .Sin
e TP is monotone, by the Knaster-Tarski Theorem it has a least �xpoint,denoted by T1P ; sin
e, moreover, TP is also 
ontinuous, by Kleene's Theorem T1Pis the limit of the sequen
e T 0P = ;, T i+1P = TP (T iP ), i � 0.A ground atom A is 
alled a 
onsequen
e of a set P of 
lauses if A 2 T1P (wewrite P j= A). Also, we say that a negated ground atom :A is a 
onsequen
e ofP and write P j= :A if A =2 T1P . Note that j= di�ers from the standard logi
al
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onsequen
e relation. The semanti
s of a set P of ground 
lauses, denotedM(P ),is de�ned as the following set 
onsisting of atoms and negated atoms:M(P ) = fA j P j= Ag [ f:A j P j= :Ag= T1P [ f:A j A 2 BP n T1P g:Example 2. (See Example 1.) For the program P above, we haveT 0P = ;;T 1P = fsignal 1; signal 2g;T 2P = T 1P [ fvalve 
losed; pressure lossg;T 3P = T 2P [ fleakg;T 4P = T1P = T 3P [ fshutdowng:Thus, the least �xpoint is rea
hed in four steps; e.g., P j= shutdown and P j=:overheat.For ea
h set P of 
lauses, T1P 
oin
ides with the unique least Herbrand model ofP , where a model M is smaller than a model N , if M is a proper subset of N [vanEmden and Kowalski 1976℄.The semanti
s of nonpropositional logi
 programs is now de�ned as follows. Letthe grounding of a 
lause r in a language L, denoted ground(r;L), be the set ofall 
lauses obtained from r by all possible substitutions of elements of UL for thevariables in r. For any logi
 program P , we de�neground(P;L) = [r2P ground(r;L);and we write ground(P ) for ground(P;L(P )). The operator TP : 2BP ! 2BP asso-
iated with P is de�ned by TP = Tground(P ). A

ordingly,M(P ) =M(ground(P )).Example 3. Let P be the programp(a)  p(f(x))  p(x)Then, UP = fa; f(a); f(f(a)); : : :g and ground(P ) 
ontains the 
lauses p(a)  ,p(f(a)) p(a), p(f(f(a))) p(f(a)), . . . . The least �xpoint of TP isT1P = T1ground(P ) = fp(fn(a)) j n � 0g:Hen
e, e.g., P j= p(f(f(a))).In pra
ti
e, generating ground(P ) is often 
umbersome, sin
e, even in 
ase offun
tion-free languages, it is in general exponential in the size of P . Moreover, itis not always ne
essary to 
ompute M(P ) in order to determine whether P j= Afor some parti
ular atom A. For these reasons, 
ompletely di�erent strategies ofderiving atoms from a logi
 program have been developed. These strategies arebased on variants of the famous Resolution Prin
iple of [Robinson 1965℄. Themajor variant is SLD-resolution [Kowalski and Kuehner 1971; Apt and van Emden1982℄.Roughly, SLD-resolution 
an be des
ribed as follows. A goal is a 
onjun
tion ofatoms, and a substitution is a fun
tion # that maps variables v1; : : : ; vn to terms
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 programming � 7t1; : : : ; tn. The result of simultaneous repla
ement of variables vi by terms ti in anexpressionE is denoted by E#. For a given goalG and a program P , SLD-resolutiontries to �nd a substitution # su
h that G# logi
ally follows from P . The initial goalis repeatedly transformed until the empty goal is obtained. Ea
h transformationstep is based on the appli
ation of the resolution rule to a sele
ted atom Bi fromthe goal B1; : : : ; Bm and a 
lause A0  A1; : : : ; An from P . SLD-resolution triesto unify Bi with the head A0, i.e., to �nd a substitution # su
h that A0# = Bi#.Su
h a substitution # is 
alled a uni�er of A0 and Bi. If a uni�er # exists, a mostgeneral su
h # (whi
h is essentially unique) is 
hosen and the goal is transformedinto (B1; : : : ; Bi�1; A1; : : : ; An; Bi+1; : : : ; Bm)#:For a more pre
ise a

ount see [Apt 1990; Lloyd 1987℄; for resolution on general
lauses, see e.g., [Leits
h 1997℄. The 
omplexity of uni�
ation will be dealt with inSe
tion 8.2.3 DatalogThe interest in using logi
 in databases gave rise to the �eld of dedu
tive databases;see [Minker 1996℄ for a 
omprehensive overview of the development of this area. Itappeared that logi
 programming is a suitable formalism for querying relationaldatabases. In this 
ontext, the logi
 programming based query language datalogand various extensions thereof have been de�ned.In the 
ontext of logi
 programming, relational databases are identi�ed with setsof ground fa
ts p(
1; : : : ; 
n). Intuitively, all ground fa
ts with the same predi
atesymbol p represent a data relation. The set of all predi
ate symbols o

urring inthe database together with a possibly in�nite domain for the argument 
onstantsis 
alled the s
hema of the database. With ea
h database D, we asso
iate a �niteuniverse UD of 
onstants whi
h en
ompasses at least all 
onstants appearing in D,but possibly more. In the 
lassi
al database 
ontext, UD is often identi�ed with theset of all 
onstants appearing in D. But in the datalog 
ontext, a larger universeUD may be suitable in 
ase one wants to derive assertions about items that do notexpli
itly o

ur in the database.To understand how datalog works, let us 
onsider a 
larifying example.Example 4. Consider a database D 
ontaining the ground fa
tsfather(john;mary)  father(joe; kurt)  mother(mary; joe)  mother(tina; kurt)  The s
hema of this database is the set of relation symbols ffather, motherg togetherwith the domain STRING of all alphanumeri
 strings. With this database, weasso
iate the �nite universe UD = f john, mary, joe, tina, kurt, susan g. Note thatsusan does not appear in the database but is in
luded in the universe UD.The following datalog program (or query) P 
omputes all an
estor relationshipsrelative to this database:



8 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkovparent(X;Y )  father(X;Y )parent(X;Y )  mother(X;Y )an
estor(X;Y )  parent(X;Y )an
estor(X;Y )  parent(X;Z); an
estor(Z; Y )person(X)  In the program P , father and mother are the input predi
ates , also 
alled databasepredi
ates . Their interpretation is �xed by the given input database D. The pred-i
ates an
estor and person are output predi
ates , and the predi
ate parent is anauxiliary predi
ate. Intuitively, the output predi
ates are those whi
h are 
omputedas the visible result of the query, while the auxiliary predi
ates are introdu
ed forrepresenting some intermediate results, whi
h are not to be 
onsidered part of the�nal result.The datalog program P on input database D 
omputes a result database R withthe s
hema fan
estor; persong 
ontaining among others the following ground fa
ts:an
estor(mary; joe);an
estor(john; joe);person(john);person(susan):The last fa
t is in R be
ause susan is in
luded as a 
onstant in UD. However, thefa
t person(harry) is not in R, be
ause harry is not a 
onstant in the �nite universeUD of the database D.Formally, a database s
hema D 
onsists of a �nite set Rels(D) of relation nameswith asso
iated arities and a (possibly 
ountable in�nite) domain Dom(D). Forea
h database s
hema D, we denote by HB(D) the Herbrand base 
orresponding tothe fun
tion-free language whose predi
ate symbols are Rels(D) and whose 
onstantsymbols are Dom(D).A database (also, database instan
e) D over a s
hema D is given by a �nitesubset of the Herbrand base D � HB(D) together with an asso
iated �nite universeUD � Dom(D), 
ontaining all 
onstants a
tually appearing in D. By abuse ofnotation, we also write D instead of hD;UDi. We denote by Djp the extension ofthe relation p 2 Rels(D) in D. Moreover, INST(D) denotes the set of all databasesover D.A datalog query or a datalog program is a fun
tion-free logi
 program P withthree asso
iated database s
hemas: the input s
hema Din , the output s
hema Doutand the 
omplete s
hema D, su
h that the following is satis�ed:Dom(Din ) = Dom(Dout ) = Dom(D);Rels(Din ) � Rels(D);Rels(Dout) � Rels(D); andRels(Din ) \Rels(Dout ) = ;:Moreover, ea
h predi
ate symbol appearing in P is 
ontained in Rels(D) and nopredi
ate symbol from Din appears in a rule head of P (the latter means that thepredi
ates of the input database are never rede�ned by a datalog program).
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 programming � 9The formal semanti
s of a datalog program P over the input s
hema Din , outputs
hema Dout , and 
omplete s
hema D is given by a partial mapping from instan
esof Din to instan
es of Dout over the same universe. A result instan
e of Dout isregarded as the result of the query. More formally,MP : INST(Din )! INST(Dout )is de�ned for all instan
es Din 2 INST(Din ) su
h that all 
onstants o

urring in Pappear in UDin , and maps every su
h Din to the database Dout =MP (Din ) su
hthat UDout = UDin and, for every relation p 2 Rels(Dout ),Dout jp = fa j p(a) 2M(ground(P [Din ;L(P;Din )))g;whereM and ground are de�ned as in Se
tion 2.2, and L(P;Din ) is the languageof P extended by all 
onstants in the universe UDin . For all ground atoms A 2HB(Dout ), we write P [ Din j= A if A 2 MP (Din ) and write P [ Din j= :A ifA =2 MP (Din ).The semanti
s of datalog is thus inherited from the semanti
s of logi
 program-ming. In a similar way, the semanti
s of various extensions of datalog is inheritedfrom the 
orresponding extensions of logi
 programming.There are three main kinds of 
omplexity 
onne
ted to plain datalog and itsvarious extensions [Vardi 1982℄:� The data 
omplexity is the 
omplexity of 
he
king whether Din [P j= A whendatalog programs P are �xed, while input databases Din and ground atoms Aare an input.� The program 
omplexity (also 
alled expression 
omplexity) is the 
omplexityof 
he
king whether Din [ P j= A when input databases Din are �xed, whiledatalog programs P and ground atoms A are an input.� The 
ombined 
omplexity is the 
omplexity of 
he
king whether Din [P j= Awhen input databases Din , datalog programs P and ground atoms A are aninput.Note that for plain datalog, as well as for all other versions of datalog 
onsideredin this paper, the 
ombined 
omplexity is equivalent to the program 
omplexity withrespe
t to polynomial-time redu
tions. This is due to the fa
t that with respe
t tothe derivation of ground atoms, ea
h pair hDin ; P i 
an be easily redu
ed to the pairhD;; P �i, whereD; is the empty database instan
e asso
iated with a universe of two
onstants 
1 and 
2, and P � is obtained from P [Din by straightforward en
oding ofthe universe UDin using n-tuples over f
1; 
2g, where n = djUDin je. For this reason,we mostly disregard the 
ombined 
omplexity in the material 
on
erning datalog.We remark, however, that due to a �xed universe, program 
omplexity may allowfor slightly sharper upper bounds than the 
ombined 
omplexity (e.g., ETIME vsEXPTIME).Another approa
h to measuring 
omplexity of query languages is the parametri

omplexity [Papadimitriou and Yannakakis 1997℄. In this approa
h, the 
omplexityis expressed as a fun
tion of some \reasonable" parameters. An example of su
ha parameter is the number of variables appearing in the query (interest in thisparameter is motivated by [Vardi 1995℄, where it is shown that data and program
omplexity be
ome 
lose when the number of query variables is bounded).As for logi
 programming in general, a generalization of the 
ombined 
omplexitymay be regarded as the main 
omplexity measure. Below, when we speak about
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omplexity of a fragment of logi
 programming, we mean the following kind of
omplexity:� The 
omplexity of (some fragment of) logi
 programming is the 
omplexity of
he
king whether P j= A for variable both programs P and ground atoms A.3. COMPLEXITY CLASSESThis se
tion 
ontains de�nitions of the standard 
omplexity 
lasses en
ounteredin this survey and provides other related de�nitions (we follow the notation of[Johnson 1990℄). A detailed exposition of most 
omplexity notions 
an be founde.g. in [Papadimitriou 1994℄.3.1 Turing ma
hinesDeterministi
 Turing ma
hines.. Informally, we think of a Turing ma
hine as adevi
e able to read from and write on a semi-in�nite tape, whose 
ontents may belo
ally a

essed and 
hanged in a 
omputation. Formally, a deterministi
 Turingma
hine (DTM) is de�ned as a quadruple (S;�; Æ; s0), where S is a �nite set ofstates , � is a �nite alphabet of symbols , Æ is a transition fun
tion, and s0 2 S isthe initial state. The alphabet � 
ontains a spe
ial symbol  
alled the blank . Thetransition fun
tion Æ is a mapÆ : S �� ! (S [ fhalt; yes; nog)��� f-1, 0, +1g;where halt, yes, and no denote three additional states not o

urring in S, and -1,0, +1 denote motion dire
tions . It is assumed here, without loss of generality, thatthe ma
hine is well-behaved and never moves o� the tape, i.e., d 6= -1 wheneverthe 
ursor is on the leftmost 
ell; this 
an be ensured by proper design of Æ.1Let T be a DTM (�; S; Æ; s0). The tape of T is divided into 
ells 
ontainingsymbols of �. There is a 
ursor that may move along the tape. At the start, Tis in the initial state s0, and the 
ursor points to the leftmost 
ell of the tape. Aninput string I is written on the tape as follows: the �rst jI j 
ells 
0; : : : ; 
jIj�1 ofthe tape, where jI j denotes the length of I , 
ontains the symbols of I , and all other
ells 
ontain  .The ma
hine takes su

essive steps of 
omputation a

ording to Æ. Namely,assume that T is in a state s 2 S and the 
ursor points to the symbol � 2 � on thetape. Let Æ(s; �) = (s0; �0; d):Then T 
hanges its 
urrent state to s0, overwrites �0 on �, and moves the 
ursora

ording to d. Namely, if d = -1 or d = +1, then the 
ursor moves to the previous
ell or the next one, respe
tively; if d = 0, then the 
ursor remains in the sameposition.When any of the states halt, yes or no is rea
hed, T halts. We say that Ta

epts the input I if T halts in yes. Similarly, we say that T reje
ts the input inthe 
ase of halting in no. If halt is rea
hed, we say that the output of T on I is1Some texts assume that � has a spe
ial symbol whi
h marks the left end of the tape. Thissymbol 
an be eliminated by a proper redesign of the ma
hine. For the purpose of this paper, thesimpler model without a left end marker is 
onvenient.
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omputed. This output, denoted by T (I), is de�ned as the string 
ontained in theinitial segment of the tape whi
h ends before the �rst blank.Nondeterministi
 Turing ma
hines.. Like a DTM, a nondeterministi
 Turing ma-
hine, or NDTM, is de�ned as a quadruple (S;�;�; s0), where S;�; s0 are the sameas before. Possible operations of the ma
hine are des
ribed by �, whi
h is no longera fun
tion. Instead, � is a relation:� � (S ��)� (S [ fhalt; yes; nog)��� f-1, 0, +1g:A tuple whose �rst two members are s and � respe
tively, spe
i�es the a
tion ofthe NDTM when its 
urrent state is s and the symbol pointed at by its 
ursor is �.If the number of su
h tuples is greater than one, the NDTM nondeterministi
ally
hooses any of them and operates a

ordingly.Unlike the 
ase of a DTM, the de�nition of a

eptan
e and reje
tion by a NDTMis asymmetri
. We say that a NDTM a

epts an input if there is at least onesequen
e of 
hoi
es leading to the state yes. A NDTM reje
ts an input if nosequen
e of 
hoi
es 
an lead to yes.Time and spa
e bounds.. The time expended by a DTM T on an input I isde�ned as the number of steps taken by T on I from the start to halting. If Tdoes not halt on I , the time is 
onsidered to be in�nite. For a NDTM T , we de�nethe time expended by T on I as 1, if T does not a

ept I (respe
tively, 
omputesno output for I), and otherwise as the minimum over the number of steps in anya

epting (respe
tively, output produ
ing) 
omputation of T .The spa
e required by a DTM T on I is the number of 
ells visited by the 
ursorduring the 
omputation on I . In the 
ase of a NDTM, the spa
e is de�ned as 1,if T does not a

ept I (respe
tively, 
omputes no output for I), and otherwise asthe minimum number of 
ells visited on the tape over all a

epting (respe
tively,output produ
ing) 
omputations.Let T be a DTM or a NDTM. Let f be a fun
tion from the positive integers tothemselves. We say that T halts in time O(f(n)) if there exist positive integers 
and n0 su
h that the time expended by T on any input of length n is not greaterthan 
f(n) for all n � n0. Likewise, we say that T halts within spa
e O(f(n)) ifthe spa
e required by T on any input of length n is not greater than 
f(n) for alln � n0, where 
 and n0 are positive integers.Assume that a DTM (NDTM) T halts in time O(nd), where d is a positiveinteger. Then we 
all T a polynomial-time DTM (NDTM) and we say that Thalts in polynomial time. Similarly, if T halts within spa
e O(nd), we 
all T apolynomial-spa
e DTM (NDTM).3.2 Notation for 
omplexity 
lassesAs above, let � be a �nite alphabet 
ontaining  . Let �0 = �nf g, and let L � �0�be a language in �0, i.e. a set of �nite strings over �0. Let T be a DTM or a NDTMsu
h that (i) if x 2 L then T a

epts x, and (ii) if x 62 L then T reje
ts x. Thenwe say that T de
ides L. In addition, if T halts in time O(f(n)), we say that Tde
ides L in time O(f(n)). Similarly, if T halts within spa
e O(f(n)), we say thatT de
ides L within spa
e O(f(n)).Observe that if f(n) is a sublinear fun
tion, then a Turing ma
hine whi
h halts
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e f(n) 
an not read the whole input string, nor produ
e a large output.To remedy this problem, a Turing ma
hine T is equipped with a read-only input-tape and a write-only output tape besides the work tape, whi
h 
ontain the inputstring and the output 
omputed by T , respe
tively. The time and spa
e requirementof T is de�ned as above, where only the spa
e used on the work tape 
ounts. In
ase T halts within sublinear time f(n), random a

ess to the input symbols onthe input-tape is provided using a further tape whi
h serves as an index register.In the following, we assume that multi-tape ma
hines as des
ribed may be used forde
iding languages within sublinear bounds.Let f be a fun
tion on positive integers. We de�ne the following sets of languages:TIME(f(n)) = fL j L is de
ided by some DTM in time O(f(n))g;NTIME(f(n)) = fL j L is de
ided by some NDTM in time O(f(n))g;SPACE(f(n)) = fL j L is de
ided by some DTM within spa
e O(f(n))g;NSPACE(f(n)) = fL j L is de
ided by some NDTM within spa
e O(f(n))g:All these sets are examples of 
omplexity 
lasses , other examples will be givenbelow. Note that some fun
tions f 
an lead to 
omplexity 
lasses with unnaturalproperties (see [Papadimitriou 1994℄ for details). However, for \normal" fun
tionssu
h as polynomials, exponents or logarithms, the 
orresponding 
omplexity 
lassesare \normal" too.Complexity 
lasses of most interest are not 
lasses 
orresponding to parti
ularfun
tions but their unions su
h as, for example, the union Sd>0 TIME(nd) takenover all polynomials of the form nd. The following abbreviations are used to denotemain 
omplexity 
lasses of su
h a kind:P = Sd>0 TIME(nd);NP = Sd>0 NTIME(nd);EXPTIME = Sd>0 TIME(2nd);NEXPTIME = Sd>0 NTIME(2nd);PSPACE = Sd>0 SPACE(nd);EXPSPACE = Sd>0 SPACE(2nd);L = SPACE(logn);NL = NSPACE(logn):The list 
ontains no abbreviations for the nondeterministi
 
ounterparts of PSPACEand EXPSPACE be
ause Sd>0NSPACE(nd) 
oin
ides with the 
lass PSPACE andSd>0 NSPACE(2nd) 
oin
ides with the 
lass EXPSPACE [Savit
h 1970℄.Complementary 
lasses.. Any 
omplexity 
lass C has its 
omplementary 
lassdenoted by 
o-C and de�ned as follows. For every language L in �0, let L denoteits 
omplement , i.e. the set �0� n L. Then 
o-C is fL j L 2 Cg.
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hy.. To de�ne the polynomial hierar
hy 
lasses, we needto introdu
e ora
le Turing ma
hines. Let A be a language. An ora
le DTM TA,also 
alled a DTM with ora
le A, 
an be thought of as an ordinary DTM augmentedby an additional write-only query tape and additional three states query, 2 and 62.When TA is not in the state query, the 
omputation pro
eeds as usual (in addition,TA 
an write on the query tape). When TA is in query, TA 
hanges this state to2 or 62 depending on whether the string written on the query tape belongs to Aor not; furthermore, the query tape is instantaneously erased. Like the 
ase of anordinary DTM, the expended time is the number of steps and the required spa
eis the number of 
ells used on the tape and the query tape. An ora
le NDTM isde�ned as the same augmentation of a NDTM.Let C be a set of languages. We de�ne 
omplexity 
lasses PC and NPC as follows.For a language L, we have L 2 PC (or L 2 NPC) if and only if there is some languageA 2 C and some polynomial-time ora
le DTM (or NDTM) TA su
h that TA de
idesL.The polynomial hierar
hy 
onsists of 
lasses �pi , �pi , and �pi de�ned by the fol-lowing equalities: �p0 = �p0 = �p0 = P;�pi+1 = P�pi ;�pi+1 = NP�pi ;�pi+1 = 
o-�pi+1;for all i � 0. The 
lass PH is de�ned as Si�0 �pi .Exponential time.. Besides EXPTIME and NEXPTIME, we mention in this papersome other 
lasses that 
hara
terize 
omputation in exponential time. The 
lassesETIME and NETIME are de�ned as[d>0TIME(2dn) and [d>0NTIME(2dn)respe
tively; they 
apture linear exponents instead of polynomial exponents. The
lass EXPTIME 
an be viewed as 1-EXPTIME where 1 means the �rst level ofexponentiation. Double exponents, triple exponents, et
. are 
aptured by the 
lasses2-EXPTIME, 3-EXPTIME et
. de�ned as[d>0TIME(22nd ); [d>0TIME(222nd ); : : : :Their nondeterministi
 
ounterparts are de�ned in the same way but with therepla
ement of TIME(f(n)) by NTIME(f(n)). The 
lass ELEMENTARY is de�nedto be the union of 
lasses k-EXPTIME over all k > 0.3.3 Redu
tionsLet L1 and L2 be languages. Assume that there is a DTM R su
h that(1) For all input strings x, we have x 2 L1 if and only if R(x) 2 L2, where R(x)denotes the output of R on input x.(2) R halts within spa
e O(logn).
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alled a logarithmi
-spa
e redu
tion from L1 to L2 and we say that L1is redu
ible to L2.Let C be a set of languages. A language L is 
alled C-hard if any language L0 in Cis redu
ible to L. If L is C-hard and L 2 C then L is 
alled C-
omplete or 
ompletefor C.Besides the above notion of a redu
tion, 
omplexity theory also 
onsiders manyother kinds of redu
tions, for example, polynomial-time many-one redu
tions orpolynomial-time Turing redu
tions (whi
h are both weaker, i.e., more liberal kindsof redu
tions). In this paper, unless otherwise stated, a redu
tion means a loga-rithmi
-spa
e redu
tion. We note that in several 
ases, results that we shall reviewhave been stated for polynomial-time many-one redu
tions, but the proofs establishthat they hold under logarithmi
-spa
e redu
tion.Sometimes redu
tions are 
onsidered that are tighter than logarithmi
-spa
e re-du
tions. Sin
e su
h redu
tions are only of minor importan
e to this paper, theywill be shortly des
ribed in appropriate pla
es below. Note, however, that in 
aseof su
h tight redu
tions, as well as in 
ase of 
omputation with sublinear resour
e
onstraints, the parti
ular representation of the problem input as a string I may bea matter of 
on
ern. However, for most of the problems that we des
ribe, and inparti
ular those having 
omplexity at least P, this is not an issue; any \reasonable"representation is appropriate, see e.g. [Johnson 1990℄.4. COMPLEXITY OF PLAIN LOGIC PROGRAMMINGIn this se
tion, we survey some basi
 results on the 
omplexity of plain logi
 pro-gramming. This se
tion is written in a slightly more tutorial style than the follow-ing se
tions in order to help both readers not familiar with logi
 programming andreaders not too familiar with 
omplexity theory to grasp some key issues relating
omplexity theory and logi
 programming.4.1 Simulation of deterministi
 Turing ma
hines by logi
 programsLet T be a DTM. Consider the 
omputation of T on an input string I . The purposeof this se
tion is to des
ribe a logi
 program L and a goal G su
h that L j= G ifand only if T a

epts I in at most N steps.The transition fun
tion Æ of a DTM with a single tape 
an be represented by atable whose rows are tuples t = hs; �; s0; �0; di. Su
h a tuple t expresses the followingif-then-rule:if at some time instant � the DTM is in state s, the 
ursor points to 
ell number�, and this 
ell 
ontains symbol �then at instant � +1 the DTM is in state s0, 
ell number � 
ontains symbol �0,and the 
ursor points to 
ell number � + d.It is possible to des
ribe the 
omplete evolution of a DTM T on input string Ifrom its initial 
on�guration at time instant 0 to the 
on�guration at instant N bya propositional logi
 program L(T; I;N). To a
hieve this, we de�ne the following
lasses of propositional atoms:symbol�[�; �℄ for 0 � � � N , 0 � � � N and � 2 �. Intuitive meaning: at instant� of the 
omputation, 
ell number � 
ontains symbol �.
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ursor[�; �℄ for 0 � � � N and 0 � � � N . Intuitive meaning: at instant � the
ursor points to 
ell number �.states[� ℄ for 0 � � � N and s 2 S. Intuitive meaning: at instant � the DTM T isin state s.a

ept Intuitive meaning: T has rea
hed state yes.Let us denote by Ik the k-th symbol of the string I = I0 � � � IjIj�1. The initial
on�guration of T on input I is re
e
ted by the following initialization fa
ts inL(T; I;N): symbol� [0; �℄  for 0 � � < jI j, where I� = �symbol [0; �℄  for jI j � � � N
ursor[0; 0℄  states0 [0℄  Ea
h entry hs; �; s0; �0; di of the transition table Æ is translated into the followingpropositional Horn 
lauses, whi
h we 
all the transition rules . The 
lauses areasserted for ea
h value of � and � su
h that 0 � � < N , 0 � � < N , and 0 � �+ d.symbol�0 [� + 1; �℄  states[� ℄; symbol� [�; �℄; 
ursor[�; �℄
ursor[� + 1; � + d℄  states[� ℄; symbol� [�; �℄; 
ursor[�; �℄states0 [� + 1℄  states[� ℄; symbol� [�; �℄; 
ursor[�; �℄These 
lauses almost perfe
tly des
ribe what is happening during a state transi-tion from an instant � to an instant � +1. However, it should not be forgotten thatthose tape 
ells whi
h are not 
hanged during the transition keep their old valuesat instant � +1. This must be re
e
ted by what we term inertia rules . These rulesare asserted for ea
h time instant � and tape 
ells numbers �; �0, where 0 � � < N ,0 � � < �0 � N , and have the following form:symbol� [� + 1; �℄  symbol�[�; �℄; 
ursor[�; �0℄symbol� [� + 1; �0℄  symbol�[�; �0℄; 
ursor[�; �℄Finally, a group of 
lauses termed a

ept rules derives the propositional atoma

ept, whenever an a

epting 
on�guration is rea
hed.a

ept  stateyes[� ℄ for 0 � � � N .Denote by L the logi
 program L(T; I;N). Note that T 0L = ; and that T 1L 
ontainsthe initial 
on�guration of T at time instant 0. By 
onstru
tion, the least �xpointT1L of L is rea
hed at TN+2L , and the ground atoms added to T �L, 2 � � � N+1, i.e.,those in T �LnT ��1L , des
ribe the 
on�guration of T on the input I at the time instant� � 1. The �xpoint T1L 
ontains a

ept if and only if an a

epting 
on�gurationhas been rea
hed by T in at most N 
omputation steps. We thus have:Lemma 4.1 L(T; I;N) j= a

ept if and only if the DTM T a

epts the input stringI within N steps.A somewhat di�erent simulation of deterministi
 multi-tape Turing ma
hines bylogi
 programs was given by [Itai and Makowsky 1987℄. These authors also note
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hines by Horn 
lause theories, and, more generally, bylogi
al dedu
tion has a long history:\The idea of simulating Turing ma
hines by logi
al dedu
tion goes ba
k to Tur-ing's original paper [Turing 1937℄. Turing introdu
ed his abstra
t ma
hine 
on
eptat a time when 
omputations were 
onsidered to be something me
hani
al, and feltit was ne
essary to show that logi
al dedu
tion 
an be redu
ed to su
h a me
hanisti
model of 
omputation. However, this redu
tion uses full �rst-order logi
. A redu
-tion using only universal Horn formulas (with fun
tion symbols) appears buried inthe exposition of [S
holz and Hasenjaeger 1961℄. It also forms the basis of the the-ory of formal systems, as presented by Smullyan in his thesis [Smullyan 1961℄. Theidea of 
oding Turing ma
hines by logi
 Horn formulas appears expli
itly in [B�u
hi1962℄ and has been used sin
e 1971 in a series of papers by Aandera, B�orger, andLewis [Aanderaa and B�orger 1979; B�orger 1971; B�orger 1974; B�orger 1984; Lewis1979℄ to obtain unde
idability and 
omplexity results. Sin
e then, various authorshave redis
overed that su
h a redu
tion is possible and have used this observation toshow that logi
 programming is 
omputationally 
omplete. The earliest referen
e wehave found that states this result expli
itly is [Andr�eka and N�emeti 1978℄; a slightlyweaker result appears in [T�arnlund 1977℄."Yet another translation and further referen
es 
an be found in the re
ent book[B�orger et al. 1997℄.4.2 Propositional logi
 programmingThe simulation of a DTM by a propositional logi
 program, as des
ribed in Se
-tion 4.1 is almost all we need in order to determine the 
omplexity of propositionallogi
 programming, i.e., the 
omplexity of de
iding whether P j= A holds for agiven logi
 program P and ground atom A.Theorem 4.2 (impli
it in [Jones and Laaser 1976; Vardi 1982; Immerman 1986℄)Propositional logi
 programming is P-
omplete.Proof. (1) Membership. It is obvious that the least �xpoint T1P of the op-erator TP , given program P , 
an be 
omputed in polynomial time: the numberof iterations (i.e. appli
ations of TP ) is bounded by the number of rules plusone. Ea
h iteration step is 
learly feasible in polynomial time.(2) Hardness. Let A be a language in P. Thus A is de
idable in q(n) stepsby a DTM T for some polynomial q. Transform ea
h instan
e I of A to the
orresponding logi
 program L(T; I; q(jI j)) as des
ribed in Se
tion 4.1. ByLemma 4.1, L(T; I; q(jI j)) j= a

ept if and only if T has rea
hed an a

eptingstate within q(n) steps. The translation from I to L(T; I; q(jI j)) is very simpleand is 
learly feasible in logarithmi
 spa
e, sin
e all rules of L(T; I; q(jI j)) 
anbe generated independently of ea
h other and ea
h has size logarithmi
 in jI j;note that the numbers � and � have O(log jI j) bits, while all other synta
ti

onstituents of a rule have 
onstant size. We have thus shown that every lan-guage A in P is logspa
e redu
ible to propositional logi
 programming. Hen
e,propositional logi
 programming is P-hard.
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 programming � 17Obviously, this theorem 
an be proved by simpler redu
tions from other P-
omplete problems, for example from the monotone 
ir
uit value problem (see[Papadimitriou 1994℄). However, our proof from �rst prin
iples provides a basi
framework from whi
h further results will be derived by slight adaptations in thesequel.Noti
e that in a standard programming environment, propositional logi
 pro-gramming is feasible in linear time by using appropriate data stru
tures, as followsfrom results about de
iding Horn satis�ability [Dowling and Gallier 1984; Itai andMakowsky 1987℄. This does not mean that all problems in P are solvable in lineartime; �rst, the model of 
omputation used in [Dowling and Gallier 1984℄ is theRAM ma
hine, and se
ond logarithmi
-spa
e redu
tions may in general polynomi-ally in
rease the input.Theorem 4.2 holds under stronger redu
tions. In fa
t, it holds under the require-ment that the logspa
e redu
tion is also a polylogtime redu
tion (PLT). Brie
y,a map f : � ! �0 from a problem � to a problem �0 is a PLT-redu
tion, ifthere are polylogtime deterministi
 Turing ma
hines N and M su
h that for all w,N(w) = jf(w)j and for all w and n, M(w; n) = Bit(n; f(w)), i.e., the n-th bit off(w) (see e.g. [Veith 1998℄ for details). (Re
all that N and M have separate inputtapes whose 
ells 
an be a

essed by use of an index register tape.) Sin
e the aboveen
oding of a DTM into logi
 programming is highly regular, it is easily seen thatit is a PLT redu
tion.Synta
ti
al restri
tions on programs lead to 
ompleteness for 
lasses inside P.Let LP(k) denote logi
 programming where ea
h 
lause has at most k atoms in thebody. Then, by results in [Vardi 1982; Immerman 1987℄, one easily obtains:Theorem 4.3 LP(1) is NL-
omplete.Proof. (Sket
h)(1) Membership The membership part 
an be established by redu
ing this prob-lem to graph rea
hability, i.e., given a dire
ted graph G = (V;E) and verti
ess; t 2 V , de
ide whether t is rea
hable from s. Sin
e graph rea
hability is inNL and NL is 
losed under logarithmi
-spa
e redu
tions (i.e., redu
ibility of aproblem A to a problem B in NL implies that A is in NL), it follows that LP(1)is in NL.For a program P from LP(1), the question whether P j= A is equivalent tothe node true (representing truth) is rea
hable from the node A in the dire
tedgraph G = (V;E) as follows. The vertex set V is the set of atoms in P plustrue; the edge set E 
ontains an edge (A;B) dire
ted from A to B for everyrule A B in P , and an edge (A; true) for every fa
t A in P . Clearly, thegraph G is 
onstru
tible from P in logarithmi
 spa
e. Thus, the problem is inNL.(2) Hardness Conversely, graph rea
hability is easily transformed into P j= A fora program in LP(1). Sin
e graph rea
hability is NL-
omplete (thus NL-hard),the result is established.
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oding 
an be easily modi�ed to programs inLP(2). Hen
e, LP(2) is P-
omplete.Further synta
ti
al restri
tions on LP(1) yield problems 
omplete for L (of 
ourse,under redu
tions stronger than logspa
e redu
tions), whi
h we omit here.4.3 Complexity of datalogLet us now turn to datalog, and let us �rst 
onsider the data 
omplexity. GroundingP on an input database D yields polynomially many 
lauses in the size of D; hen
e,the 
omplexity of propositional logi
 programming is an upper bound for the data
omplexity. The same holds for the variants of datalog we shall 
onsider in thesequel. The 
omplexity of propositional logi
 programming is also a lower bound.Thus,Theorem 4.4 (impli
it in [Vardi 1982; Immerman 1986℄) Datalog is data 
om-plete for P.In fa
t, this result follows from the proof of Theorem 7.2 below. An alternativeproof of P-hardness 
an be given by writing a simple datalog meta-interpreter forpropositional LP(k), where k is a 
onstant.Represent rules A0  A1; : : : ; Ai, where 0 � i � k, by tuples hA0; : : : ; Aii in an(i + 1)-ary relation Ri on the propositional atoms. Then, a program P in LP(k)whi
h is stored this way in a database D(P ) 
an be evaluated by a �xed datalogprogram PMI(k) whi
h 
ontains for ea
h relation Ri, 0 � i � k, a ruleT (X0) T (X1); : : : ; T (Xi); Ri(X0; : : : ; Xi):Here T (x) intuitively means that atom x is true. Then, P j= A just if PMI [P (D) j= T (A). P-hardness of the data 
omplexity of datalog is then immediatefrom Theorem 4.2.The program 
omplexity is exponentially higher.Theorem 4.5 (impli
it in [Vardi 1982; Immerman 1986℄) Datalog is program
omplete for EXPTIME.Proof. (Sket
h)(1) Membership. Grounding P on D leads to a propositional program P 0 whosesize is exponential in the size of the �xed input database D. Hen
e, by Theo-rem 4.2, the program 
omplexity is in EXPTIME.(2) Hardness. In order to prove EXPTIME-hardness, we show that if a DTM Thalts in less than N = 2nk steps on a given input I where jI j = n, then T 
anbe simulated by a datalog program over a �xed input database D. In fa
t, weuse D;, i.e., the empty database with the universe U = f0; 1g.We employ the s
heme of the DTM en
oding into logi
 programming from above,but use the predi
ates symbol�(X;Y ), 
ursor(X;Y ) and states(X) instead of thepropositional letters symbol� [X;Y ℄, 
ursor[X;Y ℄ and states[X ℄ respe
tively. Thetime points � and tape positions � from 0 to 2m � 1, m = nk, are represented bym-ary tuples over U , on whi
h the fun
tions � +1 and �+ d are realized by meansof the su

essor Su

m from a linear order �m on Um.
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 programming � 19For an indu
tive de�nition, suppose Su

i(X;Y), Firsti(X), and Lasti(X) tellthe su

essor, the �rst, and the last element from a linear order �i on U i, whereX and Y have arity i. Then, use rulesSu

i+1(Z;X; Z;Y)  Su

i(X;Y)Su

i+1(Z;X; Z 0;Y)  Su

1(Z;Z 0);Lasti(X);Firsti(Y)Firsti+1(Z;X)  First1(Z);Firsti(X)Lasti+1(Z;X)  Last1(z);Lasti(X)Here Su

1(X;Y ), First1(X), and Last1(X) on U1 = U must be provided. Forour redu
tion, we use the usual ordering 0 �1 1 and provide those relations by theground fa
ts Su

1(0; 1), First1(0), and Last1(1).The initialization fa
ts symbol� [0; �℄ are readily translated into the datalog rulessymbol�(X; t) Firstm(X);where t represents the position �, and similarly the fa
ts 
ursor[0; 0℄ and states0 [0℄.The remaining initialization fa
ts symbol [0; �℄, where jI j � � � N , are translatedto the rule symbol (X;Y)  Firstm(X); �m(t;Y)where t represents the number jI j; the order �m is easily de�ned from Su

m bytwo 
lauses �m(X;X)  X�m(X;Y)  Su

m(X;Z); �m (Z;Y)The transition and inertia rules are easily translated into datalog rules. For re-alizing � + 1 and � + d, use in the body atoms Su

m(X;X0). For example, the
lause symbol�0 [� + 1; �℄  states[� ℄; symbol� [�; �℄; 
ursor[�; �℄is translated intosymbol�0(X0;Y)  states(X); symbol�(X;Y); 
ursor(X;Y);Su

m(X;X0):The translation of the a

ept rules is straightforward.For the resulting datalog program P 0, it holds that P 0 [D; j= a

ept if and onlyif T a

epts input I in at most N steps. It is easy to see that P 0 
an be 
onstru
tedfrom T and I in logarithmi
 spa
e. Hen
e, datalog has EXPTIME-hard program
omplexity.Note that straightforward simpli�
ations in the 
onstru
tion are possible, whi
hwe omit here, as part of it will be reused below.Instead of using a generi
 redu
tion, the hardness part of this theorem 
an alsobe obtained by applying 
omplexity upgrading te
hniques [Papadimitriou and Yan-nakakis 1986; Bal
�azar et al. 1992℄. We brie
y outline this in the rest of this se
tion.This te
hnique utilizes a 
onversion lemma [Bal
�azar et al. 1992℄ of the form \If� X-redu
es to �0, then s(�) Y -redu
es to s(�0)"; here s(�) is the su

in
t variantof �, where the instan
es I of � are given by a Boolean 
ir
uit CI whi
h 
omputesthe bits of I (see [Bal
�azar et al. 1992℄ for details). The strongest form of the
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onversion lemma appears in [Veith 1998℄, where X is PLT and Y is monotone pro-je
tion redu
ibility [Immerman 1987℄. Informally, monotone proje
tion redu
tionsare redu
tions that transform a relational data stru
ture A into a relational datastru
ture B su
h that ea
h tuple in B is the proje
tion of a single tuple in A. Thistuple is determined by a quanti�er-free formula using just equality and su

essor.Note that this redu
tion is uniform in the sense that the formula is the same for alltuples of A. Monotone proje
tion redu
tions are 
omputable in logarithmi
 time,whi
h means that the size of B and the value of ea
h bit position in data stru
tureB 
an determined in time logarithmi
 in the size of A on a RAM. They are tighterthan both PLT redu
tions and �rst-order redu
tions where arbitrary �rst-order for-mulae (and not just proje
tions) 
an be used in the transformations. For details,see [Immerman 1987℄.The 
onversion lemma gives rise to an upgrading theorem, whi
h has been subse-quently sharpened [Bal
�azar et al. 1992; Eiter et al. 1994; Gottlob et al. 1995; Veith1998℄ and is stated below in the strongest form of [Veith 1998℄. For a 
omplexity
lass C, denote long(C) = flong(L) j L 2 Cg, where long(L) = Sbin(n)21Lf0; 1gn,i.e., 
ontains all strings of length n su
h that n, in binary and with the leading 1omitted, belongs to L.Theorem 4.6 Let C1 and C2 be 
omplexity 
lasses su
h that long(C1) � C2. If� is hard for C2 under PLT-redu
tion, then s(�) is hard for C1 under monotoneproje
tion redu
tion.We remark that sin
e monotone proje
tion redu
tion is very weak, a spe
ial en-
oding of su

in
t problems is ne
essary. From the observations in Se
tion 4.2, wethen obtain that s(LP(2)) is EXPTIME-hard under monotone proje
tion redu
tions,where ea
h program P is stored in the database D(P ), whi
h is represented by abinary string in the standard way.s(LP(2)) 
an be redu
ed to evaluating a datalog program P � over a �xed databaseas follows. From a su

in
t instan
e of LP(2), i.e., a Boolean 
ir
uit CI for I =D(P ), Boolean 
ir
uits Ci for 
omputing Ri, 0 � i � 2 
an be 
onstru
ted whi
huse negation merely on input gates.Ea
h su
h 
ir
uit Ci(X) 
an be simulated by straightforward datalog rules. Forexample, an ^-gate gi with input from gates gj and gk is des
ribed by a rulegi(X)  gj(X); gk(X), and an _-gate gi is des
ribed by the rules gi(X)  gj(X)and gi(X)  gk(X). Observe that Boolean 
ir
uits with arbitrary use of negation
an be easily simulated in strati�ed datalog [Kolaitis and Papadimitriou 1991℄ ordisjun
tive datalog [Eiter et al. 1997℄.The desired program P � 
omprises the rules for the Boolean 
ir
uits Ci and therules of the meta-interpreter PMI (k), whi
h are adapted for a binary en
oding of thedomain UD(P ) of the database D(P ) by using binary tuples of arity dlog jUD(P )je.This 
onstru
tion is feasible in logarithmi
 spa
e, from whi
h EXPTIME-hard pro-gram 
omplexity of datalog follows. We refer the reader to [Eiter et al. 1994; Eiteret al. 1997; Gottlob et al. 1995℄ for the te
hni
al details.
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 programming � 214.4 Logi
 programming with fun
tionsLet us see what happens if we allow fun
tion symbols in logi
 programs. In this
ase, entailment of an atom is no longer de
idable. To prove it, we 
an, for example,redu
e Hilbert's Tenth Problem to query answering in full logi
 programming. Nat-ural numbers 
an be represented using the 
onstant 0 and the su

essor fun
tion s.Addition and multipli
ation are expressed by the following simple logi
 program:X + 0 = X  X + s(Y ) = s(Z)  X + Y = ZX � 0 = 0  X � s(Y ) = Z  X � Y = U; U +X = ZNow, unde
idability of full logi
 programming follows from the unde
idabilityof diophantine equations [Matiyasevi�
 1970℄. More pre
isely, it shows that fulllogi
 programming 
an express r.e.-
omplete languages. On the other hand, theleast �xpoint T1P of any logi
 program P is 
learly a r.e. set. This shows r.e.-
ompleteness of logi
 programming.Theorem 4.7 ([Andr�eka and N�emeti 1978; T�arnlund 1977℄) Logi
 programmingis r.e.-
omplete.2Of 
ourse, this theorem may as well be proved by a simple en
oding of Turingma
hines similar to the en
oding in the proof of Theorem 4.5 (use terms fn(
),n � 0, for representing 
ell positions and time instants). It is interesting to notethat [Smullyan 1956℄ asserted {quite some time before the �rst proposals to logi
programming { a 
losely related result whi
h essentially says that, in our terms,the minimal model semanti
s of logi
 programming over arithmeti
 yields the r.e.sets.Theorem 4.7 was generalized in [Voronkov 1995℄ for more expressive S-semanti
sand C-semanti
s [Falas
hi et al. 1989℄. On the other hand, it was sharpened to syn-ta
ti
al 
lasses of logi
 programs. E.g., [T�arnlund 1977℄ used binary Horn 
lauseprograms to simulate a universal Turing ma
hine. By a transformation from bi-nary Horn 
lause programs, [Sebel��k and �St�ep�anek 1982℄ showed that a 
lass oflogi
 programs 
alled strati�able (in a sense di�erent from the one in Se
tion 5.1)is r.e.-
omplete. Furthermore, [�St�ep�anek and �St�ep�ankov�a 1986℄ proved that (aninessential variant of) PRIMLOG (see [Markusz and Kaposi 1982℄) is r.e.-
omplete,whi
h restri
ts 
onsiderably the size of AND- and OR-bran
hing and allows to usere
ursion expli
itly in only a single 
lause of parti
ular type. The proof shows thatall �-re
ursive fun
tions 
an be expressed within this fragment.A natural de
idable fragment of logi
 programming with fun
tions are nonre
ur-sive programs , in whi
h intuitively no predi
ate depends synta
ti
ally on itself (seeSe
tion 5.1 for a de�nition). Their 
omplexity is 
hara
terized by the followingtheorem.2In the 
ontext of re
ursion theory, redu
ibility of a language (or problem) L1 to L2 is understoodin terms of a Turing redu
tion, i.e., L1 
an be de
ided by a DTM with ora
le L2, rather thanlogarithmi
-spa
e redu
tion.
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ursive logi
 programming isNEXPTIME-
omplete.The membership is established by applying SLD-resolution with 
onstraints. Thesize of the derivation turns out to be exponential. NEXPTIME-hardness is provedby redu
tion from the tiling problem for the square 2n � 2n.Some other fragments of logi
 programming with fun
tion symbols are knownto be de
idable too. For example, the following result was established in [Shapiro1984℄, by using a simulation of alternating Turing ma
hines by logi
 programs andvi
e versa.Theorem 4.9 ([Shapiro 1984℄) Logi
 programming with fun
tion symbols isPSPACE-
omplete, if ea
h rule is restri
ted as follows: the body 
ontains only oneatom, the size of the head is greater than or equal to that of the body, and the numberof o

urren
es of any variable in the body is less than or equal to the number of itso

urren
es in the head.The simulation assumed that the input to an alternating Turing ma
hine is writ-ten on the work-tape. Extending the simulation by a distinguished input-tape,[�St�ep�anek and �St�ep�ankov�a 1986℄ showed that the 
lass of logi
 programs havinglogarithmi
 (respe
tively, polynomial) goal-size 
omplexity is P-
omplete (respe
-tively, EXPTIME-
omplete). Here, the goal-size 
omplexity is the maximal size ofany subgoal (in terms of symbols) o

urring in the proof tree of a goal. Related no-tions of 
omplexity and normal forms of programs, de�ned in terms of 
omputationtrees [�St�ep�ankov�a and �St�ep�anek 1984℄, are studied in [O
hozka et al. 1988℄.We refer to [Blair 1982; Fitting 1987a; Fitting 1987b℄ for further material onre
ursion-theoreti
 issues related to logi
 programming.4.5 Further issuesBesides data and 
ombined 
omplexity, many other 
omplexity aspe
ts of logi
program have been investigated, in parti
ular in the 
ontext of datalog. We dis
usshere some of issues that have re
eived broad attention.Sirups.. A strongly restri
ted 
lass of logi
 programs often 
onsidered in theliterature is the 
lass of single rule programs (sirups) or programs 
onsisting of onere
ursive rule and some nonre
ursive (initialization) rules or atoms.For a long time, the de
idability of the following problem was open: Given anLP P (with fun
tion symbols) that 
onsists of a unique re
ursive rule and a set ofground atoms, and given a ground goal G, does it hold that P j= G? This problemis equivalent to the Horn 
lause impli
ation problem, i.e., 
he
king whether theuniversal 
losure of a Horn 
lause C1 logi
ally implies the universal 
losure of aHorn 
lause C2. The problem was shown to be unde
idable in [Mar
inkowski andPa
holski 1992℄. Some de
idable spe
ial 
ases of this problem were studied in[Gottlob 1987; Leits
h and Gottlob 1990; Leits
h 1990℄.Several unde
idability results of inferen
e and satis�ability problems for variousrestri
ted forms of sirups with non-ground atoms or with nonre
ursive rules 
an befound in [Devienne 1990; Devienne et al. 1993; Hans
hke and W�urtz 1993; Devienneet al. 1996℄.
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 programming � 23Datalog sirups are EXPTIME 
omplete with respe
t to program and 
ombined
omplexity; this remains true even for datalog sirups 
onsisting of a unique ruleand no fa
ts [Gottlob and Papadimitriou 1999℄. It follows that de
iding whether(the universal 
losure of) a datalog 
lause logi
ally implies (the universal 
losureof) another datalog 
lause is EXPTIME 
omplete, too. The problem of evaluating anonre
ursive Horn 
lause (with or without fun
tion symbols) over a set of groundfa
ts is NP-
omplete [Chandra and Merlin 1977℄ (even for a �xed set of groundfa
ts). (Here by \evaluation", we mean determining whether a rule �res.) Thisproblem is 
omputationally equivalent to the problem of evaluating a Boolean 
on-jun
tive query over a database, i.e., a datalog 
lause whose body 
ontains only inputpredi
ates, and also to the well known NP-
omplete 
lause subsumption problem[Garey and Johnson 1979℄ (see below). The parametri
 
omplexity of 
onjun
tivequeries is studied on [Papadimitriou and Yannakakis 1997℄.With respe
t to data 
omplexity, datalog sirups are 
omplete for P, and thusin general inherently sequential, 
f. [Kanellakis 1988℄. There are, however, manyinteresting spe
ial 
ases in whi
h sirup queries 
an be evaluated in parallel.Inside P and parallelization issues.. In [Ullman and van Gelder 1988℄ the polyno-mial fringe property is studied. Roughly, a datalog program P has the polynomialfringe property if it is guaranteed that for ea
h database D and goal G su
h thatP [ D j= G, there is a derivation tree whose fringe (i.e., set of leaves) is of poly-nomial size. The data 
omplexity of datalog programs with the polynomial fringeproperty is in LOGCFL, whi
h is the 
lass of all languages (that is, problems) thatare redu
ible in logarithmi
 spa
e to a 
ontext-free language. LOGCFL is a sub
lassof NC2, and thus 
ontains highly parallelizable problems [Johnson 1990℄; further-more, programs whose fringe is superpolynomial (i.e., O(2logk n)) are in NC [Ullmanand van Gelder 1988; Kanellakis 1988℄. Here NC2 is the se
ond level of the NC-hierar
hy of 
omplexity 
lasses NCi. These 
lasses are de�ned by families of uniformBoolean 
ir
uits of depth O(logi n) [Johnson 1990℄. An example of programs withthe polynomial fringe property are linearly re
ursive sirups; however, there alsoexist nonlinear sirups that are not equivalent to any linear sirup and are still in NC[Afrati and Cosmadakis 1989℄.In [Kanellakis 1988℄, the polynomial (superpolynomial) tree-size property for widthk is 
onsidered. Roughly, a datalog program has this property if every derivableatom 
an be obtained by a width-k derivation tree of polynomial (superpolyno-mial) size. A width-k derivation tree is a generalized derivation tree, where ea
hnode may represent up to k ground atoms. For width k = 1, the polynomial(resp., superpolynomial) tree-size property 
oin
ides with the polynomial (resp.,superpolynomial) fringe property; however, for higher widths, the former properlygeneralizes the latter. [Kanellakis 1988℄ shows that the data 
omplexity of datalogprograms having the polynomial (resp., superpolynomial) tree-size property for any�xed 
onstant width is in LOGCFL (resp., in NC).The hypergraph (V;E) asso
iated with a Horn 
lause or 
onjun
tive query has asset V of verti
es the set of variables o

urring in the rule; its set E of hyperedges
ontains for ea
h atom A in the rule body a hyperedge 
onsisting of the variableso

urring in A. If the hypergraph asso
iated with a nonre
ursive rule is a
y
li
,the evaluation problem is feasible in polynomial time [Yannakakis 1981℄ and is
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tually 
omplete for LOGCFL and thus highly parallelizable [Gottlob et al. 1998℄.For generalizations of this result to various types of nearly a
y
li
 hypergraphs,see [Gottlob et al. 1999a℄.While determining whether a datalog program is parallelizable, i.e., has data
omplexity in NC, is in general unde
idable [Ullman and van Gelder 1988; Gaifmanet al. 1987℄, the problem has been 
ompletely resolved by [Afrati and Papadimitriou1993℄ for an interesting and relevant 
lass of sirups 
alled simple 
hain queries.These are logi
 programs with a single re
ursive rule whose right hand side 
onsistsof binary relations forming a 
hain. An example of su
h a rule, involving a databasepredi
ate a, is s(X;Y ) a(X;Z1); s(Z1; Z2); s(Z2; Z3); a(Z3; Y ):[Afrati and Papadimitriou 1993℄ show that (unless P = NC) simple 
hain queriesare either 
omplete for P or in NC. They give a pre
ise 
hara
terization of theP-
omplete and NC-
omputable simple 
hain queries.Boundedness.. Many papers have been devoted to the de
idability of the bound-edness problem for datalog programs. A datalog program P is bounded , if thereexists a 
onstant k su
h that for all databases D, the number of iteration stepsneeded in order to 
ompute the least �xed point M(ground(P [ D;L(P;D))) isbounded by k and is thus independent of D (it depends on P only). Boundednessis an interesting property, be
ause as shown in [Ajtai and Gurevi
h 1994℄, a dat-alog program is bounded if and only if it is equivalent to a �rst-order query. Forimportant related results on the equivalen
e of re
ursive and nonre
ursive datalogqueries, see [Chaudhuri and Vardi 1997℄. The unde
idability of the boundednessfor general datalog programs was shown in [Gaifman et al. 1987℄, for linear re
ur-sive queries in [Vardi 1988℄, and for sirups in [Abiteboul 1989℄. There is a verylarge number of papers dis
ussing the de
idability of boundedness issues, both forsynta
ti
 restri
tions of datalog programs or sirups and for variants of boundednesssu
h as uniform boundedness. Good surveys of early work are given in [Kanellakis1988℄ and in [Kanellakis 1990℄. The following is an in
omplete list of papers whereimportant results and further relevant referen
es on de
idability issues of bounded-ness or uniform boundedness 
an be found: [Hillebrand et al. 1995; Mar
inkowski1996b; Mar
inkowski 1996a; Mar
inkowski 1999℄. SuÆ
ient 
onditions for bound-edness were given in [Minker and Ni
olas 1983; Sagiv 1985; Ioannidis 1986; Vardi1988; Naughton 1989; Cosmadakis 1989; Naughton and Sagiv 1987; Naughton andSagiv 1991℄.Containment, equivalen
e, and subsumption.. Issues that have been studied re-peatedly in the 
ontext of query optimization are query equivalen
e and 
ontain-ment. Query 
ontainment is the problem, given two datalog programs P1 and P2having the same input s
hemaDin and output s
hemaDout , whether for every inputdatabase Din , the output of P1 is 
ontained in the output of P2, i.e, MP1(Din )jp� MP2(Din )jp holds, for every relation p 2 Dout . As shown by [Shmueli 1987℄,
ontainment and equivalen
e are unde
idable for datalog programs; however, astronger form of uniform 
ontainment is de
idable [Sagiv 1988℄.In the 
ase where P1 and P2 
ontain only 
onjun
tive queries, 
ontainment andequivalen
e are NP-
omplete [Sagiv and Yannakakis 1980℄, and remain NP-
omplete
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 programming � 25even if P1 and P2 
onsist of single 
onjun
tive queries [Chandra and Merlin 1977℄.If the domain has a linear order � and 
omparison literals t1 � t2, t1 < t2, andt1 6= t2 may be used in rule bodies, then the 
ontainment problem for single 
on-jun
tive queries is �p2-
omplete [van der Meyden 1997℄; this result generalizes tosets of 
onjun
tive queries. As shown in [van der Meyden 1997℄, 
onjun
tive query
ontainment is still 
o-NP-
omplete if the database relations are monadi
, but poly-nomial if an additional sequentiality restri
tions is imposed on order literals.Containment of a nonre
ursive datalog program P1 in a re
ursive datalog pro-gram P2 is de
idable, sin
e P1 
an be rewritten to a set of 
onjun
tive queries, andde
iding whether a 
onjun
tive query is 
ontained in an arbitrary (re
ursive) dat-alog program is EXPTIME-
omplete [Cosmadakis and Kanellakis 1986; Chandraet al. 1981℄. [Chaudhuri and Vardi 1994℄ have investigated the 
onverse prob-lem, i.e., 
ontainment of a re
ursive datalog program P1 in a nonre
ursive datalogprogram P2. They showed that the problem is 3-EXPTIME-
omplete in generaland 2-EXPTIME-
omplete if P2 is a set of 
onjun
tive queries. Furthermore, theyshowed that de
iding equivalen
e of a re
ursive and a nonre
ursive datalog programis 3-EXPTIME-
omplete.We observe that the 
ontainment problem for 
onjun
tive queries is equivalentto the 
lause subsumption problem. A 
lause C subsumes a 
lause D, if thereexists a substitution � su
h that C� � D; subsumption algorithms are dis
ussed in[Gottlob and Leits
h 1985b; Gottlob and Leits
h 1985a; Ba
hmair et al. 1996℄. Thisequivalen
e extends to sets of 
onjun
tive queries, i.e., in essen
e to nonre
ursivedatalog programs [Sagiv and Yannakakis 1980℄. For a dis
ussion of subsumption-based and other notions of equivalen
e for logi
 programs, see [Maher 1988℄.The 
lause subsumption problem plays a very important role in the �eld of in-du
tive logi
 programming (ILP) [Muggleton 1992℄. For 
omplexity results on ILP
onsult [Kietz and Dzeroski 1994; Gottlob et al. 1997℄. A problem related to 
lausesubsumption is 
lause 
ondensation: given a 
lause C, �nd a smallest subset of Cwhi
h subsumes C. Complexity results and algorithms for 
lause 
ondensation 
anbe found in [Gottlob and Ferm�uller 1993℄. The 
omplexity of the 
lause evalua-tion problem and of other related problems on generalized Herbrand interpretations,whi
h may 
ontain nonground atoms, is studied in [Gottlob and Pi
hler 1999℄.5. COMPLEXITY OF LOGIC PROGRAMMING WITH NEGATION5.1 Strati�ed negationA literal L is either an atom A (
alled a positive literal) or a negated atom :A(
alled a negative literal). Literals A and :A are 
omplementary ; for any literalL, we denote by ::L its 
omplementary literal, and for any set Lit of literals,::Lit = f::L j L 2 Litg.A normal 
lause is a rule of the formA L1; : : : ; Lm (m � 0) (1)where A is an atom and ea
h Li is a literal. A normal logi
 program is a �nite setof normal 
lauses.The semanti
s of normal logi
 programs is not straightforward, and numerousproposals exist, 
f. [Bidoit 1991; Apt and Bol 1994℄. However, there is general
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onsensus for strati�ed normal logi
 programs.A normal logi
 program P is strati�ed , see [Apt et al. 1988℄, if there is an assign-ment str(�) of integers 0,1,. . . to the predi
ates p in P , su
h that for ea
h 
lause rin P the following holds: If p is the predi
ate in the head of r and q the predi
atein an Li from the body, then str(p) � str(q) if Li is positive, and str(p) > str(q)if Li is negative.Example 5. Re
onsider the steam turbine s
enario in Example 1, and let us addthe following rules to the program there:
he
k sensors  signal errorsignal error  valve 
losed;:signal 1signal error  pressure loss;:signal 2signal error  overheat;:signal 3These rules express knowledge about potential signal errors, whi
h must handledby 
he
king the sensors. The augmented program P is strati�ed: E.g. for theassignment str(A) = 1 for A 2 f
he
k sensors; signal errorg and str(B) = 0 forany other atom B o

urring in P , the 
ondition of strati�
ation is satis�ed.The redu
t of a normal logi
 program P by a Herbrand interpretation I [Gel-fond and Lifs
hitz 1988℄, denoted P I , is the set of ground 
lauses obtained fromground(P ) as follows: �rst remove every 
lause r with a negative literal L in thebody su
h that ::L 2 I , and then remove all negative literals from the remainingrules. Noti
e that P I is a set of ground Horn 
lauses.The semanti
s of a strati�ed normal program P is then de�ned as follows. Takean arbitrary strati�
ation str . Denote by P=k the set of rules r su
h that str(p) = k,where p is the head predi
ate of r. De�ne a sequen
e of Herbrand interpretations:M0 = ;, and Mk+1 is the least Herbrand model of PMk=k [Mk for k � 0. Finally, letMstr (P ) =[i Mi [ f:A j A =2[i Mig:The semanti
s Mstr does not depend on the strati�
ation str [Apt et al. 1988℄.Note that in the propositional 
aseMstr (P ) is polynomially 
omputable.Example 6. We 
onsider the program P in Example 5. For the strati�
ationstr(�) of P given there, P=0 
ontains the 
lauses listed in Example 1, and P=1 the
lauses introdu
ed in Example 5. Then,M0 = ; PM0=0 = P0;M1 = T1P0 PM1=1 = f
he
k sensors signal error; signal error overheatgM2 = T1P0where T1P0 = fsignal 1, signal 2, valve 
losed, pressure loss, leak, shutdowng. Thus,Mstr (P ) = T1P0 [f:signal 3, :overheat, :signal error, :
he
k sensorsg.Theorem 5.1 (impli
it in [Apt et al. 1988℄) Strati�ed propositional logi
 program-ming with negation is P-
omplete. Strati�ed datalog with negation is data 
ompletefor P and program 
omplete for EXPTIME.For full logi
 programming, strati�ed negation yields the arithmeti
al hierar
hy.
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 programming � 27Theorem 5.2 ([Apt and Blair 1988℄) Logi
 programming with n levels of strati�ednegation is �0n+1-
omplete.Re
all here that �0n+1 denotes the relations over the natural numbers that arede�nable in arithmeti
 by means of a �rst-order formula�(Y) = 9X08X1 � � �QkXn (X0; : : : ;Xn;Y)with free variables Y, where the quanti�ers alternate and  is quanti�er-free; inparti
ular, �01 
ontains the r.e. sets. Further 
omplexity results on strati�
ation
an be found in [Cholak and Blair 1994; Palopoli 1992℄.A parti
ular 
ase of strati�ed negation are nonre
ursive logi
 programs. A pro-gram is nonre
ursive if and only if it has a strati�
ation su
h that ea
h predi
atep o

urs in its de�ning stratum P=str(p) only in the heads of rules.Theorem 5.3 (impli
it in [Immerman 1987; Vardi 1982℄) Nonre
ursive proposi-tional logi
 programming with negation is P-
omplete. Nonre
ursive datalog withnegation is program 
omplete for PSPACE, and its data 
omplexity is in the 
lassAC0, whi
h 
ontains the languages re
ognized by unbounded fan-in 
ir
uits of poly-nomial size and 
onstant depth [Johnson 1990℄.[Vorobyov and Voronkov 1998℄ 
lassi�ed the 
omplexity of nonre
ursive logi
 pro-gramming depending on the signature, presen
e of negation and range-restri
tion.A 
lause P is 
alled range-restri
ted if every variable o

urring in this 
lause alsoo

urs in a positive literal in the body. A program P is range-restri
ted if so isevery 
lause in P . Range-restri
ted 
lauses have a number of good properties,for example domain-independen
e. Before presenting the results of [Vorobyov andVoronkov 1998℄, we explain the notation for signatures used in their paper. The tu-ple (k; l;m) denotes the signature with k 
onstants, l unary fun
tion symbols andmfun
tion symbols of arity � 2. The 
omplexity of nonre
ursive logi
 programmingis summarized in Table 1.In this table TA(f(n); g(n)) means the 
lass of fun
tions 
omputable on alter-nating Turing ma
hines [Chandra et al. 1981℄ using g(O(n)) alternations with timef(O(n)) on every bran
h. Su
h 
lasses are 
losed under polylin (and loglin) redu
-tions, i.e., those running in polynomial time (respe
tively, logarithmi
 spa
e), withoutput linearly bounded by the input. Su
h 
omplexity 
lasses arise in 
onne
-tion with the 
omplexity 
hara
terization of logi
al theories [Berman 1977; Berman1980℄.To de�ne the 
lasses NONELEMENTARY(n), we de�ne fun
tions en(m) by re
ur-sion: e0(m) = m and en+1(m) = 2en(m). Note that ELEMENTARY is the 
lass oflanguages de
ided within time ek(0) for some �xed k. Then NONELEMENTARY(n)is the 
lass of languages de
ided with lower and upper time bounds e
n(0) andedn(0) respe
tively for some 
; d > 0. In all 
ases in the table we have 
ompletenessin the 
orresponding 
omplexity 
lass, ex
ept for NONELEMENTARY(n) (in this
ase both lower and upper bounds are linearly growing towers of 2's).Thus, there is a huge di�eren
e between nonre
ursive datalog with negation andnonre
ursive logi
 programming with negation in their program 
omplexity, namelyPSPACE vs. NONELEMENTARY(n). At the same time, as [Vardi 1982℄ and thefollowing result show, both the languages have polynomial data 
omplexity.
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DantsinandT.

EiterandG.Go
ttlobandA.Vo

ronkov signature (� 2; 0; 0) ( ; 1; 0) ( ;� 2; 0) ( ; ;� 1)not range-restri
tedno negation PSPACE PSPACE NEXPTIME NEXPTIMEwith negation PSPACE PSPACE TA(2O(n= logn); O(n= log n)) NONELEMENTARY(n)range-restri
tedno negation PSPACE PSPACE PSPACE NEXPTIMEwith negation PSPACE PSPACE PSPACE TA(2n= log n; n= log n)Table 1. Summary of results.



Complexity and expressive power of logi
 programming � 29Theorem 5.4 ([Dantsin and Voronkov 2000℄) Nonre
ursive logi
 programmingwith negation has polynomial data 
omplexity.5.2 Well-founded negationRoughly speaking, the well-founded semanti
s (WFS) [van Gelder et al. 1991℄ as-signs value \unknown" to an atom A, if it is de�ned by unstrati�ed negation.Brie
y, WFS 
an be de�ned as follows [Baral and Subrahmanian 1993℄. Let FP (I)be the operator FP (I) = T1P I . Sin
e FP (I) is anti-monotone, F 2P (I) is monotone,and thus has a least and a greatest �xpoint, denoted by F 2P"1 and F 2P#1, respe
-tively. Then, the meaning of a program P under WFS,Mwfs (P ), isMwfs(P ) = F 2P"1 [ f:A j A =2 F 2P#1g:Note that on strati�ed programs, WFS and strati�ed semanti
s 
oin
ide.Theorem 5.5 (impli
it in [van Gelder 1989; van Gelder et al. 1991℄) Proposi-tional logi
 programming with negation under WFS is P-
omplete. Datalog withnegation under WFS is data 
omplete for P and program 
omplete for EXPTIME.The question whether P j=wfs A 
an be de
ided in linear time is open [Bermanet al. 1995℄. A fragment of datalog with well-founded negation that has linear data
omplexity and, under 
ertain restri
tions, also linear 
ombined 
omplexity, wasre
ently identi�ed and studied in [Gottlob et al. 2000b; Gottlob et al. 2000a℄. Thisfragment, 
alled datalog LITE , is well-suited for expressing temporal properties ofa �nite state system represented as a Kripke stru
ture. It is more expressive thanCTL and some other well-known temporal logi
s used in automati
 veri�
ation.For full logi
 programming, the following is known.Theorem 5.6 ([S
hlipf 1995b℄) Logi
 programming with negation under WFS is�11-
omplete.The 
lass �11 belongs to the analyti
al hierar
hy (in a relational form) and 
ontainsthose relations whi
h are de�nable by a se
ond-order formula �(X) = 8P�(P;X),where P is a tuple of predi
ate variables and � is a �rst-order formula with freevariables X. For more details about this 
lass in the 
ontext of logi
 programming,see e.g. [S
hlipf 1995b; Eiter and Gottlob 1997℄.5.3 Stable model semanti
sAn interpretation I of a normal logi
 program P is a stable model of P [Gelfondand Lifs
hitz 1988℄ if I = T1P I , i.e., I is the least Herbrand model of P I .In general, a normal logi
 program P may have zero, one, or multiple stablemodels.Example 7. Let P be the following non-strati�ed program:sleep  :workwork  :sleepThen M1 = fsleepg and M2 = fworkg are the stable models of P .



30 � E. Dantsin and T. Eiter and G. Gottlob and A. VoronkovDenote by SM(P ) the set of stable models of P . The meaningMst of P underthe stable model semanti
s (SMS) isMst(P ) = \M2SM(P )(M [ ::(BP nM)):Note that every strati�ed P has a unique stable model, and its strati�ed and stablesemanti
s 
oin
ide. Unstrati�ed rules in
rease 
omplexity.Theorem 5.7 ([Marek and Trusz
zy�nski 1991℄, [Bidoit and Froidevaux 1991℄)Given a propositional normal logi
 program P , de
iding whether SM(P ) 6= ; isNP-
omplete.Proof. (1) Membership. Clearly, P I is polynomial time 
omputable from Pand I . Hen
e, a stable modelM of P 
an be guessed and 
he
ked in polynomialtime.(2) Hardness. Modify the DTM en
oding in Se
tion 4 for a nondeterministi
Turing ma
hine T as follows. For ea
h state s and symbol �, introdu
e atomsBs;�;1[� ℄,. . . , Bs;�;k[� ℄ for all 1 � � < N and transitions hs; �; si; �0i; dii, where1 � i � k. Add Bs;�;i[� ℄ in the bodies of the transition rules for hs; �; si; �0i; diiand the rule Bs;�;i[� ℄  :Bs;�;1[� ℄; : : : ;:Bs;�;i�1[� ℄;:Bs;�;i+1[� ℄; : : : ;:Bs;�;k[� ℄:Intuitively, these rules nondeterministi
ally sele
t pre
isely one of the possibletransitions for s and � at time instant � , whose transition rules are enabled viaBs;�;i[� ℄. Finally, add a rule a

ept :a

ept:It ensures that a

ept is true in every stable model. The stable models M ofthe resulting program 
orrespond to the a

epting runs of T .As an easy 
onsequen
e, we obtainTheorem 5.8 ([Marek and Trusz
zy�nski 1991℄; [S
hlipf 1995b℄ and [Kolaitis andPapadimitriou 1991℄) Logi
 programming with negation under SMS is 
o-NP-
omplete. Datalog with negation under SMS is data 
omplete for 
o-NP and program
omplete for 
o-NEXPTIME.The 
o-NEXPTIME result for program 
omplexity, whi
h is not stated in [S
hlipf1995b℄, follows from an analogous result for datalog under �xpoint models in [Ko-laitis and Papadimitriou 1991℄ and a simple, elegant transformation of this seman-ti
s to SMS [S
hlipf 1995b℄.For full logi
 programming, SMS has the same 
omplexity as WFS.Theorem 5.9 ([S
hlipf 1995b; Marek et al. 1994℄) Logi
 programming with nega-tion under SMS is �11-
omplete.
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 programming � 31Further results on stable models of re
ursive (rather than only �nite) logi
 pro-grams 
an be found in [Marek et al. 1992℄.Beyond inferen
e, further 
omplexity aspe
ts of stable models have been ana-lyzed, in
luding 
ompa
t representations of stable models and the well-foundedsemanti
s of nonground logi
 programs [Gottlob et al. 1996; Eiter et al. 1998℄, andoptimization issues su
h as determining symmetries a
ross stable models [Eiteret al. 1997b℄.5.4 In
ationary and nonin
ationary semanti
sThe in
ationary semanti
s (INFS) [Abiteboul and Vianu 1991a; Abiteboul et al.1995℄ is inspired by in
ationary �xpoint logi
 [Gurevi
h and Shelah 1986℄. In pla
eof T1P , it uses the limit eT1P of the sequen
eeT 0P = ;;eT i+1P = bTP ( eT iP ); if i � 0;where eTP is the in
ationary operator eT (I) = I[TP I (I). Clearly, eT1P is 
omputablein polynomial time for a propositional program P . Moreover, eT1P 
oin
ides withT1P for Horn 
lause programs P . Therefore, by the above results,Theorem 5.10 ([Abiteboul and Vianu 1991a℄; impli
it in [Gurevi
h and Shelah1986℄) Logi
 programming with negation under INFS is P-
omplete. Datalog withnegation under INFS is data 
omplete for P and program 
omplete for EXPTIME.The nonin
ationary semanti
s (NINFS) [Abiteboul and Vianu 1991a℄, in theversion of [Abiteboul and Vianu 1995, page 373℄, uses in pla
e of T1P the limit bT1Pof the sequen
e bT 0P = ;;bT i+1P = bTP ( bT iP ); if i � 0;where bTP (I) = TP I (I), if it exists; otherwise, bT1P is unde�ned. Similar equivalentalgebrai
 query languages have been earlier des
ribed in [Chandra and Harel 1982;Vardi 1982℄. In parti
ular, datalog under NINFS is equivalent to partial �xpointlogi
 [Abiteboul and Vianu 1991a; Abiteboul et al. 1995℄.As easily seen, T1P is for a propositional program P 
omputable in polynomialspa
e; this bound is tight.Theorem 5.11 ([Abiteboul and Vianu 1991a; Abiteboul et al. 1995℄) Logi
 pro-gramming with negation under NINFS is PSPACE-
omplete. Datalog with negationunder NINFS is data 
omplete for PSPACE and program 
omplete for EXPSPACE.5.5 Further semanti
s of negationA number of interesting further semanti
s for logi
 programming with negationhave been de�ned, among them partial stable models, maximal partial stable mod-els, regular models, perfe
t models, 2- and 3-valued 
ompletion semanti
s, and�xpoint models; see e.g. [S
hlipf 1995b; You and Yuan 1995; Przymusinski 1988a;Kolaitis and Papadimitriou 1991℄. There is no spa
e to dis
uss these semanti
s
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hlipf 1995b; Sa

�a 1995; Dudakov 1999; Kolaitis and Papadimit-riou 1991℄ for more details and 
omplexity results. However, we remark that when alogi
 program has a perfe
t model, then this model is unique [Przymusinski 1988a;Przymusinski 1988b℄. As re
ently shown in [Dudakov 1999℄, propositional logi
programming under perfe
t model semanti
s is in �p2, and its pre
ise 
omplexity
an be 
hara
terized through an interesting variant of the DTM with an ora
lefor the 
lassi
al propositional satis�ability problem (SAT): if the SAT-instan
e inthe query has more than one satisfying assignment, then the ma
hine immediatelyreje
ts the input (i.e., 
hanges its state to no rather than to 2). De
iding whethera given propositional logi
 program P has a perfe
t model (resp., P j= A underperfe
t models), is 
omplete for the 
lass of languages a

epted by su
h ma
hinesin polynomial time (resp., for the 
omplementary 
lass).Extensions of logi
 programming with negation have been proposed whi
h handledi�erent kinds of negation, namely strong and default negation, see e.g. [Gelfondand Lifs
hitz 1991; Pear
e and Wagner 1991℄. The semanti
s we have 
onsideredabove use default negation as the single kind of negation. Di�erent kinds of nega-tion in
rease the suitability of logi
 programming as a knowledge representationformalism [Baral and Gelfond 1994℄.In the approa
h of [Gelfond and Lifs
hitz 1991℄, strong negation is interpreted as
lassi
al negation. E.g., the rule
ies(X)  � :
ies(X); bird(X)naturally expresses that a bird 
ies by default; here, \�" is default negation and\:" is 
lassi
al negation. The language of extended logi
 programs treats literalswith 
lassi
al negation as atoms, on whi
h default negation may be applied. Thenotion of answer set for su
h a program is de�ned by a natural generalization ofthe 
on
ept of stable model [Gelfond and Lifs
hitz 1991℄.As for the 
omplexity, there is no in
rease for extended logi
 programs overnormal logi
 programs under SMS.Theorem 5.12 ([Ben-Eliyahu and De
hter 1994℄) Given a propositional extendedlogi
 program P , de
iding whether P has an answer set is NP-
omplete, and ex-tended logi
 programming is 
o-NP-
omplete.Complexity results on extended logi
 programs with rule priorities 
an be foundin [Brewka and Eiter 1998℄, and for an extension of logi
 programming using hier-ar
hi
al modules in [Bu

afurri et al. 1998℄.6. DISJUNCTIVE LOGIC PROGRAMMINGInformally, disjun
tive logi
 programming (DLP) extends logi
 programming byadding disjun
tion in the rule heads, in order to allow more natural and 
exibleknowledge representation. For example,male(X) _ female(X) person(X)naturally represents that any person is either male or female.A disjun
tive logi
 program is a set of 
lauses
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 programming � 33A1 _ � � � _ Ak  L1; : : : ; Lm (k � 1;m � 0); (2)where ea
h Ai is an atom and ea
h Lj is a literal. For a ba
kground, see [Loboet al. 1992℄ and the more re
ent [Minker 1994℄.The semanti
s of negation-free disjun
tive logi
 programs is based on minimalHerbrand models, as the least (unique minimal) model does not exist in general.Example 8. Let P 
onsist of the single 
lause p _ q  . Then, P has the twominimal models M1 = fpg and M2 = fqg.Denote by MM(P ) the set of minimal Herbrand models of P . The GeneralizedClosed World Assumption (GCWA) [Minker 1982℄ for negation-free P amounts tothe meaningMGCWA(P ) = fL j MM(P ) j= Lg.Example 9. Consider the following propositional program P 0, des
ribing the be-havior of a reviewer while reviewing a paper:good _ bad  paperhappy  goodangry  badsmoke  happysmoke  angrypaper  The following models of P 0 are minimal:M1 = fpaper; good; happy; smokeg andM2 = fpaper; bad; angry; smokeg:Under GCWA, we have P j=GCWA smoke, while P 6j=GCWA good and P 6j=GCWA:good.Theorem 6.1 ([Eiter and Gottlob 1993; Eiter et al. 1994℄) Let P be a proposi-tional negation-free disjun
tive logi
 program and A be a propositional atom. (i) De-
iding whether P j=GCWA A is 
o-NP-
omplete. (ii) De
iding whether P j=GCWA:A is �p2-
omplete.Proof. It is not hard to argue that for an atom A, we have P j=GCWA A ifand only if P j=PC A, where j=PC is the 
lassi
al logi
al 
onsequen
e relation. Inaddition, it is not hard to argue that any set of 
lauses 
an be represented by asuitable disjun
tive logi
 program. Hen
e, by the well-known NP-
ompleteness ofSAT, part (i) is obvious.Let us thus 
onsider part (ii).(1) Membership. We have P 6j=GCWA :A if and only if there exists an M 2MM(P ) su
h thatM 6j= :A, i.e., A 2M . Clearly, a guess forM 
an be veri�edwith an ora
le for NP in polynomial time; from this, membership of the problemin �p2 follows.(2) Hardness. We show �p2-hardness by an en
oding of alternating Turing ma-
hines (ATM) [Chandra et al. 1981℄. Re
all that an ATM T has its set of states
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hine rea
hesan 9-state (respe
tively, 8-state) s in a run, then the input is a

epted if the
omputation 
ontinued in some (respe
tively, all) of the possible su

essor 
on-�gurations is a

epting. As in our simulations above, we assume that T has asingle tape.The polynomial-time bounded ATMs whi
h start in a 8-state s0 and have onealternation, i.e., pre
isely one transition from a 8-state to an 9-state in ea
hrun (and no reverse transition), solve pre
isely the problems in �p2 [Chandraet al. 1981℄.By adapting the 
onstru
tion in the proof of Theorem 5.7, we show how anysu
h ma
hine T on input I 
an be simulated by a disjun
tive logi
 programP under GCWA. Without loss of generality, we assume that ea
h run of T ispolynomial-time bounded [Bal
�azar et al. 1990℄.We start from the 
lauses 
onstru
ted for the NTM T on input I in the proofof Theorem 5.7, from whi
h we drop the 
lause a

ept  :a

ept and repla
ethe 
lauses Bs;�;i[� ℄  :Bs;�;1[� ℄; : : : ;:Bs;�;i�1[� ℄;:Bs;�;i+1[� ℄; : : : ;:Bs;�;k[� ℄:for s and � by the logi
ally equivalent disjun
tive 
lauseBs;�;1[� ℄ _ � � � _ Bs;�;k[� ℄ :Intuitively, in a minimal model pre
isely one of the atoms Bs;�;i[� ℄ will bepresent, whi
h means that one of the possible bran
hings is followed in a run.The 
urrent 
lauses 
onstitute a propositional program whi
h derives a

eptunder GCWA if and only if T would a

ept I if all its states were universal.We need to respe
t the 9-states, however. For ea
h 9-state s and time point� > 0, we set up the following 
lauses, where s0 is any 9-state, � � � 0 � N ,0 � � � N , and 1 � i � k:states0 [� 0℄  na

ept; states[� ℄symbol� [� 0; �℄  na

ept; states[� ℄
ursor[� 0; �℄  na

ept; states[� ℄Bs;�;i[� 0℄  na

ept; states[� ℄:Intuitively, these rules state that if a nona

epting run enters an 9-state, i.e.,na

ept is true, then all relevant fa
ts involving a time point � 0 � � are true.This way, nona

epting runs are 
orrupted. Finally, we set up for ea
h nona
-
epting terminal 9-state s the 
lausesna

ept  states[� ℄; 0 < � � N .These 
lauses state that na

ept is true if the run ends in a nona

epting state.Let P+ be the resulting program. The minimal models M of P+ whi
h do not
ontain na

ept 
orrespond to the a

epting runs of T .It 
an be seen that the minimal models of P+ whi
h 
ontain na

ept 
orrespondto the partial runs of T from the initial state s0 to an 9-state s from whi
h no
ompletion of the run ending in an a

epting state is possible. This implies thatP+ has some minimal modelM 
ontaining na

ept pre
isely if T , by de�nition,
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 programming � 35does not a

ept input I . Consequently, P+ j=GCWA :na

ept, i.e., na

ept isin no minimal model of P+, if and only if T a

epts input I . It is 
lear that theprogram P+ 
an be 
onstru
ted in logarithmi
 spa
e. Consequently, de
idingP j=GCWA :A is �p2-hard.Note that many problems in the �eld of nonmonotoni
 reasoning are �p2-
omplete,e.g. [Gottlob 1992; Eiter and Gottlob 1992; Eiter and Gottlob 1995a℄.Stable negation naturally extends to disjun
tive logi
 programs, by adoptingthat I is a (disjun
tive) stable model of a disjun
tive logi
 program P if and onlyif I 2 MM(P I) [Przymusinski 1991; Gelfond and Lifs
hitz 1991℄. The disjun
tivestable model semanti
s subsumes the disjun
tive strati�ed semanti
s [Przymusinski1988a℄. For well-founded semanti
s, no su
h natural extension is known; the seman-ti
s in [Brass and Dix 1995; Przymusinski 1995℄ are the most appealing attemptsin this dire
tion.Clearly, P I is easily 
omputed, and P I = P if P is negation-free. Thus,Theorem 6.2 ([Eiter and Gottlob 1995b; Eiter et al. 1994; Eiter et al. 1997℄)Propositional DLP under SMS is �p2 
omplete. Disjun
tive datalog under SMS isdata 
omplete for �p2 and program 
omplete for 
o-NEXPTIMENP.The latter result was derived by utilizing 
omplexity upgrading te
hniques asdes
ribed above in Se
tion 4.3. We remark that a sophisti
ated algorithm for
omputing stable models of propositional disjun
tive logi
 programs, whi
h mirrorsthe 
omplexity of the problem in its stru
ture, is des
ribed in [Leone et al. 1997℄.For full DLP, we have:Theorem 6.3 ([Chomi
ki and Subrahmanian 1990℄) DLP under GCWA is �02-
omplete.Theorem 6.4 ([Eiter and Gottlob 1995b℄) Full DLP under SMS is �11-
omplete.Thus, disjun
tion adds 
omplexity under GCWA and under SMS in �nite Her-brand universes (unless 
o-NP = �p2), but not in in�nite ones. This is intuitivelyexplained by the fa
t that DLP under SMS 
orresponds to a weak fragment of �12whi
h 
an be re
ursively translated to �11.Many other semanti
s for DLP have been analyzed. For some of them, the
omplexity is lower than for SMS, for example for the 
oin
iding possible worldsand possible model semanti
s [Chan 1993; Sakama and Inoue 1994a℄, as well asfor the 
ausal model semanti
s [Dix et al. 1996℄, whi
h are all 
o-NP-
omplete.Others have higher 
omplexity, for example the regular model semanti
s and themaximal partial stable model semanti
s [Eiter et al. 1998℄. However, typi
ally theyare �p2-
omplete in the propositional 
ase.Extended disjun
tive logi
 programs (EDLPs), whi
h have default and 
lassi
alnegation, are de�ned analogously to the 
ase of non-disjun
tive logi
 programs[Gelfond and Lifs
hitz 1991℄. The notion of answer set is generalized in the sameway as stable model from a non-disjun
tive program to a disjun
tive one. There
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omplexity in
rease over disjun
tive stable models; in parti
ular, extendeddisjun
tive logi
 programming is �p2-
omplete in the propositional 
ase [Eiter andGottlob 1995b℄.Fragments of EDLPs that have lower 
omplexity are known. The most importantsu
h fragment are head
y
le-free programs . Informally, an EDLP P is head
y
le-free, if there are no two distin
t atoms A and B whi
h mutually depend on ea
hother through positive re
ursion (i.e., default negation is disregarded), su
h thatA and B o

ur in the head of the same rule of P . As shown in [Ben-Eliyahu andDe
hter 1994℄, extended disjun
tive logi
 programming for head
y
le-free programsis 
o-NP-
omplete, and thus polynomial-time transformable to (disjun
tion-free)normal logi
 programming under stable model semanti
s.A generalization of EDLPs by allowing default negation in the head has beenstudied in [Inoue and Sakama 1998℄. As the authors show, the 
omplexity of botharbitrary and head
y
le-free programs does not in
rease. Other extensions of dis-jun
tive logi
 programming and their 
omplexities are studied in e.g. [Marek et al.1995; Minker and Ruiz 1994; Bu

afurri et al. 1997; Bu

afurri et al. 1998; Bu
-
afurri et al. 2000; Rosati 1997; Rosati 1998℄. In parti
ular, [Bu

afurri et al.1997; Bu

afurri et al. 2000℄ analyzes the e�e
t of di�erent kinds of 
onstraints onstable models. Weak 
onstraints may be violated at a penalty, leading to a 
ost-based notion of stable models whose 
omplexity is 
hara
terized as an optimizationproblem. In [Bu

afurri et al. 1998℄, disjun
tive logi
 programs are extended by
lassi
al negation and modularization with inheritan
e; as shown, these featuresdo not in
rease the 
omplexity. The papers [Rosati 1997; Rosati 1998℄ address the
omplexity of using epistemi
 operators su
h as minimal knowledge and belief indisjun
tive logi
 programs.7. EXPRESSIVE POWER OF LOGIC PROGRAMMINGThe expressive power of query languages su
h as datalog is a topi
 
ommon todatabase theory [Abiteboul et al. 1995℄ and �nite model theory [Ebbinghaus andFlum 1995℄ that has attra
ted mu
h attention by both 
ommunities. By the ex-pressive power of a (formal) query language, we understand the set of all queriesexpressible in that language. Note that we will not only mention query languagesused in database systems, but also formalisms used in formal logi
 and �nite modeltheory su
h as �rst and se
ond-order logi
 over �nite stru
tures or �xpoint logi
(for pre
ise de�nitions 
onsult [Ebbinghaus and Flum 1995℄).In general, a query q de�nes a mappingMq that assigns to ea
h suitable inputdatabase Din (over a �xed input s
hema) a result database Dout =Mq(Din ) (overa �xed output s
hema); more logi
ally speaking, a query de�nes global relations[Gurevi
h 1988℄. For reasons of representation independen
e, a query should, inaddition, be generi
, i.e., invariant under isomorphisms. This means that if � is apermutation of the domain Dom(D), thenM(�(Din )) = �(Dout ). Thus, when wespeak about queries, we always mean generi
 queries.Formally, the expressive power of a query language Q is the set of mappingsMqfor all queries q expressible in the language Q by some query expression (program)E; this synta
ti
 expression is 
ommonly identi�ed with the semanti
 query itde�nes, and simply (in abuse of de�nition) 
alled a query.There are two important resear
h tasks in this 
ontext. The �rst is 
omparing



Complexity and expressive power of logi
 programming � 37two query languages Q1 and Q2 in their expressive power. One may prove, forinstan
e, that Q1 $ Q2, whi
h means that the set of all queries expressible in Q1is a proper subset of the queries expressible in Q2, and hen
e, Q2 is stri
tly moreexpressive than Q1. Or one may show that two query languages Q1 and Q2 havethe same expressive power, denoted by Q1 = Q2, and so on.The se
ond resear
h task, more related to 
omplexity theory, is determining theabsolute expressive power of a query language. This is mostly a
hieved by provingthat a given query languageQ is able to express exa
tly all queries whose evaluation
omplexity is in a 
omplexity 
lass C. In this 
ase, we say that Q 
aptures C andwrite simply Q = C. The evaluation 
omplexity of a query is the 
omplexity of
he
king whether a given atom belongs to the query result, or, in the 
ase of Booleanqueries, whether the query evaluates to true [Vardi 1982; Gurevi
h 1988℄.Note that there is a substantial di�eren
e between showing that the query eval-uation problem for a 
ertain query language Q is C-
omplete and showing that Q
aptures C. If the evaluation problem for Q is C-
omplete, then at least one C-hardquery is expressible in Q. If Q 
aptures C, then Q expresses all queries evaluable inC (in
luding, of 
ourse, all C-hard queries). Thus, usually proving that Q 
apturesC is mu
h more involved than proving that evaluating Q-queries is C-hard. Notealso that it is possible that a query language Q 
aptures a 
omplexity 
lass C forwhi
h no 
omplete problems exist or for whi
h no su
h problems are known. As anexample, se
ond-order logi
 over �nite stru
tures 
aptures the polynomial hierar
hyPH, for whi
h no 
omplete problem is known. However, the existen
e of a 
ompleteproblem of PH would imply that it 
ollapses at some �nite level, whi
h is widelybelieved to be false.The subdis
ipline of database theory and �nite model theory dealing with thedes
ription of the expressive power of query languages and related logi
al for-malisms via 
omplexity 
lasses is 
alled des
riptive 
omplexity theory [Immerman1987; Leivant 1989; Immerman 1999℄. An early foundational result in this �eld was[Fagin 1974℄'s theorem stating that existential se
ond-order logi
 
aptures NP. Inthe eighties and nineties, des
riptive 
omplexity theory has be
ome a 
ourishingdis
ipline with many deep and useful results.To prove that a query language Q 
aptures a ma
hine-based 
omplexity 
lassC, one usually shows that ea
h C-ma
hine with (en
odings of) �nite stru
turesas inputs that 
omputes a generi
 query 
an be represented by an expression inlanguage Q. There is, however, a slight mismat
h between ordinary ma
hines andlogi
al queries. A Turing ma
hine works on a string en
oding of the input databaseD. Su
h an en
oding provides an impli
it linear order on D, in parti
ular, on allelements of the universe UD. The Turing ma
hine 
an take pro�t of this order anduse this order in its 
omputations (as long as generi
ity is obeyed). On the otherhand, in logi
 or database theory, the universe UD is a pure set and thus unordered.For \powerful" query languages of inherent nondeterministi
 nature at the levelof NP this is not a problem, sin
e an ordering on UD 
an be nondeterministi
allyguessed. However, for many query languages, in parti
ular, for those 
orrespondingto 
omplexity 
lasses below NP, generating a linear order is not feasible. Therefore,one often assumes that a linear ordering of the universe elements is prede�ned, i.e.,given expli
itly in the input database. More spe
i�
ally, by ordered databases orordered �nite stru
tures , we mean databases whose s
hemas 
ontain spe
ial relation
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, First, and Last, that are always interpreted su
h that Su

(x; y) isa su

essor relation of some linear order and First(x) determines the �rst elementand Last(x) the last element in this order. The importan
e of prede�ned linearorderings be
omes evident in the next two theorems.Before 
oming to the theorems, we must highlight another small mismat
h be-tween the Turing ma
hine and the datalog setting. A Turing ma
hine 
an 
onsiderea
h input bit independently of its value. On the other hand, a plain datalog pro-gram is not able to dete
t that some atom is not a part of the input database. Thisis due to the representational pe
uliarity that only positive information is presentin a database, and that the negative information is understood via the 
losed worldassumption. To 
ompensate this de�
ien
y, we will slightly augment the syntax ofdatalog. Throughout this se
tion, we will assume that input predi
ates may appearnegated in datalog rule bodies; the resulting language is datalog+. This extremelylimited form of negation is mu
h weaker than strati�ed negation, and 
ould beeasily 
ir
umvented by adopting a di�erent representation for databases.Theorem 7.1 (a fortiori from [Chandra and Harel 1982℄) Datalog+ $ P.Proof. (Hint.) Show that there exists no datalog+ program P that 
an tellwhether the universe U of the input database has an even number of elements.Clearly, plain datalog (without negation of the input predi
ates) 
an only de�nemonotoni
 queries , i.e., the output grows monotoni
ally with the input, and thusdatalog 
an not express all queries 
omputable in polynomial time. The naturalquestion is thus to ask whether datalog expresses all monotone queries 
omputablein polynomial time. As shown in [Afrati et al. 1995℄, the answer is negative. Inparti
ular, datalog 6= (i.e., datalog augmented by inequality) 
an not express whethera given set of linear 
onstraints of the form x+ y + z = 1 or x = 0 is in
onsistent,even on ordered databases [Afrati et al. 1995℄. Furthermore, de
iding whether adire
ted graph has path with length a perfe
t square is not expressible in datalog+;6=(datalog+ with inequality). The language datalog 6= was �rst studied by [Shmueli1987℄, who showed that is more expressive than plain datalog. Properties andexpressiveness aspe
ts of this language have been further studied e.g. in [Gaifmanet al. 1987; Lakshmanan and Mendelzon 1989; Ajtai and Gurevi
h 1994; Kolaitisand Vardi 1995; Afrati 1997℄.The perfe
t square query is expressible in datalog+;6= on ordered databases, how-ever. This is a 
orollary to the next result.Theorem 7.2 ([Papadimitriou 1985; Gr�adel 1992℄; impli
it in [Vardi 1982; Im-merman 1986; Leivant 1989℄) On ordered databases, datalog+ 
aptures P.Proof. (Sket
h) By Theorem 5.1, query answering for a �xed datalog+ programis in P. It thus remains to show that ea
h polynomial-time DTM T on �nite inputdatabases D 2 INST(Din ) 
an be simulated by a datalog+ program. To show this,we �rst make some simplifying assumptions.(1) The universe UD is an initial segment [0; n � 1℄ of the integers, and Su

,First, and Last are from the natural linear ordering over this segment.
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 programming � 39(2) The input database s
hema Din 
onsists of a single binary relation G, plusthe prede�ned predi
ates Su

;First;Last. In other words, D is always (anordered) graph hU;Gi.(3) T operates in < nk steps, where n = jU j > 1.(4) T 
omputes a Boolean (0-ary) predi
ate.The simulation is akin to the simulation used in the proofs of Theorems 4.2and 4.5.Re
all the framework of Se
tion 4.1. In the spirit of this framework, it suÆ
es toen
ode nk time-points � and tape-
ell numbers � within a �xed datalog program.This is a
hieved by 
onsidering k-tuples X = hX1; : : : ; Xki of variables Xi rangingover U . Ea
h su
h k-tuple en
odes the integer int(X) =Pki=1Xi � nk�i.At time point 0 the tape of T 
ontains an en
oding of the input graph. Re
allthat in Se
tion 4.1 this was re
e
ted by the following initialization fa
tssymbol� [0; �℄  for 0 � � < jI j, where I� = �:Before translating these rules into appropriate datalog rules, we shall spend a wordabout how input graphs are usually represented by a binary strings. A graphhU;Gi is en
oded by binary string en
(U;G) of length jU j2: if G(i; j) is true fori; j 2 U = [0; n�1℄ then the bit number i�n+j of en
(U;G) is 1, otherwise this bitis 0. The bit positions of en
(U;G) are exa
tly the integers from 0 to n2�1. Theseintegers are represented by all k-tuples h0k�2; a; bi su
h that a; b 2 U . Moreover,the bit-position int(h0k�2; X; Y i) of en
(U;G) is 1 if and only if G(X;Y ) is true inthe input database and 0 otherwise.The above initialization rules 
an therefore be translated into the datalog rulessymbol1[0k; 0k�2; X; Y ℄  G(X;Y )symbol0[0k; 0k�2; X; Y ℄  :G(X;Y )Intuitively, the �rst rule says that at time point 0 = int(0k), the bit numberint(h0k�2; X; Y i) on the tape is 1 if G(X;Y ) is true. The se
ond rule states thatthe same bit is false if G(X;Y ) is false. Note that the se
ond rule applies negationto an input predi
ate. Only this rule in the entire datalog+ program uses negation.Clearly, these two rules simulate that at time point 0, the 
ells 
0,. . . , 
n2�1 
ontainpre
isely the string en
(U;G).The other initialization rules des
ribed in Se
tion 4.1 are also easily translatedinto appropriate datalog rules. Let us now see how the other rules are translatedinto datalog.From the linear order given by Su

(X;Y ), First(X), and Last(X), it is easy tode�ne by datalog 
lauses a linear order �k on k-tuples Su

k(X;Y), Firstk(X),Lastk(X) (see the proof of Theorem 4.5), by using Su

1 = Su

, First1 = First andLast1 = Last. By using Su

k, transition rules, inertia rules and the a

ept rulesare easily translated into datalog as in the proof of Theorem 4.5.The output s
hema of the resulting datalog program P+ is de�ned to be Dout =fa

eptg. It is 
lear that this program evaluates to true on input D = hU;Gi, i.e.,P+ [D j= a

ept if and only if T a

epts en
(U;G).The generalization to a setting where the simplifying assumptions 1{3 are notmade is rather straightforward and is omitted. Assumption 4 
an also be easily
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omputation of output predi
ates. We 
onsider here the 
ase wherethe output s
heme Dout 
ontains a single binary relation R. Then, the outputdatabase D0 
omputed by T , whi
h is a graph hU;Ri, 
an be en
oded similarly tothe input database as a binary string en
(U;R) of length jU j2. We may supposethat when the ma
hine enters the halt state, this string is 
ontained in the �rstjU j2 
ells of the tape. To obtain the positive fa
ts of the output relation R, we addthe following rule:R(X;Y )  symbol1[Y; 0k�2; X; Y ℄); statehalt[Y℄We remark that a result similar to Theorem 7.2 was independently obtained by[Liv
hak 1983℄.Let us now state somewhat more su

in
tly further interesting results on datalog.A prominent query language is �xpoint logi
 (FPL), whi
h is the extension of �rst-order logi
 by a least �xpoint operator lfp(X; '; S), where S is a jXj-ary predi
ateo

urring positively in the formula ' = '(X;S), and X is a tuple of free variablesin '; intuitively, it returns the least �xpoint of the operator � de�ned by �(S) =fa j D j= '(a;S)g. We refer to [Chandra and Harel 1982; Abiteboul et al. 1995;Ebbinghaus and Flum 1995℄ for details. As shown in [Chandra and Harel 1982℄,FPL expresses a proper subset of the queries in P. Datalog+ relates to FPL asfollows.Theorem 7.3 ([Chandra and Harel 1985℄) Datalog+ = FPL+(9), i.e., Datalog+
oin
ides with the fragment of FPL having negation restri
ted to database relationsand only existential quanti�ers.As for expressibility in �rst-order logi
, [Ajtai and Gurevi
h 1994℄ have shownthat a datalog query is equivalent to a �rst-order formula if and only if it is bounded,and thus expressible in existential �rst-order logi
.Adding strati�ed negation does not preserve the equivalen
e of datalog and �x-point logi
 in Theorem 7.3.Theorem 7.4 ([Kolaitis 1991℄; impli
it in [Dahlhaus 1987℄) Strati�ed datalog $FPL.This theorem is not obvious. In fa
t, for some time 
oin
iden
e of the twolanguages was assumed, based on a respe
tive statement in [Chandra and Harel1985℄.The nonre
ursive fragment of datalog 
oin
ides with well-known database querylanguages.Theorem 7.5 (
f. [Abiteboul et al. 1995℄) Nonre
ursive range-restri
ted datalogwith negation = relational algebra = relational 
al
ulus. Nonre
ursive datalog withnegation = �rst-order logi
 (without fun
tion symbols).The expressive power of relational algebra is equivalent to that of a fragment ofthe database query language SQL (essentially, SQL without grouping and aggregate
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tions). The expressive power of SQL is dis
ussed in [Libkin and Wong 1994;Dong et al. 1997; Libkin 1997℄.Unstrati�ed negation yields higher expressive power.Theorem 7.6 (i) Datalog under WFS = FPL ([van Gelder 1989℄).(ii) Datalog under INFS = FPL ([Abiteboul and Vianu 1991a℄, using [Gurevi
hand Shelah 1986℄).As re
ently shown, the �rst result holds also for total WFS (i.e., the well-foundedmodel is always total) [Flum et al. 1997℄.We remark that the variants of datalog mentioned above 
an only de�ne querieswhi
h are expressible in in�nitary logi
 with �nitely many variables (L!1!) [Kolaitisand Vardi 1995℄. It is known that L!1! has a 0-1 law, i.e., every query de�nablein this language is either almost surely true or almost surely false, if the size ofthe universe grows to in�nity [Kolaitis and Vardi 1992℄. It is easy to see that theboolean Even-query qE , whi
h tells if the domain of a given input database Din(over a �xed s
hema) 
ontains an even number of elements, is not almost surelytrue or almost surely false. Thus, a fortiori, this query{ whi
h is 
omputable inpolynomial time{ is not expressible in the above variants of datalog.On ordered databases, Theorem 7.2 and the theorems in Se
tion 5 implyTheorem 7.7 On ordered databases, the following query languages 
apture P: strat-i�ed datalog, datalog under INFS, and datalog under WFS.Synta
ti
al restri
tions allow us to 
apture 
lasses within P. Let datalog+(1) bethe fragment of datalog+ where ea
h rule has most one nondatabase predi
ate in thebody, and let datalog+(1; d) be the fragment of datalog+(1) where ea
h predi
ateo

urs in at most one rule head.Theorem 7.8 ([Gr�adel 1992; Veith 1994℄) On ordered databases, datalog+(1) 
ap-tures NL and datalog+(1; d) 
aptures L.Due to inherent nondeterminism, stable semanti
s is mu
h more expressive.Theorem 7.9 ([S
hlipf 1995b℄) Datalog under SMS 
aptures 
o-NP.Note that for this result an order on the input database is not needed. Informally,in ea
h stable model su
h an ordering 
an be guessed and 
he
ked by the program.By [Fagin 1974℄'s Theorem, this implies that datalog under SMS is equivalent tothe existential fragment of se
ond-order logi
 over �nite stru
tures.Theorem 7.10 ([Abiteboul and Vianu 1991a℄) On ordered databases, datalog un-der NINFS 
aptures PSPACE.Here ordering is needed. An interesting result in this 
ontext, formulated interms of datalog, is the following [Abiteboul and Vianu 1991a℄: datalog under INFS= datalog under NINFS on arbitrary �nite databases if and only if P = PSPACE.While the \only if" dire
tion is obvious, the proof of the \if" dire
tion is involved. It
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omplexity 
lasses into 
orresponding relationships between query languages.We next brie
y address the expressive power of disjun
tive logi
 programs.Theorem 7.11 ([Eiter et al. 1994; Eiter et al. 1997℄) Disjun
tive datalog underSMS 
aptures �p2.It appears that fragments of disjun
tive datalog have interesting properties.While disjun
tive datalog+;6= expresses only a subset of the queries in 
o-NP (e.g.,it 
an not express the Even-query), it expresses all of �p2 under the 
redulous notionof 
onsequen
e, i.e., P j=
 A if A is true in some stable model. Furthermore, under
redulous 
onsequen
e every query in nondisjun
tive datalog+;6= is expressible indisjun
tive datalog+, even though the inequality predi
ate 
an not be re
ognized.Finally, we 
onsider full logi
 programs. In this 
ase, the input databases arearbitrary (not ne
essarily re
ursive) relations on the genuine (in�nite) Herbranduniverse of the program.Theorem 7.12 [S
hlipf 1995b; Eiter and Gottlob 1997℄ Ea
h of logi
 programmingunder WFS, logi
 programming under SMS, and DLP under SMS 
aptures �11.Thus, di�erent from the fun
tion-free 
ase, adding disjun
tion does not in
reasethe expressive power of normal logi
 programs. The reason is that disjun
tive logi
programs 
an be expressed in a weak fragment of the 
lass �12 of se
ond-order logi
,whi
h in the 
ase of an in�nite Herbrand universe 
an be 
oded to the �11 fragment.For further expressiveness results on logi
 programs see e.g. [S
hlipf 1995b; Sa

�a1995; Sa

�a 1997; Gre
o and Sa

�a 1997; Gre
o and Sa

�a 1996; Eiter et al. 1998;Cadoli and Palopoli 1998℄. In parti
ular, 
o-NP 
an be 
aptured by a variantof 
ir
ums
ribed datalog [Cadoli and Palopoli 1998℄, and further 
lasses of thepolynomial hierar
hy 
an be 
aptured by variants of stable models [Sa

�a 1995;Sa

�a 1997; Eiter et al. 1998; Bu

afurri et al. 1997℄ as well as through modular logi
programming [Eiter et al. 1997; Eiter et al. 2000; Bu

afurri et al. 1998℄. Results onthe expressiveness of the stable model semanti
s over disjun
tive databases, whi
hare given by sets of ground 
lauses rather than fa
ts, 
an be found in [Bonatti andEiter 1996℄.We 
on
lude this subse
tion with a brief look on expressiveness results for nonde-terministi
 queries. A nondeterministi
 query maps an input database to one froma set of possible output databases; it 
an be viewed as a multi-valued fun
tion. Forexample, a query whi
h returns as output a Hamiltonian 
y
le of given input graphis a nondeterministi
 query. The (deterministi
) queries that we have 
onsideredabove are a spe
ial 
ase of nondeterministi
 queries.It has been shown that the 
lass NDB-P of nondeterministi
 queries whi
h are
omputable in polynomial time 
an be 
aptured by suitable nondeterministi
 vari-ants of datalog, e.g., by a pro
edure-style variants [Abiteboul and Vianu 1991a℄, bydatalog 6= (datalog with inequality) extended with a 
hoi
e operator, or by datalogwith stable models [Cor
iulo et al. 1993; Giannotti and Pedres
hi 1998℄. Also NDB-PSPACE, the 
lass of nondeterministi
 queries 
omputable in polynomial spa
e, is
aptured by a nondeterministi
 variant of datalog [Abiteboul and Vianu 1991a℄.For a tutorial survey of su
h and related deterministi
 languages, we re
ommend
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 programming � 43[Vianu 1997℄. For further issues on nondeterministi
 queries, we refer to [Giannottiet al. 1997; Grumba
h and La
roix 1997; Leone et al. 1999℄.7.1 The order mismat
h and relational ma
hinesMany results on 
apturing the 
omplexity 
lasses by logi
al languages su�er fromthe order mismat
h. For example, the results by Immerman and Vardi (Theo-rems 7.7 and 7.10) show that P = PSPACE if and only if Datalog under INFS andDatalog under NINFS 
oin
ide on ordered databases. The order appears when we
ode the input for a standard 
omputational devi
e, like a Turing ma
hine, whilethe semanti
s of Datalog and logi
 is de�ned dire
tly in terms of logi
al stru
tures,where no order on elements is given.To over
ome this mismat
h, [Abiteboul and Vianu 1991b; Abiteboul and Vianu1995℄ introdu
ed relational 
omplexity theory , where 
omputations on unorderedstru
tures are modeled by relational ma
hines . In [Abiteboul and Vianu 1991b;Abiteboul and Vianu 1995; Abiteboul et al. 1997℄ several relational 
omplexity
lasses are introdu
ed, su
h as Pr (relational polynomial time), NPr (relationalnondeterministi
 polynomial time), PSPACEr (relational polynomial spa
e) andEXPTIMEr (relational exponential time). It follows that all separation resultsamong the standard 
omplexity 
lasses translate into separation results amongrelational 
omplexity 
lasses. For example, P = NP if and only if Pr = NPr.It happens that Datalog under various semanti
s 
aptures the relational 
om-plexity 
lasses on unordered databases. For example (
f. Theorems 7.7 and 7.10),we haveTheorem 7.13 Datalog under INFS 
aptures Pr. Datalog under NINFS 
apturesPSPACEr.Note that together with the 
orresponden
e of the separation results betweenthe standard 
omplexity 
lasses and the relational 
omplexity 
lasses, this theoremimplies that Datalog under INFS 
oin
ides with Datalog under NINFS if and only ifP = PSPACE. Therefore, the results of [Abiteboul and Vianu 1991b; Abiteboul andVianu 1995; Abiteboul et al. 1997℄ provide an order-free 
orresponden
e betweenquestions in 
omputational and des
riptive 
omplexity.7.2 Expressive power of logi
 programming with 
omplex valuesThe expressive power of datalog queries is de�ned in terms of input and outputdatabases, i.e., �nite sets of tuples. In order to extend the notion of expressivepower to logi
 programming with 
omplex values, we need to de�ne what we meanby an input. For example, in the 
ase of plain logi
 programming, an input may bea �nite set of ground terms, i.e. a �nite set of trees. In the 
ase of logi
 programmingwith sets, an input may be a set whose elements may be sets too and so on.Various models and languages for dealing with 
omplex values in databases havebeen proposed, e.g. [Abiteboul and Kanellakis 1989; Abiteboul and Grumba
h 1988;Kifer and Wu 1993; Kifer et al. 1995; Abiteboul and Beeri 1995; Buneman et al.1995; Su
iu 1997; Gre
o et al. 1995; Libkin et al. 1996; Abiteboul et al. 1995℄. Thefun
tional approa
h to su
h languages dominates the logi
 programming one. Toextend variants of nested relational algebra as in [Buneman et al. 1995℄ to datalog,
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onstru
ts have been proposed [Su
iu 1997℄, as well as de
ationary�xpoint 
onstru
ts [Colby and Libkin 1997℄.The 
omparative expressive power of languages for 
omplex values is studied ine.g. [Abiteboul and Grumba
h 1988; Vadaparty 1991; Su
iu 1997; Abiteboul andBeeri 1995; Dantsin and Voronkov 2000℄. For example, [Abiteboul and Beeri 1995℄introdu
e a model for restri
ted 
ombinations of tuples and sets and several 
or-responding query languages, in
luding the algebrai
 and logi
 programming ones.It is proved that all these languages de�ne the same 
lass of queries. [Dantsin andVoronkov 2000℄ show that nonre
ursive logi
 programming with negation has thesame expressive power as nonre
ursive datalog with negation (under a natural rep-resentation of inputs). Thus, the use of re
ursive data stru
tures, namely trees, innonre
ursive datalog gives no gain in the expressiveness. It follows from this resultthat nonre
ursive logi
 programming with negation is polynomial-time. [M
Allester1993; Givan and M
Allester 2000℄ study logi
 programs without negation in whi
hevery term o

urring in the head of a 
lause also o

urs in its body. It is provedthat this 
lass 
aptures P on ground terms (one 
an de�ne a linear order on the setof ground terms using logi
 programs of this kind).The absolute expressive power of languages for 
omplex values is also studied in[Sazonov 1993; Su
iu 1997; Sazonov and Lisitsa 1995; Grumba
h and Vianu 1995;Gyssens et al. 1995; Lisitsa and Sazonov 1997℄; further issues, su
h as expressibilityof parti
ular queries or faithful extension of datalog, are studied in [Libkin andWong 1995; Wong 1996; Paredaens and van Gu
ht 1992℄.Results on the expressive power of di�erent forms of logi
 programming with
onstraints 
an be found e.g. in [Cosmadakis and Kuper 1994; Kanellakis et al.1995; Benedikt et al. 1996; Vandeurzen et al. 1996℄.Unlike resear
h on the expressive power of datalog, there is no mainstream inresear
h on the expressive power of logi
 programming with 
omplex values. Ex-tension of de
larative query languages by 
omplex values is more a
tively studiedin database theory.8. UNIFICATION AND ITS COMPLEXITYWhat is the 
omplexity of query answering for very simple logi
 programs 
on-sisting of one fa
t? This problem leads us to the problem of solving equationsover terms, known as the uni�
ation problem. Uni�
ation lies in the very heart ofimplementations of logi
 programming and automated reasoning systems.Atoms or terms s and t are 
alled uni�able if there exists a substitution # thatmakes them equal, i.e., the terms s# and t# 
oin
ide; su
h a substitution # is 
alleda uni�er of s and t. The uni�
ation problem is the following de
ision problem:given terms s and t, are they uni�able?[Robinson 1965℄ des
ribed an algorithm that solves this problem and, if the an-swer is positive, 
omputes a most general uni�er of given two terms. His algorithmhad exponential time and spa
e 
omplexity mainly be
ause of the representation ofterms by strings of symbols. Using better representations (for example, by dire
teda
y
li
 graphs), Robinson's algorithm was improved to linear time algorithms, e.g.[Martelli and Montanari 1976; Paterson and Wegman 1978℄.Theorem 8.1 ([Dwork et al. 1984; Yasuura 1984; Dwork et al. 1988℄) The uni-
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ation problem is P-
omplete.P-hardness of the uni�
ation problem was proved by redu
tions from some ver-sions of the 
ir
uit value problem in [Dwork et al. 1984; Yasuura 1984; Dwork et al.1988℄. (Note that [Lewis and Statman 1982℄ states that uni�ability is 
omplete for
o-NL; however, [Dwork et al. 1984℄ gives a 
ounterexample to the proof in [Lewisand Statman 1982℄.)Also, many quadrati
 time and almost linear time uni�
ation algorithms havebeen proposed be
ause these algorithms are often more suitable for appli
ationsand generalizations (see a survey of the main uni�
ation algorithms in [Baader andSiekmann 1994℄). Here we mention only [Martelli and Montanari 1982℄'s algorithmbased on ideas going ba
k to [Herbrand 1972℄'s famous work. Modi�
ations ofthis algorithm are widely used for uni�
ation in equational theories and rewritingsystems. The time 
omplexity of Martelli and Montanari's algorithm is O(nA�1(n))where A�1 is a fun
tion inverse to A
kermann's fun
tion and thus A�1 grows veryslowly.9. LOGIC PROGRAMMING WITH EQUALITYThe relational model of data deals with simple values, namely tuples 
onsisting ofatomi
 
omponents. Various generalizations and formalisms have been proposed tohandle more 
omplex values like nested tuples, tuples of sets, et
; see Se
tion 7.2 and[Abiteboul and Beeri 1995℄. Most of these formalisms 
an be expressed in terms oflogi
 programming with equality [Gallier and Raatz 1986; Gallier and Raatz 1989;H�olldobler 1989; Hanus 1994; Degtyarev and Voronkov 1996℄ and 
onstraint logi
programming 
onsidered in Se
tion 10.9.1 Equational theoriesLet L be a language 
ontaining the equality predi
ate =. By an equation over L wemean an atom s = t where s and t are terms in L. An equational theory E over L isa set of equations 
losed under the logi
al 
onsequen
e relation, i.e., a set satisfyingthe following 
onditions: (i) E 
ontains the equation x = x; (ii) if E 
ontains s = tthen E 
ontains t = s; (iii) if E 
ontains r = s and s = t then E 
ontains r = t;(iv) if E 
ontains s1 = t1; : : : ; sn = tn then E 
ontains f(s1; : : : ; sn) = f(t1; : : : ; tn)for ea
h n-ary fun
tion symbol f 2 L; and (v) if E 
ontains s = t then E 
ontainss# = t# for all substitutions #.The syntax of logi
 programs over an equational theory E 
oin
ides with thatof ordinary logi
 programs. Their semanti
s is de�ned as a generalization of thesemanti
s of logi
 programming so that terms are identi�ed if they are equal in E.Example 10. We demonstrate logi
 programs with equality by a logi
 programpro
essing �nite sets. Finite sets are a typi
al example of 
omplex values handledin databases. We represent �nite sets by ground terms as follows: (i) the 
onstantfg denotes the empty set, (ii) if s represents a set and t is a ground term thenft j sg represents the set ftg [ s (where ftg and s are not ne
essarily disjoint).However the equality on sets is de�ned not as identity of terms but as equality inthe equational theory in whi
h terms are 
onsidered to be equal if and only if theyrepresent equal sets (we omit the axiomatization of this theory).
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he
ks whether two given sets have anonempty interse
tion. This program 
onsists of one fa
tnon empty interse
tion(fX j Y1g; fX j Y2g)  :For example, to 
he
k that the sets f1; 3; 5g and f4; 1; 7g have a 
ommon member,we ask the query non empty interse
tion(f1; 3; 5g; f4; 1; 7g). The answer will bepositive. Indeed, the following system of equations has solutions in the equationaltheory of sets: fX j Y1g = f1; 3; 5g; fX j Y2g = f4; 1; 7g:For example, set X = 1, Y1 = f3; 5g, Y2 = f4; 7g.Note that if we represent sets by lists in plain logi
 programming without equality,any en
oding of non empty interse
tion will require re
ursion.The 
omplexity of logi
 programs over E depends on the 
omplexity of solvingsystems of term equations in E. The problem of whether a system of term equationsis solvable in an equational theory E is known as the problem of simultaneous E-uni�
ation.A substitution # is 
alled an E-uni�er of terms s and t if the equation s# = t#is a logi
al 
onsequen
e of the theory E. By the E-uni�
ation problem we meanthe problem of whether there exists an E-uni�er of two given terms. Ordinaryuni�
ation 
an be viewed as E-uni�
ation where E 
ontains only trivial equationst = t. It is natural to think of an E-uni�er of s and t as a solution to the equations = t in the theory E.9.2 Complexity of E-uni�
ationSolving equations is a traditional subje
t of all mathemati
s. Sin
e any result onsolving equation systems 
an be viewed as a result on E-uni�
ation, it is thuspra
ti
ally impossible to overview all results on the 
omplexity of E-uni�
ation.Therefore, we restri
t this survey to only few 
ases 
losely 
onne
ted with logi
programming. The general theory of E-uni�
ation may be found e.g. in [Baaderand Siekmann 1994℄.Let E be an equational theory over L and � be a binary fun
tion symbol inL (written in the in�x form). We 
all � an asso
iative symbol if E 
ontains theequation x � (y � z) = (x � y) � z, where x; y and z are variables. Similarly, � is
alled an AC-symbol (an abbreviation for an asso
iative-
ommutative symbol) if �is asso
iative and, in addition, E 
ontains x � y = y � x. If � is an AC-symbol andE 
ontains x � x = x, we 
all � an ACI-symbol (I stands for idempoten
e). Also, �is 
alled an AC1-symbol (or an ACI1-symbol) if � is an AC-symbol (an ACI-symbolrespe
tively) and E 
ontains the equation x � 1 = x where 1 is a 
onstant belongingto L.Theorem 9.1 ([Makanin 1977; Baader and S
hulz 1992; Benanav et al. 1987;Ko�s
ielski and Pa
holski 1996℄) Let E be an equational theory de�ning a fun
tionsymbol � in L as an asso
iative symbol (E 
ontains all logi
al 
onsequen
es of x � (y �z) = (x �y) �z and no other equations). The following upper and lower bounds on the
omplexity of the E-uni�
ation problem hold: (i) this problem is in 3-NEXPTIME,(ii) this problem is NP-hard.
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ally, all algorithms for uni�
ation under asso
iativity are based on [Makanin1977℄'s algorithm for word equations. The 3-NEXPTIME upper bound is obtainedin [Ko�s
ielski and Pa
holski 1996℄.The following theorem 
hara
terizes other popular kinds of equational theories.Theorem 9.2 ([Kapur and Narendran 1986; Kapur and Narendran 1992; Baaderand S
hulz 1996℄) Let E be an equational theory de�ning some symbols as one ofthe following: AC-symbols, ACI-symbols, AC1-symbol, or ACI1-symbols (there 
anbe one or more of these kinds of symbols). Suppose the theory E 
ontains no otherequations. Then the E-uni�
ation problem is NP-
omplete.9.3 Complexity of nonre
ursive logi
 programming with equalityIn the 
ase of ordinary uni�
ation, there is a simple way to redu
e solvability of�nite systems of equations to solvability of single equations. However, these twokinds of solvability are not equivalent for some theories: there exists an equationaltheory E su
h that the solvability problem for one equation is de
idable, whilesolvability for (�nite) systems of equations is unde
idable [Narendran and Otto1990℄.Simultaneous E-uni�
ation determines de
idability of nonre
ursive logi
 pro-gramming over E.Theorem 9.3 (impli
it in [Dantsin and Voronkov 1997℄) Let E be an equationaltheory. Nonre
ursive logi
 programming over E is de
idable if and only if the prob-lem of simultaneous E-uni�
ation is de
idable.An equational theory E is 
alled NP-solvable if the problem of solvability ofequation systems in E is in NP. For example, the equational theory of �nite setsmentioned above, the equational theory of bags (i.e. �nite multisets) and the equa-tional theory of trees (
ontaining only equations t = t) are NP-solvable [Dantsinand Voronkov 1999℄.Theorem 9.4 ([Dantsin and Voronkov 1997; Dantsin and Voronkov 1999℄)Nonre
ursive logi
 programming over an NP-solvable equational theory E is inNEXPTIME. Moreover, if E is a theory of trees, or bags, or �nite sets, or any 
om-bination of them, then nonre
ursive logi
 programming over E is also NEXPTIME-
omplete.10. CONSTRAINT LOGIC PROGRAMMINGInformally, 
onstraint logi
 programming (CLP) extends logi
 programming by in-volving additional 
onditions on terms. These 
onditions are expressed by 
on-straints, i.e., equations, disequations, inequations et
. over terms. The semanti
sof su
h 
onstraints is prede�ned and does not depend on logi
 programs.Example 11. We illustrate CLP by the standard example. Suppose that we wouldlike to solve the following puzzle:+ S E N DM O R EM O N E Y
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imal digits 0; 1; : : : ; 9. As usual,di�erent letters denote di�erent digits and S;M 6= 0. This puzzle 
an be solved bya 
onstraint logi
 program over the domain of integers (Z;=; 6=;�;+;�; 0; 1; : : :).Informally, this program 
an be written as follows.�nd(S;E;N;D; M;O;R;E; M;O;N;E; Y ) 1 � S � 9; : : : ; 0 � Y � 9;S 6= E; : : : ; R 6= Y;1000 � S + 100 � E + 10 �N +D+1000 �M + 100 � O + 10 � R+E =10000 �M + 1000 � O + 100 �N + 10 � E + YThe query �nd(S;E;N;D; M;O;R;E; M;O;N;E; Y ) will be answered by theonly solution + 9 5 6 71 0 8 51 0 6 5 2A stru
ture is de�ned by an interpretation I of a language L in a nonempty setD. For example, we shall 
onsider the stru
ture de�ned by the standard interpre-tation of the language 
onsisting of the 
onstant 0, the su

essor fun
tion symbols and the equality predi
ate = on the set N of natural numbers. This stru
tureis denoted by (N;=; s; 0). Other examples of stru
tures are obtained by repla
ingN by the sets Z (the integers), Q (the rational numbers), R (the reals) or C (the
omplex numbers). Below we denote stru
tures in a similar way, keeping in mindthe standard interpretation of arithmeti
 fun
tion symbols in number sets. Thesymbols � and = stand for multipli
ation and division respe
tively. We use k � x todenote unary fun
tions of multipli
ation by parti
ular numbers (of the 
orrespond-ing domain); xk is used similarly. All stru
tures under 
onsideration are assumedto 
ontain the equality symbol.Let S be a stru
ture. An atom 
(t1; : : : ; tk) where t1; : : : ; tk are terms in thelanguage of S is 
alled a 
onstraint . By a 
onstraint logi
 program over S we meana �nite set of rules p(X)  
1; : : : ; 
m; q1(X1); : : : ; qn(Xn)where 
1; : : : ; 
m are 
onstraints, p; q1; : : : ; qn are predi
ate symbols not o

urringin the language of S, andX;X1; : : : ;Xn are lists of variables. The semanti
s of CLPis de�ned as a natural generalization of semanti
s of logi
 programming, e.g. [Ja�arand Maher 1994℄. If S 
ontains fun
tion symbols interpreted as tree 
onstru
tors(i.e. equality of 
orresponding terms is interpreted as ordinary uni�
ation) thenCLP over S is an extension of logi
 programming. Otherwise, CLP over S 
an beregarded as an extension of Datalog by 
onstraints.10.1 Complexity of 
onstraint logi
 programmingThere are two sour
es of 
omplexity in CLP: 
omplexity of solving systems of 
on-straints and 
omplexity 
oming from the logi
 programming s
heme. However, in-tera
tion of these two 
omponents 
an lead to 
omplexity mu
h higher than merelythe sum of their 
omplexities. For example, Datalog (whi
h is EXPTIME-
omplete)
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onstraints (whose satis�ability problem is in NP for integersand in P for rational numbers and reals) is unde
idable.Theorem 10.1 ([Cox et al. 1990℄) CLP over (N;=; s; 0) is r.e.-
omplete. Thesame holds for ea
h of Z, Q, R, and C instead of N.The proof uses the fa
t that CLP over (N;=; s; 0; 1) allows one to de�ne addi-tion and multipli
ation in terms of su

essor. Thus, diophantine equations 
an beexpressed in this fragment of CLP.On the other hand, simpler 
onstraints, namely 
onstraints over ordered in�nitedomains (of some parti
ular kind), do not in
rease the 
omplexity of Datalog.Theorem 10.2 ([Cox and M
Aloon 1993℄) CLP over (Z;=; <; 0;�1;�2; : : :) isEXPTIME-
omplete. The same holds for Q or R instead of Z.De
idable fragments of CLP over more 
omplex stru
tures are obtained by re-stri
tions imposed on 
onstraint logi
 programs. For example, we 
onsider a 
on-servative CLP in whi
h rules satisfy the restri
tion: all variables o

urring in thebody o

ur in the head.Theorem 10.3 ([Cox et al. 1990℄) Conservative CLP is EXPTIME-
omplete overea
h of the following stru
tures:(Q;=;�; <;+;�; k �x; 0; 1; : : :), i.e. linear inequations over the rational numbers;(R;=;�; <;+;�; k � x; 0; 1; : : :), i.e. linear inequations over the reals;(R;=;�; <;+;�;�; =; xk; 0; 1; : : :), i.e. polynomial inequations over the reals;(C;=;+;�;�; =; xk; 0; 1; : : :), i.e. polynomial equations over the 
omplex num-bers.The proof is based on the known results on the 
omplexity of algorithms forthe 
orresponding algebrai
 stru
tures [Canny 1988; Renegar 1988; Grigoryev andVorobjov 1988; Ierardi 1989℄. If we allow nonground queries, EXPTIME-
ompletenesshas to be repla
ed by NEXPTIME-
ompleteness.A very general formalism for logi
 programming with 
onstraints is the 
onstraintdatabase model introdu
ed by [Kanellakis et al. 1990℄. They de�ne a 
onstraintdatabase as a quanti�er-free formula over a given mathemati
al stru
ture (e.g. the�eld of the real numbers). In the simplest 
ase, this 
ould be a �nite relationaldatabase, but in general, a 
onstraint database �nitely represents an in�nite numberof tuples. They investigate the data 
omplexity of �rst-order logi
 (FO) and datalogover 
onstraint databases and prove that for the 
ase of the real �eld, FO queriesover 
onstraint databases are in the parallel 
omplexity 
lass NC, while datalogqueries are in P. For �nite databases, [Benedikt and Libkin 1996℄ improved the NCupper bound to the parallel 
lass TC0, whi
h 
ontains the languages re
ognized by
onstant depth threshold 
ir
uits [Johnson 1990℄.10.2 Expressiveness of 
onstraintsThere are various di�erent settings in whi
h expressiveness issues of logi
 program-ming formalisms with 
onstraints have been studied. Expressiveness of �rst-order
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 and of datalog with 
onstraints is 
urrently an intensive resear
h area ofDatabase Theory. Many important papers on this subje
t 
an be found in thepro
eedings of re
ent PODS, ICDT or LICS 
onferen
es.3 A detailed and uniformtreatment is beyond the s
ope of this paper. In this se
tion, we limit ourselves toa brief des
ription of a number of relevant referen
es, most 
losely related to thesetting of [Kanellakis et al. 1990℄.A main resear
h issue was the question whether properties su
h as parity that
annot be expressed in FO or strati�ed datalog (without order) 
ould be expressedin the respe
tive formalisms extended by 
onstraints. This question has two dif-ferent interpretations, depending on how we interpret the variables in a query.The a
tive interpretation restri
ts the domain of possible values for a variable tothose values that e�e
tively appear in the database (i.e., to the a
tive domain).The natural interpretation does not make this restri
tion and allows a variable tobe interpreted by any value of the underlying domain (e.g. the reals). Note thatthese two interpretations 
oin
ide for 
lassi
al relational 
al
ulus [Hull and Su 1994;Benedikt and Libkin 1997℄.For the a
tive interpretation of �rst-order 
onstraint queries, the above questionwas solved independently by [Benedikt et al. 1996℄ and by [Otto and van den Buss-
he 1996℄. It was shown that the generi
 queries expressible by FO with 
onstraintsare 
ontained in those expressible by FO plus linear order. In parti
ular, it followsthat parity is not expressible in the 
onstraint setting. The expressiveness problemfor datalog with 
onstraints was resolved in [Benedikt and Libkin 1997℄ by usingRamsey Theory. In analogy to the results for �rst-order logi
, it was shown thatdatalog with 
onstraints is not more expressive than datalog plus linear order.For the natural interpretation, it was shown in [Grumba
h and Su 1995℄ that ev-ery re
ursive query is de�nable by FO with polynomial 
onstraints over the naturalnumbers. As shown in [Kanellakis and Goldin 1994; Grumba
h et al. 1995℄, and[Benedikt et al. 1996℄, similar results do not hold for the reals. In parti
ular, in[Benedikt et al. 1996℄ it was shown that over the �eld of reals, every generi
 query of�rst-order logi
 with 
onstraints 
an be rewritten as an equivalent query that usesonly the natural order \<". From this result, together with results in [Paredaenset al. 1998℄, it follows that every generi
 query of �rst-order logi
 with 
onstraintsunder the natural interpretation 
an be expressed as an equivalent query underthe a
tive interpretation. Therefore, the same expressivity bound as for the a
tiveinterpretation holds (see the previous paragraph); in parti
ular, parity 
annot beexpressed.In [Benedikt and Libkin 1996℄ and [Benedikt and Libkin 1997℄ it was shownthat for polynomial 
onstraints over the reals, the a
tive and the natural semanti
sa
tually 
oin
ide. This result 
an be generalized { with some 
are { to �xpoint logi
and datalog [Benedikt and Libkin 1997℄. If fun
tion symbols are allowed to o

urin the bodies of datalog rules, then every re
ursive query is expressible. However,if a hybrid approa
h is taken, where the �xpoint 
omputation is restri
ted to thea
tive domain of a database, while quanti�
ation refers to the natural domain,3PODS=ACM SIGACT-SIGMOD-SIGART Symposium on Prin
iples of Database Systems;ICDT = International Conferen
e on Database Theory; LICS = IEEE Symposium on Logi
 inComputer S
ien
e.
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ollapse as for FO also happens for �xpoint logi
 and datalog. Theseresults for the reals generalize to a large 
lass of other stru
tures with quanti�erelimination.A
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