
Complexity and Expressive Power of LogiProgrammingEvgeny Dantsin (University of Manhester, United Kingdom)andThomas Eiter (Tehnishe Universit�at Wien, Austria)andGeorg Gottlob (Tehnishe Universit�at Wien, Austria)andAndrei Voronkov (University of Manhester, United Kingdom)Assoiation for Computing Mahinery, In., 1515 Broadway, New York, NY 10036, USATel: (212) 555-1212; Fax: (212) 555-2000This paper surveys various omplexity and expressiveness results on di�erent forms of logi pro-gramming. The main fous is on deidable forms of logi programming, in partiular, propo-sitional logi programming and datalog, but we also mention general logi programming withfuntion symbols. Next to lassial results on plain logi programming (pure Horn lause pro-grams), more reent results on various important extensions of logi programming are surveyed.These inlude logi programming with di�erent forms of negation, disjuntive logi programming,logi programming with equality, and onstraint logi programming.Categories and Subjet Desriptors: F.1.3 [Theory of Computation℄: Complexity Measuresand Classes|Mahine-Independent Complexity; F.4.1 [Theory of Computation℄: Mathemati-al Logi|Computational Logi; H.2.3 [Information Management℄: Languages|Query Lan-guagesGeneral Terms: logi programming, expressive power, omplexityAdditional Key Words and Phrases: query languages, nonmonotoni logi, datalogContents1 Introdution 22 Preliminaries 4This artile is an extended version of [Dantsin et al. 1997℄.Permission to make digital or hard opies of part or all of this work for personal or lassroom use isgranted without fee provided that opies are not made or distributed for pro�t or diret ommerialadvantage and that opies show this notie on the �rst page or initial sreen of a display alongwith the full itation. Copyrights for omponents of this work owned by others than ACM mustbe honored. Abstrating with redit is permitted. To opy otherwise, to republish, to post onservers, to redistribute to lists, or to use any omponent of this work in other works, requires priorspei� permission and/or a fee. Permissions may be requested from Publiations Dept, ACMIn., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions�am.org.



2 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkov2.1 Syntax of logi programs . . . . . . . . . . . . . . . . . . . . . . . . . 42.2 Semantis of logi programs . . . . . . . . . . . . . . . . . . . . . . . 52.3 Datalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Complexity lasses 103.1 Turing mahines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.2 Notation for omplexity lasses . . . . . . . . . . . . . . . . . . . . . 113.3 Redutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Complexity of plain logi programming 144.1 Simulation of deterministi Turing mahines by logi programs . . . 144.2 Propositional logi programming . . . . . . . . . . . . . . . . . . . . 164.3 Complexity of datalog . . . . . . . . . . . . . . . . . . . . . . . . . . 184.4 Logi programming with funtions . . . . . . . . . . . . . . . . . . . 214.5 Further issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 Complexity of logi programming with negation 255.1 Strati�ed negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255.2 Well-founded negation . . . . . . . . . . . . . . . . . . . . . . . . . . 295.3 Stable model semantis . . . . . . . . . . . . . . . . . . . . . . . . . 295.4 Inationary and noninationary semantis . . . . . . . . . . . . . . . 315.5 Further semantis of negation . . . . . . . . . . . . . . . . . . . . . . 316 Disjuntive logi programming 327 Expressive power of logi programming 367.1 The order mismath and relational mahines . . . . . . . . . . . . . 437.2 Expressive power of logi programming with omplex values . . . . . 438 Uni�ation and its omplexity 449 Logi programming with equality 459.1 Equational theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459.2 Complexity of E-uni�ation . . . . . . . . . . . . . . . . . . . . . . . 469.3 Complexity of nonreursive logi programming with equality . . . . 4710 Constraint logi programming 4710.1 Complexity of onstraint logi programming . . . . . . . . . . . . . . 4810.2 Expressiveness of onstraints . . . . . . . . . . . . . . . . . . . . . . 491. INTRODUCTIONLogi programming is a well-known delarative method of knowledge representa-tion and programming based on the idea that the language of �rst-order logi iswell-suited for both representing data and desribing desired outputs [Kowalski1974℄. Logi programming was developed in the early 1970's based on work in au-tomated theorem proving [Green 1969; Kowalski and Kuehner 1971℄, in partiular,on Robinson's resolution priniple [Robinson 1965℄.



Complexity and expressive power of logi programming � 3A pure logi program onsists of a set of rules , also alled de�nite Horn lauses.Eah suh rule has the form head  body, where head is a logial atom and body isa onjuntion of logial atoms. The logial semantis of suh a rule is given by theimpliation body ) head (for a more preise aount, see Setion 2). Note that thesemantis of a pure logi program is ompletely independent of the order in whihits lauses are given, and of the order of the single atoms in eah rule body.With the advent of the programming language Prolog [Colmerauer et al. 1973℄,the paradigm of logi programming beame soon ready for pratial use. Manyappliations in di�erent areas were and are suessfully implemented in Prolog.Note that Prolog is | in a sense | only an approximation to fully delarative logiprogramming. In fat, the lause mathing and baktraking algorithms at the oreof Prolog are sensitive to the ordering of the lauses in a program and of the atomsin a rule body.While Prolog has beome a popular programming language taught in many om-puter siene urriula, researh fouses more on pure logi programming and onextensions thereof. Even in some appliation areas suh as knowledge represen-tation (a sub�eld of arti�ial intelligene) and databases there is a predominantneed for full delarativeness, and hene for pure logi programming. In knowledgerepresentation, delarative extensions of pure logi programming, suh as negationin rule bodies and disjuntion in rule heads, are used to formalize ommon sensereasoning. In the database ontext, the query language datalog was designed andintensively studied (see [Ullman 1988; Ullman 1989; Ceri et al. 1990℄).There are many interesting omplexity results on logi programming. Theseresults are not limited to \lassial" omplexity theory but also omprise expres-siveness results in the sense of desriptive omplexity theory . For example, it wasshown that (a slight extension of) datalog annot just express some, but atuallyall polynomially omputable queries on ordered databases and only those. Thusdatalog preisely expresses or aptures the omplexity lass P on ordered databases.Similar results were obtained for many variants and extensions of datalog. It turnedout that all major variants of datalog an be haraterized by suitable omplexitylasses. As a onsequene, omplexity theory has beome a very important tool foromparing logi programming formalisms.This paper surveys various omplexity and expressiveness results on di�erentforms of (purely delarative) logi programming. The aim of the paper is twofold.First, a broad survey and many pointers to the literature are given. Seond, inorder to give a avor of omplexity issues in logi programming, a few fundamen-tal topis are explained in greater detail, in partiular, the basi results on plainlogi programming (Setion 4) and some fundamental issues related to desriptiveomplexity (Setion 7). These two setions are written in a more tutorial styleand ontain several proofs, while the other setions are written in a rather suintsurvey style.Note that the present paper does not onsist of an enylopedi listing of allpublished omplexity results on logi programming, but rather of a more or lesssubjetive hoie of results. Many interesting results are not mentioned for spaereasons, e.g., results on abdutive logi programming [Eiter et al. 1997a; Inoue andSakama 1993; Sakama and Inoue 1994b; Marek et al. 1996℄, on intuitionisti logiprogramming [Bonner 1990; Bonner 1997℄, and on Prolog [Dikovsky 1993℄; see also



4 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkovother surveys, e.g., [Cadoli and Shaerf 1993; Shlipf 1995a℄.The paper is organized as follows. Setion 2 de�nes syntax and semantis of logiprograms, desribe datalog and introdue omplexity measures. Computationalmodels and omplexity notation are disussed in Setion 3. Setion 4 presentsthe main omplexity results on plain logi programming and datalog. Setion 5disusses various semantis for logi programming with negation and respetiveomplexity results. Setion 6 deals with disjuntive logi programming. Setion 7studies the expressive power of datalog and logi programming with omplex values.Setion 8 haraterizes the omplexity of uni�ation. Setion 9 deals with logiprogramming extended by equality. Finally, Setion 10 desribes omplexity resultson onstraint logi programming.This artile is an extended version of [Dantsin et al. 1997℄.2. PRELIMINARIESIn this setion, we introdue some basi onepts of logi programming. Due tospae reasons, the presentation is neessarily suint; for a more detailed treat-ment, see [Lloyd 1987; Apt 1990; Apt and Bol 1994; Baral and Gelfond 1994℄.We use letters p; q; : : : for prediate symbols, X;Y; Z; : : : for variables, f; g; h; : : :for funtion symbols, and a; b; ; : : : for onstants; a bold fae version of a letterdenotes a list of symbols of the respetive type. In logi programs, we sometimesdenote prediate and funtion symbols by arbitrary strings.2.1 Syntax of logi programsLogi programs are formulated in a language L of prediates and funtions of non-negative arity; 0-ary funtions are onstants . A language L is funtion-free if itontains no funtions of arity greater than 0.A term is indutively de�ned as follows: eah variable X and eah onstant  isa term, and if f is an n-ary funtion symbol and t1; : : : tn are terms, then f(t1;: : : ; tn) is a term. A term is ground if no variable ours in it. The Herbranduniverse of L, denoted UL, is the set of all ground terms whih an be formed withthe funtions and onstants in L.An atom is a formula p(t1; : : : ; tn), where p is a prediate symbol of arity n andeah ti is a term. An atom is ground if all ti are ground. The Herbrand base of alanguage L, denoted BL, is the set of all ground atoms that an be formed withprediates from L and terms from UL.A Horn lause is a rule of the formA0  A1; : : : ; Am (m � 0);where eah Ai is an atom. The parts on the left and on the right of \ " are alledthe head and the body of the rule, respetively. A rule r of the form A0  , i.e.,whose body is empty, is alled a fat , and if A0 is a ground atom, then r is alleda ground fat .A logi program is a �nite set of Horn lauses. A lause or logi program isground if it ontains no variables.With eah logi program P , we assoiate the language L(P ) that onsists of theprediates, funtions and onstants ourring in P . If no onstant ours in P , weadd some onstant to L(P ) to have a non-empty domain. Unless stated otherwise,



Complexity and expressive power of logi programming � 5L(P ) is the underlying language, and we use simpli�ed notation UP and BP forUL(P ) and BL(P ), respetively.A Herbrand interpretation of a logi program P is any subset I � BP of itsHerbrand base. Intuitively, the atoms in I are true, while all others are false. AHerbrand model of P is a Herbrand interpretation of P suh that for eah ruleA0  A1; : : : ; Am in P , this interpretation satis�es the logial formula 8X((A1 ^� � � ^ Am)) A0), where X is a list of the variables in the rule.Propositional logi programs are logi programs in whih all prediates have arity0, i.e., all atoms are propositional ones.Example 1. Here is an example of a propositional logi program, whih apturesknowledge (in a simpli�ed form) about a steam engine equipped with three signalgauges. shut down  overheatshut down  leakleak  valve losed; pressure lossvalve losed  signal 1pressure loss  signal 2overheat  signal 3signal 1  signal 2  Informally, the rules of the program tell that the system has to be shut downif it is in a dangerous state. Suh states are onneted to auses and signals byrespetive rules. The fats signal 1 and signal 2 state that signals #1 and #2,respetively, are being observed.Note that if P is a propositional logi program then BP is a set of propositionalatoms. Any interpretation of P is a subset of BP .2.2 Semantis of logi programsThe notions of a Herbrand interpretation and model an be generalized for in�nitesets of lauses in a natural way. Let P be a set (�nite or in�nite) of ground lauses.Suh a set P de�nes an operator TP : 2BP ! 2BP , where 2BP denotes the set of allHerbrand interpretations of P , byTP (I) = fA0 2 BP j P ontains a rule A0  A1; : : : ; Amsuh that fA1; : : : ; Amg � I holds g:This operator is alled the immediate onsequene operator ; intuitively, it yields allatoms that an be derived by a single appliation of some rule in P given the atomsin I .Sine TP is monotone, by the Knaster-Tarski Theorem it has a least �xpoint,denoted by T1P ; sine, moreover, TP is also ontinuous, by Kleene's Theorem T1Pis the limit of the sequene T 0P = ;, T i+1P = TP (T iP ), i � 0.A ground atom A is alled a onsequene of a set P of lauses if A 2 T1P (wewrite P j= A). Also, we say that a negated ground atom :A is a onsequene ofP and write P j= :A if A =2 T1P . Note that j= di�ers from the standard logial



6 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkovonsequene relation. The semantis of a set P of ground lauses, denotedM(P ),is de�ned as the following set onsisting of atoms and negated atoms:M(P ) = fA j P j= Ag [ f:A j P j= :Ag= T1P [ f:A j A 2 BP n T1P g:Example 2. (See Example 1.) For the program P above, we haveT 0P = ;;T 1P = fsignal 1; signal 2g;T 2P = T 1P [ fvalve losed; pressure lossg;T 3P = T 2P [ fleakg;T 4P = T1P = T 3P [ fshutdowng:Thus, the least �xpoint is reahed in four steps; e.g., P j= shutdown and P j=:overheat.For eah set P of lauses, T1P oinides with the unique least Herbrand model ofP , where a model M is smaller than a model N , if M is a proper subset of N [vanEmden and Kowalski 1976℄.The semantis of nonpropositional logi programs is now de�ned as follows. Letthe grounding of a lause r in a language L, denoted ground(r;L), be the set ofall lauses obtained from r by all possible substitutions of elements of UL for thevariables in r. For any logi program P , we de�neground(P;L) = [r2P ground(r;L);and we write ground(P ) for ground(P;L(P )). The operator TP : 2BP ! 2BP asso-iated with P is de�ned by TP = Tground(P ). Aordingly,M(P ) =M(ground(P )).Example 3. Let P be the programp(a)  p(f(x))  p(x)Then, UP = fa; f(a); f(f(a)); : : :g and ground(P ) ontains the lauses p(a)  ,p(f(a)) p(a), p(f(f(a))) p(f(a)), . . . . The least �xpoint of TP isT1P = T1ground(P ) = fp(fn(a)) j n � 0g:Hene, e.g., P j= p(f(f(a))).In pratie, generating ground(P ) is often umbersome, sine, even in ase offuntion-free languages, it is in general exponential in the size of P . Moreover, itis not always neessary to ompute M(P ) in order to determine whether P j= Afor some partiular atom A. For these reasons, ompletely di�erent strategies ofderiving atoms from a logi program have been developed. These strategies arebased on variants of the famous Resolution Priniple of [Robinson 1965℄. Themajor variant is SLD-resolution [Kowalski and Kuehner 1971; Apt and van Emden1982℄.Roughly, SLD-resolution an be desribed as follows. A goal is a onjuntion ofatoms, and a substitution is a funtion # that maps variables v1; : : : ; vn to terms



Complexity and expressive power of logi programming � 7t1; : : : ; tn. The result of simultaneous replaement of variables vi by terms ti in anexpressionE is denoted by E#. For a given goalG and a program P , SLD-resolutiontries to �nd a substitution # suh that G# logially follows from P . The initial goalis repeatedly transformed until the empty goal is obtained. Eah transformationstep is based on the appliation of the resolution rule to a seleted atom Bi fromthe goal B1; : : : ; Bm and a lause A0  A1; : : : ; An from P . SLD-resolution triesto unify Bi with the head A0, i.e., to �nd a substitution # suh that A0# = Bi#.Suh a substitution # is alled a uni�er of A0 and Bi. If a uni�er # exists, a mostgeneral suh # (whih is essentially unique) is hosen and the goal is transformedinto (B1; : : : ; Bi�1; A1; : : : ; An; Bi+1; : : : ; Bm)#:For a more preise aount see [Apt 1990; Lloyd 1987℄; for resolution on generallauses, see e.g., [Leitsh 1997℄. The omplexity of uni�ation will be dealt with inSetion 8.2.3 DatalogThe interest in using logi in databases gave rise to the �eld of dedutive databases;see [Minker 1996℄ for a omprehensive overview of the development of this area. Itappeared that logi programming is a suitable formalism for querying relationaldatabases. In this ontext, the logi programming based query language datalogand various extensions thereof have been de�ned.In the ontext of logi programming, relational databases are identi�ed with setsof ground fats p(1; : : : ; n). Intuitively, all ground fats with the same prediatesymbol p represent a data relation. The set of all prediate symbols ourring inthe database together with a possibly in�nite domain for the argument onstantsis alled the shema of the database. With eah database D, we assoiate a �niteuniverse UD of onstants whih enompasses at least all onstants appearing in D,but possibly more. In the lassial database ontext, UD is often identi�ed with theset of all onstants appearing in D. But in the datalog ontext, a larger universeUD may be suitable in ase one wants to derive assertions about items that do notexpliitly our in the database.To understand how datalog works, let us onsider a larifying example.Example 4. Consider a database D ontaining the ground fatsfather(john;mary)  father(joe; kurt)  mother(mary; joe)  mother(tina; kurt)  The shema of this database is the set of relation symbols ffather, motherg togetherwith the domain STRING of all alphanumeri strings. With this database, weassoiate the �nite universe UD = f john, mary, joe, tina, kurt, susan g. Note thatsusan does not appear in the database but is inluded in the universe UD.The following datalog program (or query) P omputes all anestor relationshipsrelative to this database:



8 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkovparent(X;Y )  father(X;Y )parent(X;Y )  mother(X;Y )anestor(X;Y )  parent(X;Y )anestor(X;Y )  parent(X;Z); anestor(Z; Y )person(X)  In the program P , father and mother are the input prediates , also alled databaseprediates . Their interpretation is �xed by the given input database D. The pred-iates anestor and person are output prediates , and the prediate parent is anauxiliary prediate. Intuitively, the output prediates are those whih are omputedas the visible result of the query, while the auxiliary prediates are introdued forrepresenting some intermediate results, whih are not to be onsidered part of the�nal result.The datalog program P on input database D omputes a result database R withthe shema fanestor; persong ontaining among others the following ground fats:anestor(mary; joe);anestor(john; joe);person(john);person(susan):The last fat is in R beause susan is inluded as a onstant in UD. However, thefat person(harry) is not in R, beause harry is not a onstant in the �nite universeUD of the database D.Formally, a database shema D onsists of a �nite set Rels(D) of relation nameswith assoiated arities and a (possibly ountable in�nite) domain Dom(D). Foreah database shema D, we denote by HB(D) the Herbrand base orresponding tothe funtion-free language whose prediate symbols are Rels(D) and whose onstantsymbols are Dom(D).A database (also, database instane) D over a shema D is given by a �nitesubset of the Herbrand base D � HB(D) together with an assoiated �nite universeUD � Dom(D), ontaining all onstants atually appearing in D. By abuse ofnotation, we also write D instead of hD;UDi. We denote by Djp the extension ofthe relation p 2 Rels(D) in D. Moreover, INST(D) denotes the set of all databasesover D.A datalog query or a datalog program is a funtion-free logi program P withthree assoiated database shemas: the input shema Din , the output shema Doutand the omplete shema D, suh that the following is satis�ed:Dom(Din ) = Dom(Dout ) = Dom(D);Rels(Din ) � Rels(D);Rels(Dout) � Rels(D); andRels(Din ) \Rels(Dout ) = ;:Moreover, eah prediate symbol appearing in P is ontained in Rels(D) and noprediate symbol from Din appears in a rule head of P (the latter means that theprediates of the input database are never rede�ned by a datalog program).



Complexity and expressive power of logi programming � 9The formal semantis of a datalog program P over the input shema Din , outputshema Dout , and omplete shema D is given by a partial mapping from instanesof Din to instanes of Dout over the same universe. A result instane of Dout isregarded as the result of the query. More formally,MP : INST(Din )! INST(Dout )is de�ned for all instanes Din 2 INST(Din ) suh that all onstants ourring in Pappear in UDin , and maps every suh Din to the database Dout =MP (Din ) suhthat UDout = UDin and, for every relation p 2 Rels(Dout ),Dout jp = fa j p(a) 2M(ground(P [Din ;L(P;Din )))g;whereM and ground are de�ned as in Setion 2.2, and L(P;Din ) is the languageof P extended by all onstants in the universe UDin . For all ground atoms A 2HB(Dout ), we write P [ Din j= A if A 2 MP (Din ) and write P [ Din j= :A ifA =2 MP (Din ).The semantis of datalog is thus inherited from the semantis of logi program-ming. In a similar way, the semantis of various extensions of datalog is inheritedfrom the orresponding extensions of logi programming.There are three main kinds of omplexity onneted to plain datalog and itsvarious extensions [Vardi 1982℄:� The data omplexity is the omplexity of heking whether Din [P j= A whendatalog programs P are �xed, while input databases Din and ground atoms Aare an input.� The program omplexity (also alled expression omplexity) is the omplexityof heking whether Din [ P j= A when input databases Din are �xed, whiledatalog programs P and ground atoms A are an input.� The ombined omplexity is the omplexity of heking whether Din [P j= Awhen input databases Din , datalog programs P and ground atoms A are aninput.Note that for plain datalog, as well as for all other versions of datalog onsideredin this paper, the ombined omplexity is equivalent to the program omplexity withrespet to polynomial-time redutions. This is due to the fat that with respet tothe derivation of ground atoms, eah pair hDin ; P i an be easily redued to the pairhD;; P �i, whereD; is the empty database instane assoiated with a universe of twoonstants 1 and 2, and P � is obtained from P [Din by straightforward enoding ofthe universe UDin using n-tuples over f1; 2g, where n = djUDin je. For this reason,we mostly disregard the ombined omplexity in the material onerning datalog.We remark, however, that due to a �xed universe, program omplexity may allowfor slightly sharper upper bounds than the ombined omplexity (e.g., ETIME vsEXPTIME).Another approah to measuring omplexity of query languages is the parametriomplexity [Papadimitriou and Yannakakis 1997℄. In this approah, the omplexityis expressed as a funtion of some \reasonable" parameters. An example of suha parameter is the number of variables appearing in the query (interest in thisparameter is motivated by [Vardi 1995℄, where it is shown that data and programomplexity beome lose when the number of query variables is bounded).As for logi programming in general, a generalization of the ombined omplexitymay be regarded as the main omplexity measure. Below, when we speak about



10 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkovthe omplexity of a fragment of logi programming, we mean the following kind ofomplexity:� The omplexity of (some fragment of) logi programming is the omplexity ofheking whether P j= A for variable both programs P and ground atoms A.3. COMPLEXITY CLASSESThis setion ontains de�nitions of the standard omplexity lasses enounteredin this survey and provides other related de�nitions (we follow the notation of[Johnson 1990℄). A detailed exposition of most omplexity notions an be founde.g. in [Papadimitriou 1994℄.3.1 Turing mahinesDeterministi Turing mahines.. Informally, we think of a Turing mahine as adevie able to read from and write on a semi-in�nite tape, whose ontents may beloally aessed and hanged in a omputation. Formally, a deterministi Turingmahine (DTM) is de�ned as a quadruple (S;�; Æ; s0), where S is a �nite set ofstates , � is a �nite alphabet of symbols , Æ is a transition funtion, and s0 2 S isthe initial state. The alphabet � ontains a speial symbol  alled the blank . Thetransition funtion Æ is a mapÆ : S �� ! (S [ fhalt; yes; nog)��� f-1, 0, +1g;where halt, yes, and no denote three additional states not ourring in S, and -1,0, +1 denote motion diretions . It is assumed here, without loss of generality, thatthe mahine is well-behaved and never moves o� the tape, i.e., d 6= -1 wheneverthe ursor is on the leftmost ell; this an be ensured by proper design of Æ.1Let T be a DTM (�; S; Æ; s0). The tape of T is divided into ells ontainingsymbols of �. There is a ursor that may move along the tape. At the start, Tis in the initial state s0, and the ursor points to the leftmost ell of the tape. Aninput string I is written on the tape as follows: the �rst jI j ells 0; : : : ; jIj�1 ofthe tape, where jI j denotes the length of I , ontains the symbols of I , and all otherells ontain  .The mahine takes suessive steps of omputation aording to Æ. Namely,assume that T is in a state s 2 S and the ursor points to the symbol � 2 � on thetape. Let Æ(s; �) = (s0; �0; d):Then T hanges its urrent state to s0, overwrites �0 on �, and moves the ursoraording to d. Namely, if d = -1 or d = +1, then the ursor moves to the previousell or the next one, respetively; if d = 0, then the ursor remains in the sameposition.When any of the states halt, yes or no is reahed, T halts. We say that Taepts the input I if T halts in yes. Similarly, we say that T rejets the input inthe ase of halting in no. If halt is reahed, we say that the output of T on I is1Some texts assume that � has a speial symbol whih marks the left end of the tape. Thissymbol an be eliminated by a proper redesign of the mahine. For the purpose of this paper, thesimpler model without a left end marker is onvenient.



Complexity and expressive power of logi programming � 11omputed. This output, denoted by T (I), is de�ned as the string ontained in theinitial segment of the tape whih ends before the �rst blank.Nondeterministi Turing mahines.. Like a DTM, a nondeterministi Turing ma-hine, or NDTM, is de�ned as a quadruple (S;�;�; s0), where S;�; s0 are the sameas before. Possible operations of the mahine are desribed by �, whih is no longera funtion. Instead, � is a relation:� � (S ��)� (S [ fhalt; yes; nog)��� f-1, 0, +1g:A tuple whose �rst two members are s and � respetively, spei�es the ation ofthe NDTM when its urrent state is s and the symbol pointed at by its ursor is �.If the number of suh tuples is greater than one, the NDTM nondeterministiallyhooses any of them and operates aordingly.Unlike the ase of a DTM, the de�nition of aeptane and rejetion by a NDTMis asymmetri. We say that a NDTM aepts an input if there is at least onesequene of hoies leading to the state yes. A NDTM rejets an input if nosequene of hoies an lead to yes.Time and spae bounds.. The time expended by a DTM T on an input I isde�ned as the number of steps taken by T on I from the start to halting. If Tdoes not halt on I , the time is onsidered to be in�nite. For a NDTM T , we de�nethe time expended by T on I as 1, if T does not aept I (respetively, omputesno output for I), and otherwise as the minimum over the number of steps in anyaepting (respetively, output produing) omputation of T .The spae required by a DTM T on I is the number of ells visited by the ursorduring the omputation on I . In the ase of a NDTM, the spae is de�ned as 1,if T does not aept I (respetively, omputes no output for I), and otherwise asthe minimum number of ells visited on the tape over all aepting (respetively,output produing) omputations.Let T be a DTM or a NDTM. Let f be a funtion from the positive integers tothemselves. We say that T halts in time O(f(n)) if there exist positive integers and n0 suh that the time expended by T on any input of length n is not greaterthan f(n) for all n � n0. Likewise, we say that T halts within spae O(f(n)) ifthe spae required by T on any input of length n is not greater than f(n) for alln � n0, where  and n0 are positive integers.Assume that a DTM (NDTM) T halts in time O(nd), where d is a positiveinteger. Then we all T a polynomial-time DTM (NDTM) and we say that Thalts in polynomial time. Similarly, if T halts within spae O(nd), we all T apolynomial-spae DTM (NDTM).3.2 Notation for omplexity lassesAs above, let � be a �nite alphabet ontaining  . Let �0 = �nf g, and let L � �0�be a language in �0, i.e. a set of �nite strings over �0. Let T be a DTM or a NDTMsuh that (i) if x 2 L then T aepts x, and (ii) if x 62 L then T rejets x. Thenwe say that T deides L. In addition, if T halts in time O(f(n)), we say that Tdeides L in time O(f(n)). Similarly, if T halts within spae O(f(n)), we say thatT deides L within spae O(f(n)).Observe that if f(n) is a sublinear funtion, then a Turing mahine whih halts



12 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkovwithin spae f(n) an not read the whole input string, nor produe a large output.To remedy this problem, a Turing mahine T is equipped with a read-only input-tape and a write-only output tape besides the work tape, whih ontain the inputstring and the output omputed by T , respetively. The time and spae requirementof T is de�ned as above, where only the spae used on the work tape ounts. Inase T halts within sublinear time f(n), random aess to the input symbols onthe input-tape is provided using a further tape whih serves as an index register.In the following, we assume that multi-tape mahines as desribed may be used fordeiding languages within sublinear bounds.Let f be a funtion on positive integers. We de�ne the following sets of languages:TIME(f(n)) = fL j L is deided by some DTM in time O(f(n))g;NTIME(f(n)) = fL j L is deided by some NDTM in time O(f(n))g;SPACE(f(n)) = fL j L is deided by some DTM within spae O(f(n))g;NSPACE(f(n)) = fL j L is deided by some NDTM within spae O(f(n))g:All these sets are examples of omplexity lasses , other examples will be givenbelow. Note that some funtions f an lead to omplexity lasses with unnaturalproperties (see [Papadimitriou 1994℄ for details). However, for \normal" funtionssuh as polynomials, exponents or logarithms, the orresponding omplexity lassesare \normal" too.Complexity lasses of most interest are not lasses orresponding to partiularfuntions but their unions suh as, for example, the union Sd>0 TIME(nd) takenover all polynomials of the form nd. The following abbreviations are used to denotemain omplexity lasses of suh a kind:P = Sd>0 TIME(nd);NP = Sd>0 NTIME(nd);EXPTIME = Sd>0 TIME(2nd);NEXPTIME = Sd>0 NTIME(2nd);PSPACE = Sd>0 SPACE(nd);EXPSPACE = Sd>0 SPACE(2nd);L = SPACE(logn);NL = NSPACE(logn):The list ontains no abbreviations for the nondeterministi ounterparts of PSPACEand EXPSPACE beause Sd>0NSPACE(nd) oinides with the lass PSPACE andSd>0 NSPACE(2nd) oinides with the lass EXPSPACE [Savith 1970℄.Complementary lasses.. Any omplexity lass C has its omplementary lassdenoted by o-C and de�ned as follows. For every language L in �0, let L denoteits omplement , i.e. the set �0� n L. Then o-C is fL j L 2 Cg.



Complexity and expressive power of logi programming � 13The polynomial hierarhy.. To de�ne the polynomial hierarhy lasses, we needto introdue orale Turing mahines. Let A be a language. An orale DTM TA,also alled a DTM with orale A, an be thought of as an ordinary DTM augmentedby an additional write-only query tape and additional three states query, 2 and 62.When TA is not in the state query, the omputation proeeds as usual (in addition,TA an write on the query tape). When TA is in query, TA hanges this state to2 or 62 depending on whether the string written on the query tape belongs to Aor not; furthermore, the query tape is instantaneously erased. Like the ase of anordinary DTM, the expended time is the number of steps and the required spaeis the number of ells used on the tape and the query tape. An orale NDTM isde�ned as the same augmentation of a NDTM.Let C be a set of languages. We de�ne omplexity lasses PC and NPC as follows.For a language L, we have L 2 PC (or L 2 NPC) if and only if there is some languageA 2 C and some polynomial-time orale DTM (or NDTM) TA suh that TA deidesL.The polynomial hierarhy onsists of lasses �pi , �pi , and �pi de�ned by the fol-lowing equalities: �p0 = �p0 = �p0 = P;�pi+1 = P�pi ;�pi+1 = NP�pi ;�pi+1 = o-�pi+1;for all i � 0. The lass PH is de�ned as Si�0 �pi .Exponential time.. Besides EXPTIME and NEXPTIME, we mention in this papersome other lasses that haraterize omputation in exponential time. The lassesETIME and NETIME are de�ned as[d>0TIME(2dn) and [d>0NTIME(2dn)respetively; they apture linear exponents instead of polynomial exponents. Thelass EXPTIME an be viewed as 1-EXPTIME where 1 means the �rst level ofexponentiation. Double exponents, triple exponents, et. are aptured by the lasses2-EXPTIME, 3-EXPTIME et. de�ned as[d>0TIME(22nd ); [d>0TIME(222nd ); : : : :Their nondeterministi ounterparts are de�ned in the same way but with thereplaement of TIME(f(n)) by NTIME(f(n)). The lass ELEMENTARY is de�nedto be the union of lasses k-EXPTIME over all k > 0.3.3 RedutionsLet L1 and L2 be languages. Assume that there is a DTM R suh that(1) For all input strings x, we have x 2 L1 if and only if R(x) 2 L2, where R(x)denotes the output of R on input x.(2) R halts within spae O(logn).



14 � E. Dantsin and T. Eiter and G. Gottlob and A. VoronkovThen R is alled a logarithmi-spae redution from L1 to L2 and we say that L1is reduible to L2.Let C be a set of languages. A language L is alled C-hard if any language L0 in Cis reduible to L. If L is C-hard and L 2 C then L is alled C-omplete or ompletefor C.Besides the above notion of a redution, omplexity theory also onsiders manyother kinds of redutions, for example, polynomial-time many-one redutions orpolynomial-time Turing redutions (whih are both weaker, i.e., more liberal kindsof redutions). In this paper, unless otherwise stated, a redution means a loga-rithmi-spae redution. We note that in several ases, results that we shall reviewhave been stated for polynomial-time many-one redutions, but the proofs establishthat they hold under logarithmi-spae redution.Sometimes redutions are onsidered that are tighter than logarithmi-spae re-dutions. Sine suh redutions are only of minor importane to this paper, theywill be shortly desribed in appropriate plaes below. Note, however, that in aseof suh tight redutions, as well as in ase of omputation with sublinear resoureonstraints, the partiular representation of the problem input as a string I may bea matter of onern. However, for most of the problems that we desribe, and inpartiular those having omplexity at least P, this is not an issue; any \reasonable"representation is appropriate, see e.g. [Johnson 1990℄.4. COMPLEXITY OF PLAIN LOGIC PROGRAMMINGIn this setion, we survey some basi results on the omplexity of plain logi pro-gramming. This setion is written in a slightly more tutorial style than the follow-ing setions in order to help both readers not familiar with logi programming andreaders not too familiar with omplexity theory to grasp some key issues relatingomplexity theory and logi programming.4.1 Simulation of deterministi Turing mahines by logi programsLet T be a DTM. Consider the omputation of T on an input string I . The purposeof this setion is to desribe a logi program L and a goal G suh that L j= G ifand only if T aepts I in at most N steps.The transition funtion Æ of a DTM with a single tape an be represented by atable whose rows are tuples t = hs; �; s0; �0; di. Suh a tuple t expresses the followingif-then-rule:if at some time instant � the DTM is in state s, the ursor points to ell number�, and this ell ontains symbol �then at instant � +1 the DTM is in state s0, ell number � ontains symbol �0,and the ursor points to ell number � + d.It is possible to desribe the omplete evolution of a DTM T on input string Ifrom its initial on�guration at time instant 0 to the on�guration at instant N bya propositional logi program L(T; I;N). To ahieve this, we de�ne the followinglasses of propositional atoms:symbol�[�; �℄ for 0 � � � N , 0 � � � N and � 2 �. Intuitive meaning: at instant� of the omputation, ell number � ontains symbol �.



Complexity and expressive power of logi programming � 15ursor[�; �℄ for 0 � � � N and 0 � � � N . Intuitive meaning: at instant � theursor points to ell number �.states[� ℄ for 0 � � � N and s 2 S. Intuitive meaning: at instant � the DTM T isin state s.aept Intuitive meaning: T has reahed state yes.Let us denote by Ik the k-th symbol of the string I = I0 � � � IjIj�1. The initialon�guration of T on input I is reeted by the following initialization fats inL(T; I;N): symbol� [0; �℄  for 0 � � < jI j, where I� = �symbol [0; �℄  for jI j � � � Nursor[0; 0℄  states0 [0℄  Eah entry hs; �; s0; �0; di of the transition table Æ is translated into the followingpropositional Horn lauses, whih we all the transition rules . The lauses areasserted for eah value of � and � suh that 0 � � < N , 0 � � < N , and 0 � �+ d.symbol�0 [� + 1; �℄  states[� ℄; symbol� [�; �℄; ursor[�; �℄ursor[� + 1; � + d℄  states[� ℄; symbol� [�; �℄; ursor[�; �℄states0 [� + 1℄  states[� ℄; symbol� [�; �℄; ursor[�; �℄These lauses almost perfetly desribe what is happening during a state transi-tion from an instant � to an instant � +1. However, it should not be forgotten thatthose tape ells whih are not hanged during the transition keep their old valuesat instant � +1. This must be reeted by what we term inertia rules . These rulesare asserted for eah time instant � and tape ells numbers �; �0, where 0 � � < N ,0 � � < �0 � N , and have the following form:symbol� [� + 1; �℄  symbol�[�; �℄; ursor[�; �0℄symbol� [� + 1; �0℄  symbol�[�; �0℄; ursor[�; �℄Finally, a group of lauses termed aept rules derives the propositional atomaept, whenever an aepting on�guration is reahed.aept  stateyes[� ℄ for 0 � � � N .Denote by L the logi program L(T; I;N). Note that T 0L = ; and that T 1L ontainsthe initial on�guration of T at time instant 0. By onstrution, the least �xpointT1L of L is reahed at TN+2L , and the ground atoms added to T �L, 2 � � � N+1, i.e.,those in T �LnT ��1L , desribe the on�guration of T on the input I at the time instant� � 1. The �xpoint T1L ontains aept if and only if an aepting on�gurationhas been reahed by T in at most N omputation steps. We thus have:Lemma 4.1 L(T; I;N) j= aept if and only if the DTM T aepts the input stringI within N steps.A somewhat di�erent simulation of deterministi multi-tape Turing mahines bylogi programs was given by [Itai and Makowsky 1987℄. These authors also note



16 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkovthat simulating Turing mahines by Horn lause theories, and, more generally, bylogial dedution has a long history:\The idea of simulating Turing mahines by logial dedution goes bak to Tur-ing's original paper [Turing 1937℄. Turing introdued his abstrat mahine oneptat a time when omputations were onsidered to be something mehanial, and feltit was neessary to show that logial dedution an be redued to suh a mehanistimodel of omputation. However, this redution uses full �rst-order logi. A redu-tion using only universal Horn formulas (with funtion symbols) appears buried inthe exposition of [Sholz and Hasenjaeger 1961℄. It also forms the basis of the the-ory of formal systems, as presented by Smullyan in his thesis [Smullyan 1961℄. Theidea of oding Turing mahines by logi Horn formulas appears expliitly in [B�uhi1962℄ and has been used sine 1971 in a series of papers by Aandera, B�orger, andLewis [Aanderaa and B�orger 1979; B�orger 1971; B�orger 1974; B�orger 1984; Lewis1979℄ to obtain undeidability and omplexity results. Sine then, various authorshave redisovered that suh a redution is possible and have used this observation toshow that logi programming is omputationally omplete. The earliest referene wehave found that states this result expliitly is [Andr�eka and N�emeti 1978℄; a slightlyweaker result appears in [T�arnlund 1977℄."Yet another translation and further referenes an be found in the reent book[B�orger et al. 1997℄.4.2 Propositional logi programmingThe simulation of a DTM by a propositional logi program, as desribed in Se-tion 4.1 is almost all we need in order to determine the omplexity of propositionallogi programming, i.e., the omplexity of deiding whether P j= A holds for agiven logi program P and ground atom A.Theorem 4.2 (impliit in [Jones and Laaser 1976; Vardi 1982; Immerman 1986℄)Propositional logi programming is P-omplete.Proof. (1) Membership. It is obvious that the least �xpoint T1P of the op-erator TP , given program P , an be omputed in polynomial time: the numberof iterations (i.e. appliations of TP ) is bounded by the number of rules plusone. Eah iteration step is learly feasible in polynomial time.(2) Hardness. Let A be a language in P. Thus A is deidable in q(n) stepsby a DTM T for some polynomial q. Transform eah instane I of A to theorresponding logi program L(T; I; q(jI j)) as desribed in Setion 4.1. ByLemma 4.1, L(T; I; q(jI j)) j= aept if and only if T has reahed an aeptingstate within q(n) steps. The translation from I to L(T; I; q(jI j)) is very simpleand is learly feasible in logarithmi spae, sine all rules of L(T; I; q(jI j)) anbe generated independently of eah other and eah has size logarithmi in jI j;note that the numbers � and � have O(log jI j) bits, while all other syntationstituents of a rule have onstant size. We have thus shown that every lan-guage A in P is logspae reduible to propositional logi programming. Hene,propositional logi programming is P-hard.



Complexity and expressive power of logi programming � 17Obviously, this theorem an be proved by simpler redutions from other P-omplete problems, for example from the monotone iruit value problem (see[Papadimitriou 1994℄). However, our proof from �rst priniples provides a basiframework from whih further results will be derived by slight adaptations in thesequel.Notie that in a standard programming environment, propositional logi pro-gramming is feasible in linear time by using appropriate data strutures, as followsfrom results about deiding Horn satis�ability [Dowling and Gallier 1984; Itai andMakowsky 1987℄. This does not mean that all problems in P are solvable in lineartime; �rst, the model of omputation used in [Dowling and Gallier 1984℄ is theRAM mahine, and seond logarithmi-spae redutions may in general polynomi-ally inrease the input.Theorem 4.2 holds under stronger redutions. In fat, it holds under the require-ment that the logspae redution is also a polylogtime redution (PLT). Briey,a map f : � ! �0 from a problem � to a problem �0 is a PLT-redution, ifthere are polylogtime deterministi Turing mahines N and M suh that for all w,N(w) = jf(w)j and for all w and n, M(w; n) = Bit(n; f(w)), i.e., the n-th bit off(w) (see e.g. [Veith 1998℄ for details). (Reall that N and M have separate inputtapes whose ells an be aessed by use of an index register tape.) Sine the aboveenoding of a DTM into logi programming is highly regular, it is easily seen thatit is a PLT redution.Syntatial restritions on programs lead to ompleteness for lasses inside P.Let LP(k) denote logi programming where eah lause has at most k atoms in thebody. Then, by results in [Vardi 1982; Immerman 1987℄, one easily obtains:Theorem 4.3 LP(1) is NL-omplete.Proof. (Sketh)(1) Membership The membership part an be established by reduing this prob-lem to graph reahability, i.e., given a direted graph G = (V;E) and vertiess; t 2 V , deide whether t is reahable from s. Sine graph reahability is inNL and NL is losed under logarithmi-spae redutions (i.e., reduibility of aproblem A to a problem B in NL implies that A is in NL), it follows that LP(1)is in NL.For a program P from LP(1), the question whether P j= A is equivalent tothe node true (representing truth) is reahable from the node A in the diretedgraph G = (V;E) as follows. The vertex set V is the set of atoms in P plustrue; the edge set E ontains an edge (A;B) direted from A to B for everyrule A B in P , and an edge (A; true) for every fat A in P . Clearly, thegraph G is onstrutible from P in logarithmi spae. Thus, the problem is inNL.(2) Hardness Conversely, graph reahability is easily transformed into P j= A fora program in LP(1). Sine graph reahability is NL-omplete (thus NL-hard),the result is established.



18 � E. Dantsin and T. Eiter and G. Gottlob and A. VoronkovObserve that the above DTM enoding an be easily modi�ed to programs inLP(2). Hene, LP(2) is P-omplete.Further syntatial restritions on LP(1) yield problems omplete for L (of ourse,under redutions stronger than logspae redutions), whih we omit here.4.3 Complexity of datalogLet us now turn to datalog, and let us �rst onsider the data omplexity. GroundingP on an input database D yields polynomially many lauses in the size of D; hene,the omplexity of propositional logi programming is an upper bound for the dataomplexity. The same holds for the variants of datalog we shall onsider in thesequel. The omplexity of propositional logi programming is also a lower bound.Thus,Theorem 4.4 (impliit in [Vardi 1982; Immerman 1986℄) Datalog is data om-plete for P.In fat, this result follows from the proof of Theorem 7.2 below. An alternativeproof of P-hardness an be given by writing a simple datalog meta-interpreter forpropositional LP(k), where k is a onstant.Represent rules A0  A1; : : : ; Ai, where 0 � i � k, by tuples hA0; : : : ; Aii in an(i + 1)-ary relation Ri on the propositional atoms. Then, a program P in LP(k)whih is stored this way in a database D(P ) an be evaluated by a �xed datalogprogram PMI(k) whih ontains for eah relation Ri, 0 � i � k, a ruleT (X0) T (X1); : : : ; T (Xi); Ri(X0; : : : ; Xi):Here T (x) intuitively means that atom x is true. Then, P j= A just if PMI [P (D) j= T (A). P-hardness of the data omplexity of datalog is then immediatefrom Theorem 4.2.The program omplexity is exponentially higher.Theorem 4.5 (impliit in [Vardi 1982; Immerman 1986℄) Datalog is programomplete for EXPTIME.Proof. (Sketh)(1) Membership. Grounding P on D leads to a propositional program P 0 whosesize is exponential in the size of the �xed input database D. Hene, by Theo-rem 4.2, the program omplexity is in EXPTIME.(2) Hardness. In order to prove EXPTIME-hardness, we show that if a DTM Thalts in less than N = 2nk steps on a given input I where jI j = n, then T anbe simulated by a datalog program over a �xed input database D. In fat, weuse D;, i.e., the empty database with the universe U = f0; 1g.We employ the sheme of the DTM enoding into logi programming from above,but use the prediates symbol�(X;Y ), ursor(X;Y ) and states(X) instead of thepropositional letters symbol� [X;Y ℄, ursor[X;Y ℄ and states[X ℄ respetively. Thetime points � and tape positions � from 0 to 2m � 1, m = nk, are represented bym-ary tuples over U , on whih the funtions � +1 and �+ d are realized by meansof the suessor Sum from a linear order �m on Um.



Complexity and expressive power of logi programming � 19For an indutive de�nition, suppose Sui(X;Y), Firsti(X), and Lasti(X) tellthe suessor, the �rst, and the last element from a linear order �i on U i, whereX and Y have arity i. Then, use rulesSui+1(Z;X; Z;Y)  Sui(X;Y)Sui+1(Z;X; Z 0;Y)  Su1(Z;Z 0);Lasti(X);Firsti(Y)Firsti+1(Z;X)  First1(Z);Firsti(X)Lasti+1(Z;X)  Last1(z);Lasti(X)Here Su1(X;Y ), First1(X), and Last1(X) on U1 = U must be provided. Forour redution, we use the usual ordering 0 �1 1 and provide those relations by theground fats Su1(0; 1), First1(0), and Last1(1).The initialization fats symbol� [0; �℄ are readily translated into the datalog rulessymbol�(X; t) Firstm(X);where t represents the position �, and similarly the fats ursor[0; 0℄ and states0 [0℄.The remaining initialization fats symbol [0; �℄, where jI j � � � N , are translatedto the rule symbol (X;Y)  Firstm(X); �m(t;Y)where t represents the number jI j; the order �m is easily de�ned from Sum bytwo lauses �m(X;X)  X�m(X;Y)  Sum(X;Z); �m (Z;Y)The transition and inertia rules are easily translated into datalog rules. For re-alizing � + 1 and � + d, use in the body atoms Sum(X;X0). For example, thelause symbol�0 [� + 1; �℄  states[� ℄; symbol� [�; �℄; ursor[�; �℄is translated intosymbol�0(X0;Y)  states(X); symbol�(X;Y); ursor(X;Y);Sum(X;X0):The translation of the aept rules is straightforward.For the resulting datalog program P 0, it holds that P 0 [D; j= aept if and onlyif T aepts input I in at most N steps. It is easy to see that P 0 an be onstrutedfrom T and I in logarithmi spae. Hene, datalog has EXPTIME-hard programomplexity.Note that straightforward simpli�ations in the onstrution are possible, whihwe omit here, as part of it will be reused below.Instead of using a generi redution, the hardness part of this theorem an alsobe obtained by applying omplexity upgrading tehniques [Papadimitriou and Yan-nakakis 1986; Bal�azar et al. 1992℄. We briey outline this in the rest of this setion.This tehnique utilizes a onversion lemma [Bal�azar et al. 1992℄ of the form \If� X-redues to �0, then s(�) Y -redues to s(�0)"; here s(�) is the suint variantof �, where the instanes I of � are given by a Boolean iruit CI whih omputesthe bits of I (see [Bal�azar et al. 1992℄ for details). The strongest form of the



20 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkovonversion lemma appears in [Veith 1998℄, where X is PLT and Y is monotone pro-jetion reduibility [Immerman 1987℄. Informally, monotone projetion redutionsare redutions that transform a relational data struture A into a relational datastruture B suh that eah tuple in B is the projetion of a single tuple in A. Thistuple is determined by a quanti�er-free formula using just equality and suessor.Note that this redution is uniform in the sense that the formula is the same for alltuples of A. Monotone projetion redutions are omputable in logarithmi time,whih means that the size of B and the value of eah bit position in data strutureB an determined in time logarithmi in the size of A on a RAM. They are tighterthan both PLT redutions and �rst-order redutions where arbitrary �rst-order for-mulae (and not just projetions) an be used in the transformations. For details,see [Immerman 1987℄.The onversion lemma gives rise to an upgrading theorem, whih has been subse-quently sharpened [Bal�azar et al. 1992; Eiter et al. 1994; Gottlob et al. 1995; Veith1998℄ and is stated below in the strongest form of [Veith 1998℄. For a omplexitylass C, denote long(C) = flong(L) j L 2 Cg, where long(L) = Sbin(n)21Lf0; 1gn,i.e., ontains all strings of length n suh that n, in binary and with the leading 1omitted, belongs to L.Theorem 4.6 Let C1 and C2 be omplexity lasses suh that long(C1) � C2. If� is hard for C2 under PLT-redution, then s(�) is hard for C1 under monotoneprojetion redution.We remark that sine monotone projetion redution is very weak, a speial en-oding of suint problems is neessary. From the observations in Setion 4.2, wethen obtain that s(LP(2)) is EXPTIME-hard under monotone projetion redutions,where eah program P is stored in the database D(P ), whih is represented by abinary string in the standard way.s(LP(2)) an be redued to evaluating a datalog program P � over a �xed databaseas follows. From a suint instane of LP(2), i.e., a Boolean iruit CI for I =D(P ), Boolean iruits Ci for omputing Ri, 0 � i � 2 an be onstruted whihuse negation merely on input gates.Eah suh iruit Ci(X) an be simulated by straightforward datalog rules. Forexample, an ^-gate gi with input from gates gj and gk is desribed by a rulegi(X)  gj(X); gk(X), and an _-gate gi is desribed by the rules gi(X)  gj(X)and gi(X)  gk(X). Observe that Boolean iruits with arbitrary use of negationan be easily simulated in strati�ed datalog [Kolaitis and Papadimitriou 1991℄ ordisjuntive datalog [Eiter et al. 1997℄.The desired program P � omprises the rules for the Boolean iruits Ci and therules of the meta-interpreter PMI (k), whih are adapted for a binary enoding of thedomain UD(P ) of the database D(P ) by using binary tuples of arity dlog jUD(P )je.This onstrution is feasible in logarithmi spae, from whih EXPTIME-hard pro-gram omplexity of datalog follows. We refer the reader to [Eiter et al. 1994; Eiteret al. 1997; Gottlob et al. 1995℄ for the tehnial details.



Complexity and expressive power of logi programming � 214.4 Logi programming with funtionsLet us see what happens if we allow funtion symbols in logi programs. In thisase, entailment of an atom is no longer deidable. To prove it, we an, for example,redue Hilbert's Tenth Problem to query answering in full logi programming. Nat-ural numbers an be represented using the onstant 0 and the suessor funtion s.Addition and multipliation are expressed by the following simple logi program:X + 0 = X  X + s(Y ) = s(Z)  X + Y = ZX � 0 = 0  X � s(Y ) = Z  X � Y = U; U +X = ZNow, undeidability of full logi programming follows from the undeidabilityof diophantine equations [Matiyasevi� 1970℄. More preisely, it shows that fulllogi programming an express r.e.-omplete languages. On the other hand, theleast �xpoint T1P of any logi program P is learly a r.e. set. This shows r.e.-ompleteness of logi programming.Theorem 4.7 ([Andr�eka and N�emeti 1978; T�arnlund 1977℄) Logi programmingis r.e.-omplete.2Of ourse, this theorem may as well be proved by a simple enoding of Turingmahines similar to the enoding in the proof of Theorem 4.5 (use terms fn(),n � 0, for representing ell positions and time instants). It is interesting to notethat [Smullyan 1956℄ asserted {quite some time before the �rst proposals to logiprogramming { a losely related result whih essentially says that, in our terms,the minimal model semantis of logi programming over arithmeti yields the r.e.sets.Theorem 4.7 was generalized in [Voronkov 1995℄ for more expressive S-semantisand C-semantis [Falashi et al. 1989℄. On the other hand, it was sharpened to syn-tatial lasses of logi programs. E.g., [T�arnlund 1977℄ used binary Horn lauseprograms to simulate a universal Turing mahine. By a transformation from bi-nary Horn lause programs, [Sebel��k and �St�ep�anek 1982℄ showed that a lass oflogi programs alled strati�able (in a sense di�erent from the one in Setion 5.1)is r.e.-omplete. Furthermore, [�St�ep�anek and �St�ep�ankov�a 1986℄ proved that (aninessential variant of) PRIMLOG (see [Markusz and Kaposi 1982℄) is r.e.-omplete,whih restrits onsiderably the size of AND- and OR-branhing and allows to usereursion expliitly in only a single lause of partiular type. The proof shows thatall �-reursive funtions an be expressed within this fragment.A natural deidable fragment of logi programming with funtions are nonreur-sive programs , in whih intuitively no prediate depends syntatially on itself (seeSetion 5.1 for a de�nition). Their omplexity is haraterized by the followingtheorem.2In the ontext of reursion theory, reduibility of a language (or problem) L1 to L2 is understoodin terms of a Turing redution, i.e., L1 an be deided by a DTM with orale L2, rather thanlogarithmi-spae redution.



22 � E. Dantsin and T. Eiter and G. Gottlob and A. VoronkovTheorem 4.8 ([Dantsin and Voronkov 1997℄) Nonreursive logi programming isNEXPTIME-omplete.The membership is established by applying SLD-resolution with onstraints. Thesize of the derivation turns out to be exponential. NEXPTIME-hardness is provedby redution from the tiling problem for the square 2n � 2n.Some other fragments of logi programming with funtion symbols are knownto be deidable too. For example, the following result was established in [Shapiro1984℄, by using a simulation of alternating Turing mahines by logi programs andvie versa.Theorem 4.9 ([Shapiro 1984℄) Logi programming with funtion symbols isPSPACE-omplete, if eah rule is restrited as follows: the body ontains only oneatom, the size of the head is greater than or equal to that of the body, and the numberof ourrenes of any variable in the body is less than or equal to the number of itsourrenes in the head.The simulation assumed that the input to an alternating Turing mahine is writ-ten on the work-tape. Extending the simulation by a distinguished input-tape,[�St�ep�anek and �St�ep�ankov�a 1986℄ showed that the lass of logi programs havinglogarithmi (respetively, polynomial) goal-size omplexity is P-omplete (respe-tively, EXPTIME-omplete). Here, the goal-size omplexity is the maximal size ofany subgoal (in terms of symbols) ourring in the proof tree of a goal. Related no-tions of omplexity and normal forms of programs, de�ned in terms of omputationtrees [�St�ep�ankov�a and �St�ep�anek 1984℄, are studied in [Ohozka et al. 1988℄.We refer to [Blair 1982; Fitting 1987a; Fitting 1987b℄ for further material onreursion-theoreti issues related to logi programming.4.5 Further issuesBesides data and ombined omplexity, many other omplexity aspets of logiprogram have been investigated, in partiular in the ontext of datalog. We disusshere some of issues that have reeived broad attention.Sirups.. A strongly restrited lass of logi programs often onsidered in theliterature is the lass of single rule programs (sirups) or programs onsisting of onereursive rule and some nonreursive (initialization) rules or atoms.For a long time, the deidability of the following problem was open: Given anLP P (with funtion symbols) that onsists of a unique reursive rule and a set ofground atoms, and given a ground goal G, does it hold that P j= G? This problemis equivalent to the Horn lause impliation problem, i.e., heking whether theuniversal losure of a Horn lause C1 logially implies the universal losure of aHorn lause C2. The problem was shown to be undeidable in [Marinkowski andPaholski 1992℄. Some deidable speial ases of this problem were studied in[Gottlob 1987; Leitsh and Gottlob 1990; Leitsh 1990℄.Several undeidability results of inferene and satis�ability problems for variousrestrited forms of sirups with non-ground atoms or with nonreursive rules an befound in [Devienne 1990; Devienne et al. 1993; Hanshke and W�urtz 1993; Devienneet al. 1996℄.



Complexity and expressive power of logi programming � 23Datalog sirups are EXPTIME omplete with respet to program and ombinedomplexity; this remains true even for datalog sirups onsisting of a unique ruleand no fats [Gottlob and Papadimitriou 1999℄. It follows that deiding whether(the universal losure of) a datalog lause logially implies (the universal losureof) another datalog lause is EXPTIME omplete, too. The problem of evaluating anonreursive Horn lause (with or without funtion symbols) over a set of groundfats is NP-omplete [Chandra and Merlin 1977℄ (even for a �xed set of groundfats). (Here by \evaluation", we mean determining whether a rule �res.) Thisproblem is omputationally equivalent to the problem of evaluating a Boolean on-juntive query over a database, i.e., a datalog lause whose body ontains only inputprediates, and also to the well known NP-omplete lause subsumption problem[Garey and Johnson 1979℄ (see below). The parametri omplexity of onjuntivequeries is studied on [Papadimitriou and Yannakakis 1997℄.With respet to data omplexity, datalog sirups are omplete for P, and thusin general inherently sequential, f. [Kanellakis 1988℄. There are, however, manyinteresting speial ases in whih sirup queries an be evaluated in parallel.Inside P and parallelization issues.. In [Ullman and van Gelder 1988℄ the polyno-mial fringe property is studied. Roughly, a datalog program P has the polynomialfringe property if it is guaranteed that for eah database D and goal G suh thatP [ D j= G, there is a derivation tree whose fringe (i.e., set of leaves) is of poly-nomial size. The data omplexity of datalog programs with the polynomial fringeproperty is in LOGCFL, whih is the lass of all languages (that is, problems) thatare reduible in logarithmi spae to a ontext-free language. LOGCFL is a sublassof NC2, and thus ontains highly parallelizable problems [Johnson 1990℄; further-more, programs whose fringe is superpolynomial (i.e., O(2logk n)) are in NC [Ullmanand van Gelder 1988; Kanellakis 1988℄. Here NC2 is the seond level of the NC-hierarhy of omplexity lasses NCi. These lasses are de�ned by families of uniformBoolean iruits of depth O(logi n) [Johnson 1990℄. An example of programs withthe polynomial fringe property are linearly reursive sirups; however, there alsoexist nonlinear sirups that are not equivalent to any linear sirup and are still in NC[Afrati and Cosmadakis 1989℄.In [Kanellakis 1988℄, the polynomial (superpolynomial) tree-size property for widthk is onsidered. Roughly, a datalog program has this property if every derivableatom an be obtained by a width-k derivation tree of polynomial (superpolyno-mial) size. A width-k derivation tree is a generalized derivation tree, where eahnode may represent up to k ground atoms. For width k = 1, the polynomial(resp., superpolynomial) tree-size property oinides with the polynomial (resp.,superpolynomial) fringe property; however, for higher widths, the former properlygeneralizes the latter. [Kanellakis 1988℄ shows that the data omplexity of datalogprograms having the polynomial (resp., superpolynomial) tree-size property for any�xed onstant width is in LOGCFL (resp., in NC).The hypergraph (V;E) assoiated with a Horn lause or onjuntive query has asset V of verties the set of variables ourring in the rule; its set E of hyperedgesontains for eah atom A in the rule body a hyperedge onsisting of the variablesourring in A. If the hypergraph assoiated with a nonreursive rule is ayli,the evaluation problem is feasible in polynomial time [Yannakakis 1981℄ and is



24 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkovatually omplete for LOGCFL and thus highly parallelizable [Gottlob et al. 1998℄.For generalizations of this result to various types of nearly ayli hypergraphs,see [Gottlob et al. 1999a℄.While determining whether a datalog program is parallelizable, i.e., has dataomplexity in NC, is in general undeidable [Ullman and van Gelder 1988; Gaifmanet al. 1987℄, the problem has been ompletely resolved by [Afrati and Papadimitriou1993℄ for an interesting and relevant lass of sirups alled simple hain queries.These are logi programs with a single reursive rule whose right hand side onsistsof binary relations forming a hain. An example of suh a rule, involving a databaseprediate a, is s(X;Y ) a(X;Z1); s(Z1; Z2); s(Z2; Z3); a(Z3; Y ):[Afrati and Papadimitriou 1993℄ show that (unless P = NC) simple hain queriesare either omplete for P or in NC. They give a preise haraterization of theP-omplete and NC-omputable simple hain queries.Boundedness.. Many papers have been devoted to the deidability of the bound-edness problem for datalog programs. A datalog program P is bounded , if thereexists a onstant k suh that for all databases D, the number of iteration stepsneeded in order to ompute the least �xed point M(ground(P [ D;L(P;D))) isbounded by k and is thus independent of D (it depends on P only). Boundednessis an interesting property, beause as shown in [Ajtai and Gurevih 1994℄, a dat-alog program is bounded if and only if it is equivalent to a �rst-order query. Forimportant related results on the equivalene of reursive and nonreursive datalogqueries, see [Chaudhuri and Vardi 1997℄. The undeidability of the boundednessfor general datalog programs was shown in [Gaifman et al. 1987℄, for linear reur-sive queries in [Vardi 1988℄, and for sirups in [Abiteboul 1989℄. There is a verylarge number of papers disussing the deidability of boundedness issues, both forsyntati restritions of datalog programs or sirups and for variants of boundednesssuh as uniform boundedness. Good surveys of early work are given in [Kanellakis1988℄ and in [Kanellakis 1990℄. The following is an inomplete list of papers whereimportant results and further relevant referenes on deidability issues of bounded-ness or uniform boundedness an be found: [Hillebrand et al. 1995; Marinkowski1996b; Marinkowski 1996a; Marinkowski 1999℄. SuÆient onditions for bound-edness were given in [Minker and Niolas 1983; Sagiv 1985; Ioannidis 1986; Vardi1988; Naughton 1989; Cosmadakis 1989; Naughton and Sagiv 1987; Naughton andSagiv 1991℄.Containment, equivalene, and subsumption.. Issues that have been studied re-peatedly in the ontext of query optimization are query equivalene and ontain-ment. Query ontainment is the problem, given two datalog programs P1 and P2having the same input shemaDin and output shemaDout , whether for every inputdatabase Din , the output of P1 is ontained in the output of P2, i.e, MP1(Din )jp� MP2(Din )jp holds, for every relation p 2 Dout . As shown by [Shmueli 1987℄,ontainment and equivalene are undeidable for datalog programs; however, astronger form of uniform ontainment is deidable [Sagiv 1988℄.In the ase where P1 and P2 ontain only onjuntive queries, ontainment andequivalene are NP-omplete [Sagiv and Yannakakis 1980℄, and remain NP-omplete



Complexity and expressive power of logi programming � 25even if P1 and P2 onsist of single onjuntive queries [Chandra and Merlin 1977℄.If the domain has a linear order � and omparison literals t1 � t2, t1 < t2, andt1 6= t2 may be used in rule bodies, then the ontainment problem for single on-juntive queries is �p2-omplete [van der Meyden 1997℄; this result generalizes tosets of onjuntive queries. As shown in [van der Meyden 1997℄, onjuntive queryontainment is still o-NP-omplete if the database relations are monadi, but poly-nomial if an additional sequentiality restritions is imposed on order literals.Containment of a nonreursive datalog program P1 in a reursive datalog pro-gram P2 is deidable, sine P1 an be rewritten to a set of onjuntive queries, anddeiding whether a onjuntive query is ontained in an arbitrary (reursive) dat-alog program is EXPTIME-omplete [Cosmadakis and Kanellakis 1986; Chandraet al. 1981℄. [Chaudhuri and Vardi 1994℄ have investigated the onverse prob-lem, i.e., ontainment of a reursive datalog program P1 in a nonreursive datalogprogram P2. They showed that the problem is 3-EXPTIME-omplete in generaland 2-EXPTIME-omplete if P2 is a set of onjuntive queries. Furthermore, theyshowed that deiding equivalene of a reursive and a nonreursive datalog programis 3-EXPTIME-omplete.We observe that the ontainment problem for onjuntive queries is equivalentto the lause subsumption problem. A lause C subsumes a lause D, if thereexists a substitution � suh that C� � D; subsumption algorithms are disussed in[Gottlob and Leitsh 1985b; Gottlob and Leitsh 1985a; Bahmair et al. 1996℄. Thisequivalene extends to sets of onjuntive queries, i.e., in essene to nonreursivedatalog programs [Sagiv and Yannakakis 1980℄. For a disussion of subsumption-based and other notions of equivalene for logi programs, see [Maher 1988℄.The lause subsumption problem plays a very important role in the �eld of in-dutive logi programming (ILP) [Muggleton 1992℄. For omplexity results on ILPonsult [Kietz and Dzeroski 1994; Gottlob et al. 1997℄. A problem related to lausesubsumption is lause ondensation: given a lause C, �nd a smallest subset of Cwhih subsumes C. Complexity results and algorithms for lause ondensation anbe found in [Gottlob and Ferm�uller 1993℄. The omplexity of the lause evalua-tion problem and of other related problems on generalized Herbrand interpretations,whih may ontain nonground atoms, is studied in [Gottlob and Pihler 1999℄.5. COMPLEXITY OF LOGIC PROGRAMMING WITH NEGATION5.1 Strati�ed negationA literal L is either an atom A (alled a positive literal) or a negated atom :A(alled a negative literal). Literals A and :A are omplementary ; for any literalL, we denote by ::L its omplementary literal, and for any set Lit of literals,::Lit = f::L j L 2 Litg.A normal lause is a rule of the formA L1; : : : ; Lm (m � 0) (1)where A is an atom and eah Li is a literal. A normal logi program is a �nite setof normal lauses.The semantis of normal logi programs is not straightforward, and numerousproposals exist, f. [Bidoit 1991; Apt and Bol 1994℄. However, there is general



26 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkovonsensus for strati�ed normal logi programs.A normal logi program P is strati�ed , see [Apt et al. 1988℄, if there is an assign-ment str(�) of integers 0,1,. . . to the prediates p in P , suh that for eah lause rin P the following holds: If p is the prediate in the head of r and q the prediatein an Li from the body, then str(p) � str(q) if Li is positive, and str(p) > str(q)if Li is negative.Example 5. Reonsider the steam turbine senario in Example 1, and let us addthe following rules to the program there:hek sensors  signal errorsignal error  valve losed;:signal 1signal error  pressure loss;:signal 2signal error  overheat;:signal 3These rules express knowledge about potential signal errors, whih must handledby heking the sensors. The augmented program P is strati�ed: E.g. for theassignment str(A) = 1 for A 2 fhek sensors; signal errorg and str(B) = 0 forany other atom B ourring in P , the ondition of strati�ation is satis�ed.The redut of a normal logi program P by a Herbrand interpretation I [Gel-fond and Lifshitz 1988℄, denoted P I , is the set of ground lauses obtained fromground(P ) as follows: �rst remove every lause r with a negative literal L in thebody suh that ::L 2 I , and then remove all negative literals from the remainingrules. Notie that P I is a set of ground Horn lauses.The semantis of a strati�ed normal program P is then de�ned as follows. Takean arbitrary strati�ation str . Denote by P=k the set of rules r suh that str(p) = k,where p is the head prediate of r. De�ne a sequene of Herbrand interpretations:M0 = ;, and Mk+1 is the least Herbrand model of PMk=k [Mk for k � 0. Finally, letMstr (P ) =[i Mi [ f:A j A =2[i Mig:The semantis Mstr does not depend on the strati�ation str [Apt et al. 1988℄.Note that in the propositional aseMstr (P ) is polynomially omputable.Example 6. We onsider the program P in Example 5. For the strati�ationstr(�) of P given there, P=0 ontains the lauses listed in Example 1, and P=1 thelauses introdued in Example 5. Then,M0 = ; PM0=0 = P0;M1 = T1P0 PM1=1 = fhek sensors signal error; signal error overheatgM2 = T1P0where T1P0 = fsignal 1, signal 2, valve losed, pressure loss, leak, shutdowng. Thus,Mstr (P ) = T1P0 [f:signal 3, :overheat, :signal error, :hek sensorsg.Theorem 5.1 (impliit in [Apt et al. 1988℄) Strati�ed propositional logi program-ming with negation is P-omplete. Strati�ed datalog with negation is data ompletefor P and program omplete for EXPTIME.For full logi programming, strati�ed negation yields the arithmetial hierarhy.



Complexity and expressive power of logi programming � 27Theorem 5.2 ([Apt and Blair 1988℄) Logi programming with n levels of strati�ednegation is �0n+1-omplete.Reall here that �0n+1 denotes the relations over the natural numbers that arede�nable in arithmeti by means of a �rst-order formula�(Y) = 9X08X1 � � �QkXn (X0; : : : ;Xn;Y)with free variables Y, where the quanti�ers alternate and  is quanti�er-free; inpartiular, �01 ontains the r.e. sets. Further omplexity results on strati�ationan be found in [Cholak and Blair 1994; Palopoli 1992℄.A partiular ase of strati�ed negation are nonreursive logi programs. A pro-gram is nonreursive if and only if it has a strati�ation suh that eah prediatep ours in its de�ning stratum P=str(p) only in the heads of rules.Theorem 5.3 (impliit in [Immerman 1987; Vardi 1982℄) Nonreursive proposi-tional logi programming with negation is P-omplete. Nonreursive datalog withnegation is program omplete for PSPACE, and its data omplexity is in the lassAC0, whih ontains the languages reognized by unbounded fan-in iruits of poly-nomial size and onstant depth [Johnson 1990℄.[Vorobyov and Voronkov 1998℄ lassi�ed the omplexity of nonreursive logi pro-gramming depending on the signature, presene of negation and range-restrition.A lause P is alled range-restrited if every variable ourring in this lause alsoours in a positive literal in the body. A program P is range-restrited if so isevery lause in P . Range-restrited lauses have a number of good properties,for example domain-independene. Before presenting the results of [Vorobyov andVoronkov 1998℄, we explain the notation for signatures used in their paper. The tu-ple (k; l;m) denotes the signature with k onstants, l unary funtion symbols andmfuntion symbols of arity � 2. The omplexity of nonreursive logi programmingis summarized in Table 1.In this table TA(f(n); g(n)) means the lass of funtions omputable on alter-nating Turing mahines [Chandra et al. 1981℄ using g(O(n)) alternations with timef(O(n)) on every branh. Suh lasses are losed under polylin (and loglin) redu-tions, i.e., those running in polynomial time (respetively, logarithmi spae), withoutput linearly bounded by the input. Suh omplexity lasses arise in onne-tion with the omplexity haraterization of logial theories [Berman 1977; Berman1980℄.To de�ne the lasses NONELEMENTARY(n), we de�ne funtions en(m) by reur-sion: e0(m) = m and en+1(m) = 2en(m). Note that ELEMENTARY is the lass oflanguages deided within time ek(0) for some �xed k. Then NONELEMENTARY(n)is the lass of languages deided with lower and upper time bounds en(0) andedn(0) respetively for some ; d > 0. In all ases in the table we have ompletenessin the orresponding omplexity lass, exept for NONELEMENTARY(n) (in thisase both lower and upper bounds are linearly growing towers of 2's).Thus, there is a huge di�erene between nonreursive datalog with negation andnonreursive logi programming with negation in their program omplexity, namelyPSPACE vs. NONELEMENTARY(n). At the same time, as [Vardi 1982℄ and thefollowing result show, both the languages have polynomial data omplexity.
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Complexity and expressive power of logi programming � 29Theorem 5.4 ([Dantsin and Voronkov 2000℄) Nonreursive logi programmingwith negation has polynomial data omplexity.5.2 Well-founded negationRoughly speaking, the well-founded semantis (WFS) [van Gelder et al. 1991℄ as-signs value \unknown" to an atom A, if it is de�ned by unstrati�ed negation.Briey, WFS an be de�ned as follows [Baral and Subrahmanian 1993℄. Let FP (I)be the operator FP (I) = T1P I . Sine FP (I) is anti-monotone, F 2P (I) is monotone,and thus has a least and a greatest �xpoint, denoted by F 2P"1 and F 2P#1, respe-tively. Then, the meaning of a program P under WFS,Mwfs (P ), isMwfs(P ) = F 2P"1 [ f:A j A =2 F 2P#1g:Note that on strati�ed programs, WFS and strati�ed semantis oinide.Theorem 5.5 (impliit in [van Gelder 1989; van Gelder et al. 1991℄) Proposi-tional logi programming with negation under WFS is P-omplete. Datalog withnegation under WFS is data omplete for P and program omplete for EXPTIME.The question whether P j=wfs A an be deided in linear time is open [Bermanet al. 1995℄. A fragment of datalog with well-founded negation that has linear dataomplexity and, under ertain restritions, also linear ombined omplexity, wasreently identi�ed and studied in [Gottlob et al. 2000b; Gottlob et al. 2000a℄. Thisfragment, alled datalog LITE , is well-suited for expressing temporal properties ofa �nite state system represented as a Kripke struture. It is more expressive thanCTL and some other well-known temporal logis used in automati veri�ation.For full logi programming, the following is known.Theorem 5.6 ([Shlipf 1995b℄) Logi programming with negation under WFS is�11-omplete.The lass �11 belongs to the analytial hierarhy (in a relational form) and ontainsthose relations whih are de�nable by a seond-order formula �(X) = 8P�(P;X),where P is a tuple of prediate variables and � is a �rst-order formula with freevariables X. For more details about this lass in the ontext of logi programming,see e.g. [Shlipf 1995b; Eiter and Gottlob 1997℄.5.3 Stable model semantisAn interpretation I of a normal logi program P is a stable model of P [Gelfondand Lifshitz 1988℄ if I = T1P I , i.e., I is the least Herbrand model of P I .In general, a normal logi program P may have zero, one, or multiple stablemodels.Example 7. Let P be the following non-strati�ed program:sleep  :workwork  :sleepThen M1 = fsleepg and M2 = fworkg are the stable models of P .



30 � E. Dantsin and T. Eiter and G. Gottlob and A. VoronkovDenote by SM(P ) the set of stable models of P . The meaningMst of P underthe stable model semantis (SMS) isMst(P ) = \M2SM(P )(M [ ::(BP nM)):Note that every strati�ed P has a unique stable model, and its strati�ed and stablesemantis oinide. Unstrati�ed rules inrease omplexity.Theorem 5.7 ([Marek and Truszzy�nski 1991℄, [Bidoit and Froidevaux 1991℄)Given a propositional normal logi program P , deiding whether SM(P ) 6= ; isNP-omplete.Proof. (1) Membership. Clearly, P I is polynomial time omputable from Pand I . Hene, a stable modelM of P an be guessed and heked in polynomialtime.(2) Hardness. Modify the DTM enoding in Setion 4 for a nondeterministiTuring mahine T as follows. For eah state s and symbol �, introdue atomsBs;�;1[� ℄,. . . , Bs;�;k[� ℄ for all 1 � � < N and transitions hs; �; si; �0i; dii, where1 � i � k. Add Bs;�;i[� ℄ in the bodies of the transition rules for hs; �; si; �0i; diiand the rule Bs;�;i[� ℄  :Bs;�;1[� ℄; : : : ;:Bs;�;i�1[� ℄;:Bs;�;i+1[� ℄; : : : ;:Bs;�;k[� ℄:Intuitively, these rules nondeterministially selet preisely one of the possibletransitions for s and � at time instant � , whose transition rules are enabled viaBs;�;i[� ℄. Finally, add a rule aept :aept:It ensures that aept is true in every stable model. The stable models M ofthe resulting program orrespond to the aepting runs of T .As an easy onsequene, we obtainTheorem 5.8 ([Marek and Truszzy�nski 1991℄; [Shlipf 1995b℄ and [Kolaitis andPapadimitriou 1991℄) Logi programming with negation under SMS is o-NP-omplete. Datalog with negation under SMS is data omplete for o-NP and programomplete for o-NEXPTIME.The o-NEXPTIME result for program omplexity, whih is not stated in [Shlipf1995b℄, follows from an analogous result for datalog under �xpoint models in [Ko-laitis and Papadimitriou 1991℄ and a simple, elegant transformation of this seman-tis to SMS [Shlipf 1995b℄.For full logi programming, SMS has the same omplexity as WFS.Theorem 5.9 ([Shlipf 1995b; Marek et al. 1994℄) Logi programming with nega-tion under SMS is �11-omplete.



Complexity and expressive power of logi programming � 31Further results on stable models of reursive (rather than only �nite) logi pro-grams an be found in [Marek et al. 1992℄.Beyond inferene, further omplexity aspets of stable models have been ana-lyzed, inluding ompat representations of stable models and the well-foundedsemantis of nonground logi programs [Gottlob et al. 1996; Eiter et al. 1998℄, andoptimization issues suh as determining symmetries aross stable models [Eiteret al. 1997b℄.5.4 Inationary and noninationary semantisThe inationary semantis (INFS) [Abiteboul and Vianu 1991a; Abiteboul et al.1995℄ is inspired by inationary �xpoint logi [Gurevih and Shelah 1986℄. In plaeof T1P , it uses the limit eT1P of the sequeneeT 0P = ;;eT i+1P = bTP ( eT iP ); if i � 0;where eTP is the inationary operator eT (I) = I[TP I (I). Clearly, eT1P is omputablein polynomial time for a propositional program P . Moreover, eT1P oinides withT1P for Horn lause programs P . Therefore, by the above results,Theorem 5.10 ([Abiteboul and Vianu 1991a℄; impliit in [Gurevih and Shelah1986℄) Logi programming with negation under INFS is P-omplete. Datalog withnegation under INFS is data omplete for P and program omplete for EXPTIME.The noninationary semantis (NINFS) [Abiteboul and Vianu 1991a℄, in theversion of [Abiteboul and Vianu 1995, page 373℄, uses in plae of T1P the limit bT1Pof the sequene bT 0P = ;;bT i+1P = bTP ( bT iP ); if i � 0;where bTP (I) = TP I (I), if it exists; otherwise, bT1P is unde�ned. Similar equivalentalgebrai query languages have been earlier desribed in [Chandra and Harel 1982;Vardi 1982℄. In partiular, datalog under NINFS is equivalent to partial �xpointlogi [Abiteboul and Vianu 1991a; Abiteboul et al. 1995℄.As easily seen, T1P is for a propositional program P omputable in polynomialspae; this bound is tight.Theorem 5.11 ([Abiteboul and Vianu 1991a; Abiteboul et al. 1995℄) Logi pro-gramming with negation under NINFS is PSPACE-omplete. Datalog with negationunder NINFS is data omplete for PSPACE and program omplete for EXPSPACE.5.5 Further semantis of negationA number of interesting further semantis for logi programming with negationhave been de�ned, among them partial stable models, maximal partial stable mod-els, regular models, perfet models, 2- and 3-valued ompletion semantis, and�xpoint models; see e.g. [Shlipf 1995b; You and Yuan 1995; Przymusinski 1988a;Kolaitis and Papadimitriou 1991℄. There is no spae to disuss these semantis



32 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkovhere; see e.g. [Shlipf 1995b; Sa�a 1995; Dudakov 1999; Kolaitis and Papadimit-riou 1991℄ for more details and omplexity results. However, we remark that when alogi program has a perfet model, then this model is unique [Przymusinski 1988a;Przymusinski 1988b℄. As reently shown in [Dudakov 1999℄, propositional logiprogramming under perfet model semantis is in �p2, and its preise omplexityan be haraterized through an interesting variant of the DTM with an oralefor the lassial propositional satis�ability problem (SAT): if the SAT-instane inthe query has more than one satisfying assignment, then the mahine immediatelyrejets the input (i.e., hanges its state to no rather than to 2). Deiding whethera given propositional logi program P has a perfet model (resp., P j= A underperfet models), is omplete for the lass of languages aepted by suh mahinesin polynomial time (resp., for the omplementary lass).Extensions of logi programming with negation have been proposed whih handledi�erent kinds of negation, namely strong and default negation, see e.g. [Gelfondand Lifshitz 1991; Peare and Wagner 1991℄. The semantis we have onsideredabove use default negation as the single kind of negation. Di�erent kinds of nega-tion inrease the suitability of logi programming as a knowledge representationformalism [Baral and Gelfond 1994℄.In the approah of [Gelfond and Lifshitz 1991℄, strong negation is interpreted aslassial negation. E.g., the ruleies(X)  � :ies(X); bird(X)naturally expresses that a bird ies by default; here, \�" is default negation and\:" is lassial negation. The language of extended logi programs treats literalswith lassial negation as atoms, on whih default negation may be applied. Thenotion of answer set for suh a program is de�ned by a natural generalization ofthe onept of stable model [Gelfond and Lifshitz 1991℄.As for the omplexity, there is no inrease for extended logi programs overnormal logi programs under SMS.Theorem 5.12 ([Ben-Eliyahu and Dehter 1994℄) Given a propositional extendedlogi program P , deiding whether P has an answer set is NP-omplete, and ex-tended logi programming is o-NP-omplete.Complexity results on extended logi programs with rule priorities an be foundin [Brewka and Eiter 1998℄, and for an extension of logi programming using hier-arhial modules in [Buafurri et al. 1998℄.6. DISJUNCTIVE LOGIC PROGRAMMINGInformally, disjuntive logi programming (DLP) extends logi programming byadding disjuntion in the rule heads, in order to allow more natural and exibleknowledge representation. For example,male(X) _ female(X) person(X)naturally represents that any person is either male or female.A disjuntive logi program is a set of lauses



Complexity and expressive power of logi programming � 33A1 _ � � � _ Ak  L1; : : : ; Lm (k � 1;m � 0); (2)where eah Ai is an atom and eah Lj is a literal. For a bakground, see [Loboet al. 1992℄ and the more reent [Minker 1994℄.The semantis of negation-free disjuntive logi programs is based on minimalHerbrand models, as the least (unique minimal) model does not exist in general.Example 8. Let P onsist of the single lause p _ q  . Then, P has the twominimal models M1 = fpg and M2 = fqg.Denote by MM(P ) the set of minimal Herbrand models of P . The GeneralizedClosed World Assumption (GCWA) [Minker 1982℄ for negation-free P amounts tothe meaningMGCWA(P ) = fL j MM(P ) j= Lg.Example 9. Consider the following propositional program P 0, desribing the be-havior of a reviewer while reviewing a paper:good _ bad  paperhappy  goodangry  badsmoke  happysmoke  angrypaper  The following models of P 0 are minimal:M1 = fpaper; good; happy; smokeg andM2 = fpaper; bad; angry; smokeg:Under GCWA, we have P j=GCWA smoke, while P 6j=GCWA good and P 6j=GCWA:good.Theorem 6.1 ([Eiter and Gottlob 1993; Eiter et al. 1994℄) Let P be a proposi-tional negation-free disjuntive logi program and A be a propositional atom. (i) De-iding whether P j=GCWA A is o-NP-omplete. (ii) Deiding whether P j=GCWA:A is �p2-omplete.Proof. It is not hard to argue that for an atom A, we have P j=GCWA A ifand only if P j=PC A, where j=PC is the lassial logial onsequene relation. Inaddition, it is not hard to argue that any set of lauses an be represented by asuitable disjuntive logi program. Hene, by the well-known NP-ompleteness ofSAT, part (i) is obvious.Let us thus onsider part (ii).(1) Membership. We have P 6j=GCWA :A if and only if there exists an M 2MM(P ) suh thatM 6j= :A, i.e., A 2M . Clearly, a guess forM an be veri�edwith an orale for NP in polynomial time; from this, membership of the problemin �p2 follows.(2) Hardness. We show �p2-hardness by an enoding of alternating Turing ma-hines (ATM) [Chandra et al. 1981℄. Reall that an ATM T has its set of states



34 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkovpartitioned into existential (9) and universal (8) states. If the mahine reahesan 9-state (respetively, 8-state) s in a run, then the input is aepted if theomputation ontinued in some (respetively, all) of the possible suessor on-�gurations is aepting. As in our simulations above, we assume that T has asingle tape.The polynomial-time bounded ATMs whih start in a 8-state s0 and have onealternation, i.e., preisely one transition from a 8-state to an 9-state in eahrun (and no reverse transition), solve preisely the problems in �p2 [Chandraet al. 1981℄.By adapting the onstrution in the proof of Theorem 5.7, we show how anysuh mahine T on input I an be simulated by a disjuntive logi programP under GCWA. Without loss of generality, we assume that eah run of T ispolynomial-time bounded [Bal�azar et al. 1990℄.We start from the lauses onstruted for the NTM T on input I in the proofof Theorem 5.7, from whih we drop the lause aept  :aept and replaethe lauses Bs;�;i[� ℄  :Bs;�;1[� ℄; : : : ;:Bs;�;i�1[� ℄;:Bs;�;i+1[� ℄; : : : ;:Bs;�;k[� ℄:for s and � by the logially equivalent disjuntive lauseBs;�;1[� ℄ _ � � � _ Bs;�;k[� ℄ :Intuitively, in a minimal model preisely one of the atoms Bs;�;i[� ℄ will bepresent, whih means that one of the possible branhings is followed in a run.The urrent lauses onstitute a propositional program whih derives aeptunder GCWA if and only if T would aept I if all its states were universal.We need to respet the 9-states, however. For eah 9-state s and time point� > 0, we set up the following lauses, where s0 is any 9-state, � � � 0 � N ,0 � � � N , and 1 � i � k:states0 [� 0℄  naept; states[� ℄symbol� [� 0; �℄  naept; states[� ℄ursor[� 0; �℄  naept; states[� ℄Bs;�;i[� 0℄  naept; states[� ℄:Intuitively, these rules state that if a nonaepting run enters an 9-state, i.e.,naept is true, then all relevant fats involving a time point � 0 � � are true.This way, nonaepting runs are orrupted. Finally, we set up for eah nona-epting terminal 9-state s the lausesnaept  states[� ℄; 0 < � � N .These lauses state that naept is true if the run ends in a nonaepting state.Let P+ be the resulting program. The minimal models M of P+ whih do notontain naept orrespond to the aepting runs of T .It an be seen that the minimal models of P+ whih ontain naept orrespondto the partial runs of T from the initial state s0 to an 9-state s from whih noompletion of the run ending in an aepting state is possible. This implies thatP+ has some minimal modelM ontaining naept preisely if T , by de�nition,



Complexity and expressive power of logi programming � 35does not aept input I . Consequently, P+ j=GCWA :naept, i.e., naept isin no minimal model of P+, if and only if T aepts input I . It is lear that theprogram P+ an be onstruted in logarithmi spae. Consequently, deidingP j=GCWA :A is �p2-hard.Note that many problems in the �eld of nonmonotoni reasoning are �p2-omplete,e.g. [Gottlob 1992; Eiter and Gottlob 1992; Eiter and Gottlob 1995a℄.Stable negation naturally extends to disjuntive logi programs, by adoptingthat I is a (disjuntive) stable model of a disjuntive logi program P if and onlyif I 2 MM(P I) [Przymusinski 1991; Gelfond and Lifshitz 1991℄. The disjuntivestable model semantis subsumes the disjuntive strati�ed semantis [Przymusinski1988a℄. For well-founded semantis, no suh natural extension is known; the seman-tis in [Brass and Dix 1995; Przymusinski 1995℄ are the most appealing attemptsin this diretion.Clearly, P I is easily omputed, and P I = P if P is negation-free. Thus,Theorem 6.2 ([Eiter and Gottlob 1995b; Eiter et al. 1994; Eiter et al. 1997℄)Propositional DLP under SMS is �p2 omplete. Disjuntive datalog under SMS isdata omplete for �p2 and program omplete for o-NEXPTIMENP.The latter result was derived by utilizing omplexity upgrading tehniques asdesribed above in Setion 4.3. We remark that a sophistiated algorithm foromputing stable models of propositional disjuntive logi programs, whih mirrorsthe omplexity of the problem in its struture, is desribed in [Leone et al. 1997℄.For full DLP, we have:Theorem 6.3 ([Chomiki and Subrahmanian 1990℄) DLP under GCWA is �02-omplete.Theorem 6.4 ([Eiter and Gottlob 1995b℄) Full DLP under SMS is �11-omplete.Thus, disjuntion adds omplexity under GCWA and under SMS in �nite Her-brand universes (unless o-NP = �p2), but not in in�nite ones. This is intuitivelyexplained by the fat that DLP under SMS orresponds to a weak fragment of �12whih an be reursively translated to �11.Many other semantis for DLP have been analyzed. For some of them, theomplexity is lower than for SMS, for example for the oiniding possible worldsand possible model semantis [Chan 1993; Sakama and Inoue 1994a℄, as well asfor the ausal model semantis [Dix et al. 1996℄, whih are all o-NP-omplete.Others have higher omplexity, for example the regular model semantis and themaximal partial stable model semantis [Eiter et al. 1998℄. However, typially theyare �p2-omplete in the propositional ase.Extended disjuntive logi programs (EDLPs), whih have default and lassialnegation, are de�ned analogously to the ase of non-disjuntive logi programs[Gelfond and Lifshitz 1991℄. The notion of answer set is generalized in the sameway as stable model from a non-disjuntive program to a disjuntive one. There



36 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkovis no omplexity inrease over disjuntive stable models; in partiular, extendeddisjuntive logi programming is �p2-omplete in the propositional ase [Eiter andGottlob 1995b℄.Fragments of EDLPs that have lower omplexity are known. The most importantsuh fragment are headyle-free programs . Informally, an EDLP P is headyle-free, if there are no two distint atoms A and B whih mutually depend on eahother through positive reursion (i.e., default negation is disregarded), suh thatA and B our in the head of the same rule of P . As shown in [Ben-Eliyahu andDehter 1994℄, extended disjuntive logi programming for headyle-free programsis o-NP-omplete, and thus polynomial-time transformable to (disjuntion-free)normal logi programming under stable model semantis.A generalization of EDLPs by allowing default negation in the head has beenstudied in [Inoue and Sakama 1998℄. As the authors show, the omplexity of botharbitrary and headyle-free programs does not inrease. Other extensions of dis-juntive logi programming and their omplexities are studied in e.g. [Marek et al.1995; Minker and Ruiz 1994; Buafurri et al. 1997; Buafurri et al. 1998; Bu-afurri et al. 2000; Rosati 1997; Rosati 1998℄. In partiular, [Buafurri et al.1997; Buafurri et al. 2000℄ analyzes the e�et of di�erent kinds of onstraints onstable models. Weak onstraints may be violated at a penalty, leading to a ost-based notion of stable models whose omplexity is haraterized as an optimizationproblem. In [Buafurri et al. 1998℄, disjuntive logi programs are extended bylassial negation and modularization with inheritane; as shown, these featuresdo not inrease the omplexity. The papers [Rosati 1997; Rosati 1998℄ address theomplexity of using epistemi operators suh as minimal knowledge and belief indisjuntive logi programs.7. EXPRESSIVE POWER OF LOGIC PROGRAMMINGThe expressive power of query languages suh as datalog is a topi ommon todatabase theory [Abiteboul et al. 1995℄ and �nite model theory [Ebbinghaus andFlum 1995℄ that has attrated muh attention by both ommunities. By the ex-pressive power of a (formal) query language, we understand the set of all queriesexpressible in that language. Note that we will not only mention query languagesused in database systems, but also formalisms used in formal logi and �nite modeltheory suh as �rst and seond-order logi over �nite strutures or �xpoint logi(for preise de�nitions onsult [Ebbinghaus and Flum 1995℄).In general, a query q de�nes a mappingMq that assigns to eah suitable inputdatabase Din (over a �xed input shema) a result database Dout =Mq(Din ) (overa �xed output shema); more logially speaking, a query de�nes global relations[Gurevih 1988℄. For reasons of representation independene, a query should, inaddition, be generi, i.e., invariant under isomorphisms. This means that if � is apermutation of the domain Dom(D), thenM(�(Din )) = �(Dout ). Thus, when wespeak about queries, we always mean generi queries.Formally, the expressive power of a query language Q is the set of mappingsMqfor all queries q expressible in the language Q by some query expression (program)E; this syntati expression is ommonly identi�ed with the semanti query itde�nes, and simply (in abuse of de�nition) alled a query.There are two important researh tasks in this ontext. The �rst is omparing



Complexity and expressive power of logi programming � 37two query languages Q1 and Q2 in their expressive power. One may prove, forinstane, that Q1 $ Q2, whih means that the set of all queries expressible in Q1is a proper subset of the queries expressible in Q2, and hene, Q2 is stritly moreexpressive than Q1. Or one may show that two query languages Q1 and Q2 havethe same expressive power, denoted by Q1 = Q2, and so on.The seond researh task, more related to omplexity theory, is determining theabsolute expressive power of a query language. This is mostly ahieved by provingthat a given query languageQ is able to express exatly all queries whose evaluationomplexity is in a omplexity lass C. In this ase, we say that Q aptures C andwrite simply Q = C. The evaluation omplexity of a query is the omplexity ofheking whether a given atom belongs to the query result, or, in the ase of Booleanqueries, whether the query evaluates to true [Vardi 1982; Gurevih 1988℄.Note that there is a substantial di�erene between showing that the query eval-uation problem for a ertain query language Q is C-omplete and showing that Qaptures C. If the evaluation problem for Q is C-omplete, then at least one C-hardquery is expressible in Q. If Q aptures C, then Q expresses all queries evaluable inC (inluding, of ourse, all C-hard queries). Thus, usually proving that Q apturesC is muh more involved than proving that evaluating Q-queries is C-hard. Notealso that it is possible that a query language Q aptures a omplexity lass C forwhih no omplete problems exist or for whih no suh problems are known. As anexample, seond-order logi over �nite strutures aptures the polynomial hierarhyPH, for whih no omplete problem is known. However, the existene of a ompleteproblem of PH would imply that it ollapses at some �nite level, whih is widelybelieved to be false.The subdisipline of database theory and �nite model theory dealing with thedesription of the expressive power of query languages and related logial for-malisms via omplexity lasses is alled desriptive omplexity theory [Immerman1987; Leivant 1989; Immerman 1999℄. An early foundational result in this �eld was[Fagin 1974℄'s theorem stating that existential seond-order logi aptures NP. Inthe eighties and nineties, desriptive omplexity theory has beome a ourishingdisipline with many deep and useful results.To prove that a query language Q aptures a mahine-based omplexity lassC, one usually shows that eah C-mahine with (enodings of) �nite struturesas inputs that omputes a generi query an be represented by an expression inlanguage Q. There is, however, a slight mismath between ordinary mahines andlogial queries. A Turing mahine works on a string enoding of the input databaseD. Suh an enoding provides an impliit linear order on D, in partiular, on allelements of the universe UD. The Turing mahine an take pro�t of this order anduse this order in its omputations (as long as generiity is obeyed). On the otherhand, in logi or database theory, the universe UD is a pure set and thus unordered.For \powerful" query languages of inherent nondeterministi nature at the levelof NP this is not a problem, sine an ordering on UD an be nondeterministiallyguessed. However, for many query languages, in partiular, for those orrespondingto omplexity lasses below NP, generating a linear order is not feasible. Therefore,one often assumes that a linear ordering of the universe elements is prede�ned, i.e.,given expliitly in the input database. More spei�ally, by ordered databases orordered �nite strutures , we mean databases whose shemas ontain speial relation



38 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkovsymbols Su, First, and Last, that are always interpreted suh that Su(x; y) isa suessor relation of some linear order and First(x) determines the �rst elementand Last(x) the last element in this order. The importane of prede�ned linearorderings beomes evident in the next two theorems.Before oming to the theorems, we must highlight another small mismath be-tween the Turing mahine and the datalog setting. A Turing mahine an onsidereah input bit independently of its value. On the other hand, a plain datalog pro-gram is not able to detet that some atom is not a part of the input database. Thisis due to the representational peuliarity that only positive information is presentin a database, and that the negative information is understood via the losed worldassumption. To ompensate this de�ieny, we will slightly augment the syntax ofdatalog. Throughout this setion, we will assume that input prediates may appearnegated in datalog rule bodies; the resulting language is datalog+. This extremelylimited form of negation is muh weaker than strati�ed negation, and ould beeasily irumvented by adopting a di�erent representation for databases.Theorem 7.1 (a fortiori from [Chandra and Harel 1982℄) Datalog+ $ P.Proof. (Hint.) Show that there exists no datalog+ program P that an tellwhether the universe U of the input database has an even number of elements.Clearly, plain datalog (without negation of the input prediates) an only de�nemonotoni queries , i.e., the output grows monotonially with the input, and thusdatalog an not express all queries omputable in polynomial time. The naturalquestion is thus to ask whether datalog expresses all monotone queries omputablein polynomial time. As shown in [Afrati et al. 1995℄, the answer is negative. Inpartiular, datalog 6= (i.e., datalog augmented by inequality) an not express whethera given set of linear onstraints of the form x+ y + z = 1 or x = 0 is inonsistent,even on ordered databases [Afrati et al. 1995℄. Furthermore, deiding whether adireted graph has path with length a perfet square is not expressible in datalog+;6=(datalog+ with inequality). The language datalog 6= was �rst studied by [Shmueli1987℄, who showed that is more expressive than plain datalog. Properties andexpressiveness aspets of this language have been further studied e.g. in [Gaifmanet al. 1987; Lakshmanan and Mendelzon 1989; Ajtai and Gurevih 1994; Kolaitisand Vardi 1995; Afrati 1997℄.The perfet square query is expressible in datalog+;6= on ordered databases, how-ever. This is a orollary to the next result.Theorem 7.2 ([Papadimitriou 1985; Gr�adel 1992℄; impliit in [Vardi 1982; Im-merman 1986; Leivant 1989℄) On ordered databases, datalog+ aptures P.Proof. (Sketh) By Theorem 5.1, query answering for a �xed datalog+ programis in P. It thus remains to show that eah polynomial-time DTM T on �nite inputdatabases D 2 INST(Din ) an be simulated by a datalog+ program. To show this,we �rst make some simplifying assumptions.(1) The universe UD is an initial segment [0; n � 1℄ of the integers, and Su,First, and Last are from the natural linear ordering over this segment.



Complexity and expressive power of logi programming � 39(2) The input database shema Din onsists of a single binary relation G, plusthe prede�ned prediates Su;First;Last. In other words, D is always (anordered) graph hU;Gi.(3) T operates in < nk steps, where n = jU j > 1.(4) T omputes a Boolean (0-ary) prediate.The simulation is akin to the simulation used in the proofs of Theorems 4.2and 4.5.Reall the framework of Setion 4.1. In the spirit of this framework, it suÆes toenode nk time-points � and tape-ell numbers � within a �xed datalog program.This is ahieved by onsidering k-tuples X = hX1; : : : ; Xki of variables Xi rangingover U . Eah suh k-tuple enodes the integer int(X) =Pki=1Xi � nk�i.At time point 0 the tape of T ontains an enoding of the input graph. Reallthat in Setion 4.1 this was reeted by the following initialization fatssymbol� [0; �℄  for 0 � � < jI j, where I� = �:Before translating these rules into appropriate datalog rules, we shall spend a wordabout how input graphs are usually represented by a binary strings. A graphhU;Gi is enoded by binary string en(U;G) of length jU j2: if G(i; j) is true fori; j 2 U = [0; n�1℄ then the bit number i�n+j of en(U;G) is 1, otherwise this bitis 0. The bit positions of en(U;G) are exatly the integers from 0 to n2�1. Theseintegers are represented by all k-tuples h0k�2; a; bi suh that a; b 2 U . Moreover,the bit-position int(h0k�2; X; Y i) of en(U;G) is 1 if and only if G(X;Y ) is true inthe input database and 0 otherwise.The above initialization rules an therefore be translated into the datalog rulessymbol1[0k; 0k�2; X; Y ℄  G(X;Y )symbol0[0k; 0k�2; X; Y ℄  :G(X;Y )Intuitively, the �rst rule says that at time point 0 = int(0k), the bit numberint(h0k�2; X; Y i) on the tape is 1 if G(X;Y ) is true. The seond rule states thatthe same bit is false if G(X;Y ) is false. Note that the seond rule applies negationto an input prediate. Only this rule in the entire datalog+ program uses negation.Clearly, these two rules simulate that at time point 0, the ells 0,. . . , n2�1 ontainpreisely the string en(U;G).The other initialization rules desribed in Setion 4.1 are also easily translatedinto appropriate datalog rules. Let us now see how the other rules are translatedinto datalog.From the linear order given by Su(X;Y ), First(X), and Last(X), it is easy tode�ne by datalog lauses a linear order �k on k-tuples Suk(X;Y), Firstk(X),Lastk(X) (see the proof of Theorem 4.5), by using Su1 = Su, First1 = First andLast1 = Last. By using Suk, transition rules, inertia rules and the aept rulesare easily translated into datalog as in the proof of Theorem 4.5.The output shema of the resulting datalog program P+ is de�ned to be Dout =faeptg. It is lear that this program evaluates to true on input D = hU;Gi, i.e.,P+ [D j= aept if and only if T aepts en(U;G).The generalization to a setting where the simplifying assumptions 1{3 are notmade is rather straightforward and is omitted. Assumption 4 an also be easily



40 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkovlifted to the omputation of output prediates. We onsider here the ase wherethe output sheme Dout ontains a single binary relation R. Then, the outputdatabase D0 omputed by T , whih is a graph hU;Ri, an be enoded similarly tothe input database as a binary string en(U;R) of length jU j2. We may supposethat when the mahine enters the halt state, this string is ontained in the �rstjU j2 ells of the tape. To obtain the positive fats of the output relation R, we addthe following rule:R(X;Y )  symbol1[Y; 0k�2; X; Y ℄); statehalt[Y℄We remark that a result similar to Theorem 7.2 was independently obtained by[Livhak 1983℄.Let us now state somewhat more suintly further interesting results on datalog.A prominent query language is �xpoint logi (FPL), whih is the extension of �rst-order logi by a least �xpoint operator lfp(X; '; S), where S is a jXj-ary prediateourring positively in the formula ' = '(X;S), and X is a tuple of free variablesin '; intuitively, it returns the least �xpoint of the operator � de�ned by �(S) =fa j D j= '(a;S)g. We refer to [Chandra and Harel 1982; Abiteboul et al. 1995;Ebbinghaus and Flum 1995℄ for details. As shown in [Chandra and Harel 1982℄,FPL expresses a proper subset of the queries in P. Datalog+ relates to FPL asfollows.Theorem 7.3 ([Chandra and Harel 1985℄) Datalog+ = FPL+(9), i.e., Datalog+oinides with the fragment of FPL having negation restrited to database relationsand only existential quanti�ers.As for expressibility in �rst-order logi, [Ajtai and Gurevih 1994℄ have shownthat a datalog query is equivalent to a �rst-order formula if and only if it is bounded,and thus expressible in existential �rst-order logi.Adding strati�ed negation does not preserve the equivalene of datalog and �x-point logi in Theorem 7.3.Theorem 7.4 ([Kolaitis 1991℄; impliit in [Dahlhaus 1987℄) Strati�ed datalog $FPL.This theorem is not obvious. In fat, for some time oinidene of the twolanguages was assumed, based on a respetive statement in [Chandra and Harel1985℄.The nonreursive fragment of datalog oinides with well-known database querylanguages.Theorem 7.5 (f. [Abiteboul et al. 1995℄) Nonreursive range-restrited datalogwith negation = relational algebra = relational alulus. Nonreursive datalog withnegation = �rst-order logi (without funtion symbols).The expressive power of relational algebra is equivalent to that of a fragment ofthe database query language SQL (essentially, SQL without grouping and aggregate



Complexity and expressive power of logi programming � 41funtions). The expressive power of SQL is disussed in [Libkin and Wong 1994;Dong et al. 1997; Libkin 1997℄.Unstrati�ed negation yields higher expressive power.Theorem 7.6 (i) Datalog under WFS = FPL ([van Gelder 1989℄).(ii) Datalog under INFS = FPL ([Abiteboul and Vianu 1991a℄, using [Gurevihand Shelah 1986℄).As reently shown, the �rst result holds also for total WFS (i.e., the well-foundedmodel is always total) [Flum et al. 1997℄.We remark that the variants of datalog mentioned above an only de�ne querieswhih are expressible in in�nitary logi with �nitely many variables (L!1!) [Kolaitisand Vardi 1995℄. It is known that L!1! has a 0-1 law, i.e., every query de�nablein this language is either almost surely true or almost surely false, if the size ofthe universe grows to in�nity [Kolaitis and Vardi 1992℄. It is easy to see that theboolean Even-query qE , whih tells if the domain of a given input database Din(over a �xed shema) ontains an even number of elements, is not almost surelytrue or almost surely false. Thus, a fortiori, this query{ whih is omputable inpolynomial time{ is not expressible in the above variants of datalog.On ordered databases, Theorem 7.2 and the theorems in Setion 5 implyTheorem 7.7 On ordered databases, the following query languages apture P: strat-i�ed datalog, datalog under INFS, and datalog under WFS.Syntatial restritions allow us to apture lasses within P. Let datalog+(1) bethe fragment of datalog+ where eah rule has most one nondatabase prediate in thebody, and let datalog+(1; d) be the fragment of datalog+(1) where eah prediateours in at most one rule head.Theorem 7.8 ([Gr�adel 1992; Veith 1994℄) On ordered databases, datalog+(1) ap-tures NL and datalog+(1; d) aptures L.Due to inherent nondeterminism, stable semantis is muh more expressive.Theorem 7.9 ([Shlipf 1995b℄) Datalog under SMS aptures o-NP.Note that for this result an order on the input database is not needed. Informally,in eah stable model suh an ordering an be guessed and heked by the program.By [Fagin 1974℄'s Theorem, this implies that datalog under SMS is equivalent tothe existential fragment of seond-order logi over �nite strutures.Theorem 7.10 ([Abiteboul and Vianu 1991a℄) On ordered databases, datalog un-der NINFS aptures PSPACE.Here ordering is needed. An interesting result in this ontext, formulated interms of datalog, is the following [Abiteboul and Vianu 1991a℄: datalog under INFS= datalog under NINFS on arbitrary �nite databases if and only if P = PSPACE.While the \only if" diretion is obvious, the proof of the \if" diretion is involved. It



42 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkovis one of the rare examples that translates open relationships between deterministiomplexity lasses into orresponding relationships between query languages.We next briey address the expressive power of disjuntive logi programs.Theorem 7.11 ([Eiter et al. 1994; Eiter et al. 1997℄) Disjuntive datalog underSMS aptures �p2.It appears that fragments of disjuntive datalog have interesting properties.While disjuntive datalog+;6= expresses only a subset of the queries in o-NP (e.g.,it an not express the Even-query), it expresses all of �p2 under the redulous notionof onsequene, i.e., P j= A if A is true in some stable model. Furthermore, underredulous onsequene every query in nondisjuntive datalog+;6= is expressible indisjuntive datalog+, even though the inequality prediate an not be reognized.Finally, we onsider full logi programs. In this ase, the input databases arearbitrary (not neessarily reursive) relations on the genuine (in�nite) Herbranduniverse of the program.Theorem 7.12 [Shlipf 1995b; Eiter and Gottlob 1997℄ Eah of logi programmingunder WFS, logi programming under SMS, and DLP under SMS aptures �11.Thus, di�erent from the funtion-free ase, adding disjuntion does not inreasethe expressive power of normal logi programs. The reason is that disjuntive logiprograms an be expressed in a weak fragment of the lass �12 of seond-order logi,whih in the ase of an in�nite Herbrand universe an be oded to the �11 fragment.For further expressiveness results on logi programs see e.g. [Shlipf 1995b; Sa�a1995; Sa�a 1997; Greo and Sa�a 1997; Greo and Sa�a 1996; Eiter et al. 1998;Cadoli and Palopoli 1998℄. In partiular, o-NP an be aptured by a variantof irumsribed datalog [Cadoli and Palopoli 1998℄, and further lasses of thepolynomial hierarhy an be aptured by variants of stable models [Sa�a 1995;Sa�a 1997; Eiter et al. 1998; Buafurri et al. 1997℄ as well as through modular logiprogramming [Eiter et al. 1997; Eiter et al. 2000; Buafurri et al. 1998℄. Results onthe expressiveness of the stable model semantis over disjuntive databases, whihare given by sets of ground lauses rather than fats, an be found in [Bonatti andEiter 1996℄.We onlude this subsetion with a brief look on expressiveness results for nonde-terministi queries. A nondeterministi query maps an input database to one froma set of possible output databases; it an be viewed as a multi-valued funtion. Forexample, a query whih returns as output a Hamiltonian yle of given input graphis a nondeterministi query. The (deterministi) queries that we have onsideredabove are a speial ase of nondeterministi queries.It has been shown that the lass NDB-P of nondeterministi queries whih areomputable in polynomial time an be aptured by suitable nondeterministi vari-ants of datalog, e.g., by a proedure-style variants [Abiteboul and Vianu 1991a℄, bydatalog 6= (datalog with inequality) extended with a hoie operator, or by datalogwith stable models [Coriulo et al. 1993; Giannotti and Pedreshi 1998℄. Also NDB-PSPACE, the lass of nondeterministi queries omputable in polynomial spae, isaptured by a nondeterministi variant of datalog [Abiteboul and Vianu 1991a℄.For a tutorial survey of suh and related deterministi languages, we reommend



Complexity and expressive power of logi programming � 43[Vianu 1997℄. For further issues on nondeterministi queries, we refer to [Giannottiet al. 1997; Grumbah and Laroix 1997; Leone et al. 1999℄.7.1 The order mismath and relational mahinesMany results on apturing the omplexity lasses by logial languages su�er fromthe order mismath. For example, the results by Immerman and Vardi (Theo-rems 7.7 and 7.10) show that P = PSPACE if and only if Datalog under INFS andDatalog under NINFS oinide on ordered databases. The order appears when weode the input for a standard omputational devie, like a Turing mahine, whilethe semantis of Datalog and logi is de�ned diretly in terms of logial strutures,where no order on elements is given.To overome this mismath, [Abiteboul and Vianu 1991b; Abiteboul and Vianu1995℄ introdued relational omplexity theory , where omputations on unorderedstrutures are modeled by relational mahines . In [Abiteboul and Vianu 1991b;Abiteboul and Vianu 1995; Abiteboul et al. 1997℄ several relational omplexitylasses are introdued, suh as Pr (relational polynomial time), NPr (relationalnondeterministi polynomial time), PSPACEr (relational polynomial spae) andEXPTIMEr (relational exponential time). It follows that all separation resultsamong the standard omplexity lasses translate into separation results amongrelational omplexity lasses. For example, P = NP if and only if Pr = NPr.It happens that Datalog under various semantis aptures the relational om-plexity lasses on unordered databases. For example (f. Theorems 7.7 and 7.10),we haveTheorem 7.13 Datalog under INFS aptures Pr. Datalog under NINFS apturesPSPACEr.Note that together with the orrespondene of the separation results betweenthe standard omplexity lasses and the relational omplexity lasses, this theoremimplies that Datalog under INFS oinides with Datalog under NINFS if and only ifP = PSPACE. Therefore, the results of [Abiteboul and Vianu 1991b; Abiteboul andVianu 1995; Abiteboul et al. 1997℄ provide an order-free orrespondene betweenquestions in omputational and desriptive omplexity.7.2 Expressive power of logi programming with omplex valuesThe expressive power of datalog queries is de�ned in terms of input and outputdatabases, i.e., �nite sets of tuples. In order to extend the notion of expressivepower to logi programming with omplex values, we need to de�ne what we meanby an input. For example, in the ase of plain logi programming, an input may bea �nite set of ground terms, i.e. a �nite set of trees. In the ase of logi programmingwith sets, an input may be a set whose elements may be sets too and so on.Various models and languages for dealing with omplex values in databases havebeen proposed, e.g. [Abiteboul and Kanellakis 1989; Abiteboul and Grumbah 1988;Kifer and Wu 1993; Kifer et al. 1995; Abiteboul and Beeri 1995; Buneman et al.1995; Suiu 1997; Greo et al. 1995; Libkin et al. 1996; Abiteboul et al. 1995℄. Thefuntional approah to suh languages dominates the logi programming one. Toextend variants of nested relational algebra as in [Buneman et al. 1995℄ to datalog,



44 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkovbounded �xpoint onstruts have been proposed [Suiu 1997℄, as well as deationary�xpoint onstruts [Colby and Libkin 1997℄.The omparative expressive power of languages for omplex values is studied ine.g. [Abiteboul and Grumbah 1988; Vadaparty 1991; Suiu 1997; Abiteboul andBeeri 1995; Dantsin and Voronkov 2000℄. For example, [Abiteboul and Beeri 1995℄introdue a model for restrited ombinations of tuples and sets and several or-responding query languages, inluding the algebrai and logi programming ones.It is proved that all these languages de�ne the same lass of queries. [Dantsin andVoronkov 2000℄ show that nonreursive logi programming with negation has thesame expressive power as nonreursive datalog with negation (under a natural rep-resentation of inputs). Thus, the use of reursive data strutures, namely trees, innonreursive datalog gives no gain in the expressiveness. It follows from this resultthat nonreursive logi programming with negation is polynomial-time. [MAllester1993; Givan and MAllester 2000℄ study logi programs without negation in whihevery term ourring in the head of a lause also ours in its body. It is provedthat this lass aptures P on ground terms (one an de�ne a linear order on the setof ground terms using logi programs of this kind).The absolute expressive power of languages for omplex values is also studied in[Sazonov 1993; Suiu 1997; Sazonov and Lisitsa 1995; Grumbah and Vianu 1995;Gyssens et al. 1995; Lisitsa and Sazonov 1997℄; further issues, suh as expressibilityof partiular queries or faithful extension of datalog, are studied in [Libkin andWong 1995; Wong 1996; Paredaens and van Guht 1992℄.Results on the expressive power of di�erent forms of logi programming withonstraints an be found e.g. in [Cosmadakis and Kuper 1994; Kanellakis et al.1995; Benedikt et al. 1996; Vandeurzen et al. 1996℄.Unlike researh on the expressive power of datalog, there is no mainstream inresearh on the expressive power of logi programming with omplex values. Ex-tension of delarative query languages by omplex values is more atively studiedin database theory.8. UNIFICATION AND ITS COMPLEXITYWhat is the omplexity of query answering for very simple logi programs on-sisting of one fat? This problem leads us to the problem of solving equationsover terms, known as the uni�ation problem. Uni�ation lies in the very heart ofimplementations of logi programming and automated reasoning systems.Atoms or terms s and t are alled uni�able if there exists a substitution # thatmakes them equal, i.e., the terms s# and t# oinide; suh a substitution # is alleda uni�er of s and t. The uni�ation problem is the following deision problem:given terms s and t, are they uni�able?[Robinson 1965℄ desribed an algorithm that solves this problem and, if the an-swer is positive, omputes a most general uni�er of given two terms. His algorithmhad exponential time and spae omplexity mainly beause of the representation ofterms by strings of symbols. Using better representations (for example, by diretedayli graphs), Robinson's algorithm was improved to linear time algorithms, e.g.[Martelli and Montanari 1976; Paterson and Wegman 1978℄.Theorem 8.1 ([Dwork et al. 1984; Yasuura 1984; Dwork et al. 1988℄) The uni-



Complexity and expressive power of logi programming � 45�ation problem is P-omplete.P-hardness of the uni�ation problem was proved by redutions from some ver-sions of the iruit value problem in [Dwork et al. 1984; Yasuura 1984; Dwork et al.1988℄. (Note that [Lewis and Statman 1982℄ states that uni�ability is omplete foro-NL; however, [Dwork et al. 1984℄ gives a ounterexample to the proof in [Lewisand Statman 1982℄.)Also, many quadrati time and almost linear time uni�ation algorithms havebeen proposed beause these algorithms are often more suitable for appliationsand generalizations (see a survey of the main uni�ation algorithms in [Baader andSiekmann 1994℄). Here we mention only [Martelli and Montanari 1982℄'s algorithmbased on ideas going bak to [Herbrand 1972℄'s famous work. Modi�ations ofthis algorithm are widely used for uni�ation in equational theories and rewritingsystems. The time omplexity of Martelli and Montanari's algorithm is O(nA�1(n))where A�1 is a funtion inverse to Akermann's funtion and thus A�1 grows veryslowly.9. LOGIC PROGRAMMING WITH EQUALITYThe relational model of data deals with simple values, namely tuples onsisting ofatomi omponents. Various generalizations and formalisms have been proposed tohandle more omplex values like nested tuples, tuples of sets, et; see Setion 7.2 and[Abiteboul and Beeri 1995℄. Most of these formalisms an be expressed in terms oflogi programming with equality [Gallier and Raatz 1986; Gallier and Raatz 1989;H�olldobler 1989; Hanus 1994; Degtyarev and Voronkov 1996℄ and onstraint logiprogramming onsidered in Setion 10.9.1 Equational theoriesLet L be a language ontaining the equality prediate =. By an equation over L wemean an atom s = t where s and t are terms in L. An equational theory E over L isa set of equations losed under the logial onsequene relation, i.e., a set satisfyingthe following onditions: (i) E ontains the equation x = x; (ii) if E ontains s = tthen E ontains t = s; (iii) if E ontains r = s and s = t then E ontains r = t;(iv) if E ontains s1 = t1; : : : ; sn = tn then E ontains f(s1; : : : ; sn) = f(t1; : : : ; tn)for eah n-ary funtion symbol f 2 L; and (v) if E ontains s = t then E ontainss# = t# for all substitutions #.The syntax of logi programs over an equational theory E oinides with thatof ordinary logi programs. Their semantis is de�ned as a generalization of thesemantis of logi programming so that terms are identi�ed if they are equal in E.Example 10. We demonstrate logi programs with equality by a logi programproessing �nite sets. Finite sets are a typial example of omplex values handledin databases. We represent �nite sets by ground terms as follows: (i) the onstantfg denotes the empty set, (ii) if s represents a set and t is a ground term thenft j sg represents the set ftg [ s (where ftg and s are not neessarily disjoint).However the equality on sets is de�ned not as identity of terms but as equality inthe equational theory in whih terms are onsidered to be equal if and only if theyrepresent equal sets (we omit the axiomatization of this theory).



46 � E. Dantsin and T. Eiter and G. Gottlob and A. VoronkovConsider a very simple program that heks whether two given sets have anonempty intersetion. This program onsists of one fatnon empty intersetion(fX j Y1g; fX j Y2g)  :For example, to hek that the sets f1; 3; 5g and f4; 1; 7g have a ommon member,we ask the query non empty intersetion(f1; 3; 5g; f4; 1; 7g). The answer will bepositive. Indeed, the following system of equations has solutions in the equationaltheory of sets: fX j Y1g = f1; 3; 5g; fX j Y2g = f4; 1; 7g:For example, set X = 1, Y1 = f3; 5g, Y2 = f4; 7g.Note that if we represent sets by lists in plain logi programming without equality,any enoding of non empty intersetion will require reursion.The omplexity of logi programs over E depends on the omplexity of solvingsystems of term equations in E. The problem of whether a system of term equationsis solvable in an equational theory E is known as the problem of simultaneous E-uni�ation.A substitution # is alled an E-uni�er of terms s and t if the equation s# = t#is a logial onsequene of the theory E. By the E-uni�ation problem we meanthe problem of whether there exists an E-uni�er of two given terms. Ordinaryuni�ation an be viewed as E-uni�ation where E ontains only trivial equationst = t. It is natural to think of an E-uni�er of s and t as a solution to the equations = t in the theory E.9.2 Complexity of E-uni�ationSolving equations is a traditional subjet of all mathematis. Sine any result onsolving equation systems an be viewed as a result on E-uni�ation, it is thuspratially impossible to overview all results on the omplexity of E-uni�ation.Therefore, we restrit this survey to only few ases losely onneted with logiprogramming. The general theory of E-uni�ation may be found e.g. in [Baaderand Siekmann 1994℄.Let E be an equational theory over L and � be a binary funtion symbol inL (written in the in�x form). We all � an assoiative symbol if E ontains theequation x � (y � z) = (x � y) � z, where x; y and z are variables. Similarly, � isalled an AC-symbol (an abbreviation for an assoiative-ommutative symbol) if �is assoiative and, in addition, E ontains x � y = y � x. If � is an AC-symbol andE ontains x � x = x, we all � an ACI-symbol (I stands for idempotene). Also, �is alled an AC1-symbol (or an ACI1-symbol) if � is an AC-symbol (an ACI-symbolrespetively) and E ontains the equation x � 1 = x where 1 is a onstant belongingto L.Theorem 9.1 ([Makanin 1977; Baader and Shulz 1992; Benanav et al. 1987;Ko�sielski and Paholski 1996℄) Let E be an equational theory de�ning a funtionsymbol � in L as an assoiative symbol (E ontains all logial onsequenes of x � (y �z) = (x �y) �z and no other equations). The following upper and lower bounds on theomplexity of the E-uni�ation problem hold: (i) this problem is in 3-NEXPTIME,(ii) this problem is NP-hard.



Complexity and expressive power of logi programming � 47Basially, all algorithms for uni�ation under assoiativity are based on [Makanin1977℄'s algorithm for word equations. The 3-NEXPTIME upper bound is obtainedin [Ko�sielski and Paholski 1996℄.The following theorem haraterizes other popular kinds of equational theories.Theorem 9.2 ([Kapur and Narendran 1986; Kapur and Narendran 1992; Baaderand Shulz 1996℄) Let E be an equational theory de�ning some symbols as one ofthe following: AC-symbols, ACI-symbols, AC1-symbol, or ACI1-symbols (there anbe one or more of these kinds of symbols). Suppose the theory E ontains no otherequations. Then the E-uni�ation problem is NP-omplete.9.3 Complexity of nonreursive logi programming with equalityIn the ase of ordinary uni�ation, there is a simple way to redue solvability of�nite systems of equations to solvability of single equations. However, these twokinds of solvability are not equivalent for some theories: there exists an equationaltheory E suh that the solvability problem for one equation is deidable, whilesolvability for (�nite) systems of equations is undeidable [Narendran and Otto1990℄.Simultaneous E-uni�ation determines deidability of nonreursive logi pro-gramming over E.Theorem 9.3 (impliit in [Dantsin and Voronkov 1997℄) Let E be an equationaltheory. Nonreursive logi programming over E is deidable if and only if the prob-lem of simultaneous E-uni�ation is deidable.An equational theory E is alled NP-solvable if the problem of solvability ofequation systems in E is in NP. For example, the equational theory of �nite setsmentioned above, the equational theory of bags (i.e. �nite multisets) and the equa-tional theory of trees (ontaining only equations t = t) are NP-solvable [Dantsinand Voronkov 1999℄.Theorem 9.4 ([Dantsin and Voronkov 1997; Dantsin and Voronkov 1999℄)Nonreursive logi programming over an NP-solvable equational theory E is inNEXPTIME. Moreover, if E is a theory of trees, or bags, or �nite sets, or any om-bination of them, then nonreursive logi programming over E is also NEXPTIME-omplete.10. CONSTRAINT LOGIC PROGRAMMINGInformally, onstraint logi programming (CLP) extends logi programming by in-volving additional onditions on terms. These onditions are expressed by on-straints, i.e., equations, disequations, inequations et. over terms. The semantisof suh onstraints is prede�ned and does not depend on logi programs.Example 11. We illustrate CLP by the standard example. Suppose that we wouldlike to solve the following puzzle:+ S E N DM O R EM O N E Y



48 � E. Dantsin and T. Eiter and G. Gottlob and A. VoronkovAll these letters are variables ranging over deimal digits 0; 1; : : : ; 9. As usual,di�erent letters denote di�erent digits and S;M 6= 0. This puzzle an be solved bya onstraint logi program over the domain of integers (Z;=; 6=;�;+;�; 0; 1; : : :).Informally, this program an be written as follows.�nd(S;E;N;D; M;O;R;E; M;O;N;E; Y ) 1 � S � 9; : : : ; 0 � Y � 9;S 6= E; : : : ; R 6= Y;1000 � S + 100 � E + 10 �N +D+1000 �M + 100 � O + 10 � R+E =10000 �M + 1000 � O + 100 �N + 10 � E + YThe query �nd(S;E;N;D; M;O;R;E; M;O;N;E; Y ) will be answered by theonly solution + 9 5 6 71 0 8 51 0 6 5 2A struture is de�ned by an interpretation I of a language L in a nonempty setD. For example, we shall onsider the struture de�ned by the standard interpre-tation of the language onsisting of the onstant 0, the suessor funtion symbols and the equality prediate = on the set N of natural numbers. This strutureis denoted by (N;=; s; 0). Other examples of strutures are obtained by replaingN by the sets Z (the integers), Q (the rational numbers), R (the reals) or C (theomplex numbers). Below we denote strutures in a similar way, keeping in mindthe standard interpretation of arithmeti funtion symbols in number sets. Thesymbols � and = stand for multipliation and division respetively. We use k � x todenote unary funtions of multipliation by partiular numbers (of the orrespond-ing domain); xk is used similarly. All strutures under onsideration are assumedto ontain the equality symbol.Let S be a struture. An atom (t1; : : : ; tk) where t1; : : : ; tk are terms in thelanguage of S is alled a onstraint . By a onstraint logi program over S we meana �nite set of rules p(X)  1; : : : ; m; q1(X1); : : : ; qn(Xn)where 1; : : : ; m are onstraints, p; q1; : : : ; qn are prediate symbols not ourringin the language of S, andX;X1; : : : ;Xn are lists of variables. The semantis of CLPis de�ned as a natural generalization of semantis of logi programming, e.g. [Ja�arand Maher 1994℄. If S ontains funtion symbols interpreted as tree onstrutors(i.e. equality of orresponding terms is interpreted as ordinary uni�ation) thenCLP over S is an extension of logi programming. Otherwise, CLP over S an beregarded as an extension of Datalog by onstraints.10.1 Complexity of onstraint logi programmingThere are two soures of omplexity in CLP: omplexity of solving systems of on-straints and omplexity oming from the logi programming sheme. However, in-teration of these two omponents an lead to omplexity muh higher than merelythe sum of their omplexities. For example, Datalog (whih is EXPTIME-omplete)



Complexity and expressive power of logi programming � 49with linear arithmeti onstraints (whose satis�ability problem is in NP for integersand in P for rational numbers and reals) is undeidable.Theorem 10.1 ([Cox et al. 1990℄) CLP over (N;=; s; 0) is r.e.-omplete. Thesame holds for eah of Z, Q, R, and C instead of N.The proof uses the fat that CLP over (N;=; s; 0; 1) allows one to de�ne addi-tion and multipliation in terms of suessor. Thus, diophantine equations an beexpressed in this fragment of CLP.On the other hand, simpler onstraints, namely onstraints over ordered in�nitedomains (of some partiular kind), do not inrease the omplexity of Datalog.Theorem 10.2 ([Cox and MAloon 1993℄) CLP over (Z;=; <; 0;�1;�2; : : :) isEXPTIME-omplete. The same holds for Q or R instead of Z.Deidable fragments of CLP over more omplex strutures are obtained by re-stritions imposed on onstraint logi programs. For example, we onsider a on-servative CLP in whih rules satisfy the restrition: all variables ourring in thebody our in the head.Theorem 10.3 ([Cox et al. 1990℄) Conservative CLP is EXPTIME-omplete overeah of the following strutures:(Q;=;�; <;+;�; k �x; 0; 1; : : :), i.e. linear inequations over the rational numbers;(R;=;�; <;+;�; k � x; 0; 1; : : :), i.e. linear inequations over the reals;(R;=;�; <;+;�;�; =; xk; 0; 1; : : :), i.e. polynomial inequations over the reals;(C;=;+;�;�; =; xk; 0; 1; : : :), i.e. polynomial equations over the omplex num-bers.The proof is based on the known results on the omplexity of algorithms forthe orresponding algebrai strutures [Canny 1988; Renegar 1988; Grigoryev andVorobjov 1988; Ierardi 1989℄. If we allow nonground queries, EXPTIME-ompletenesshas to be replaed by NEXPTIME-ompleteness.A very general formalism for logi programming with onstraints is the onstraintdatabase model introdued by [Kanellakis et al. 1990℄. They de�ne a onstraintdatabase as a quanti�er-free formula over a given mathematial struture (e.g. the�eld of the real numbers). In the simplest ase, this ould be a �nite relationaldatabase, but in general, a onstraint database �nitely represents an in�nite numberof tuples. They investigate the data omplexity of �rst-order logi (FO) and datalogover onstraint databases and prove that for the ase of the real �eld, FO queriesover onstraint databases are in the parallel omplexity lass NC, while datalogqueries are in P. For �nite databases, [Benedikt and Libkin 1996℄ improved the NCupper bound to the parallel lass TC0, whih ontains the languages reognized byonstant depth threshold iruits [Johnson 1990℄.10.2 Expressiveness of onstraintsThere are various di�erent settings in whih expressiveness issues of logi program-ming formalisms with onstraints have been studied. Expressiveness of �rst-order



50 � E. Dantsin and T. Eiter and G. Gottlob and A. Voronkovlogi and of datalog with onstraints is urrently an intensive researh area ofDatabase Theory. Many important papers on this subjet an be found in theproeedings of reent PODS, ICDT or LICS onferenes.3 A detailed and uniformtreatment is beyond the sope of this paper. In this setion, we limit ourselves toa brief desription of a number of relevant referenes, most losely related to thesetting of [Kanellakis et al. 1990℄.A main researh issue was the question whether properties suh as parity thatannot be expressed in FO or strati�ed datalog (without order) ould be expressedin the respetive formalisms extended by onstraints. This question has two dif-ferent interpretations, depending on how we interpret the variables in a query.The ative interpretation restrits the domain of possible values for a variable tothose values that e�etively appear in the database (i.e., to the ative domain).The natural interpretation does not make this restrition and allows a variable tobe interpreted by any value of the underlying domain (e.g. the reals). Note thatthese two interpretations oinide for lassial relational alulus [Hull and Su 1994;Benedikt and Libkin 1997℄.For the ative interpretation of �rst-order onstraint queries, the above questionwas solved independently by [Benedikt et al. 1996℄ and by [Otto and van den Buss-he 1996℄. It was shown that the generi queries expressible by FO with onstraintsare ontained in those expressible by FO plus linear order. In partiular, it followsthat parity is not expressible in the onstraint setting. The expressiveness problemfor datalog with onstraints was resolved in [Benedikt and Libkin 1997℄ by usingRamsey Theory. In analogy to the results for �rst-order logi, it was shown thatdatalog with onstraints is not more expressive than datalog plus linear order.For the natural interpretation, it was shown in [Grumbah and Su 1995℄ that ev-ery reursive query is de�nable by FO with polynomial onstraints over the naturalnumbers. As shown in [Kanellakis and Goldin 1994; Grumbah et al. 1995℄, and[Benedikt et al. 1996℄, similar results do not hold for the reals. In partiular, in[Benedikt et al. 1996℄ it was shown that over the �eld of reals, every generi query of�rst-order logi with onstraints an be rewritten as an equivalent query that usesonly the natural order \<". From this result, together with results in [Paredaenset al. 1998℄, it follows that every generi query of �rst-order logi with onstraintsunder the natural interpretation an be expressed as an equivalent query underthe ative interpretation. Therefore, the same expressivity bound as for the ativeinterpretation holds (see the previous paragraph); in partiular, parity annot beexpressed.In [Benedikt and Libkin 1996℄ and [Benedikt and Libkin 1997℄ it was shownthat for polynomial onstraints over the reals, the ative and the natural semantisatually oinide. This result an be generalized { with some are { to �xpoint logiand datalog [Benedikt and Libkin 1997℄. If funtion symbols are allowed to ourin the bodies of datalog rules, then every reursive query is expressible. However,if a hybrid approah is taken, where the �xpoint omputation is restrited to theative domain of a database, while quanti�ation refers to the natural domain,3PODS=ACM SIGACT-SIGMOD-SIGART Symposium on Priniples of Database Systems;ICDT = International Conferene on Database Theory; LICS = IEEE Symposium on Logi inComputer Siene.
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