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INTRODUCTION

Logic programming is a well-known declarative method of knowledge representa-
tion and programming based on the idea that the language of first-order logic is
well-suited for both representing data and describing desired outputs [Kowalski
1974]. Logic programming was developed in the early 1970’s based on work in au-
tomated theorem proving [Green 1969; Kowalski and Kuehner 1971], in particular,
on Robinson’s resolution principle [Robinson 1965].
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A pure logic program consists of a set of rules, also called definite Horn clauses.
Each such rule has the form head < body, where head is a logical atom and body is
a conjunction of logical atoms. The logical semantics of such a rule is given by the
implication body = head (for a more precise account, see Section 2). Note that the
semantics of a pure logic program is completely independent of the order in which
its clauses are given, and of the order of the single atoms in each rule body.

With the advent of the programming language Prolog [Colmerauer et al. 1973],
the paradigm of logic programming became soon ready for practical use. Many
applications in different areas were and are successfully implemented in Prolog.
Note that Prolog is — in a sense — only an approximation to fully declarative logic
programming. In fact, the clause matching and backtracking algorithms at the core
of Prolog are sensitive to the ordering of the clauses in a program and of the atoms
in a rule body.

While Prolog has become a popular programming language taught in many com-
puter science curricula, research focuses more on pure logic programming and on
extensions thereof. Even in some application areas such as knowledge represen-
tation (a subfield of artificial intelligence) and databases there is a predominant
need for full declarativeness, and hence for pure logic programming. In knowledge
representation, declarative extensions of pure logic programming, such as negation
in rule bodies and disjunction in rule heads, are used to formalize common sense
reasoning. In the database context, the query language datalog was designed and
intensively studied (see [Ullman 1988; Ullman 1989; Ceri et al. 1990]).

There are many interesting complexity results on logic programming. These
results are not limited to “classical” complexity theory but also comprise expres-
siveness results in the sense of descriptive complexity theory. For example, it was
shown that (a slight extension of) datalog cannot just express some, but actually
all polynomially computable queries on ordered databases and only those. Thus
datalog precisely expresses or captures the complexity class P on ordered databases.
Similar results were obtained for many variants and extensions of datalog. It turned
out that all major variants of datalog can be characterized by suitable complexity
classes. As a consequence, complexity theory has become a very important tool for
comparing logic programming formalisms.

This paper surveys various complexity and expressiveness results on different
forms of (purely declarative) logic programming. The aim of the paper is twofold.
First, a broad survey and many pointers to the literature are given. Second, in
order to give a flavor of complexity issues in logic programming, a few fundamen-
tal topics are explained in greater detail, in particular, the basic results on plain
logic programming (Section 4) and some fundamental issues related to descriptive
complexity (Section 7). These two sections are written in a more tutorial style
and contain several proofs, while the other sections are written in a rather succinct
survey style.

Note that the present paper does not consist of an encyclopedic listing of all
published complexity results on logic programming, but rather of a more or less
subjective choice of results. Many interesting results are not mentioned for space
reasons, e.g., results on abductive logic programming [Eiter et al. 1997a; Inoue and
Sakama 1993; Sakama and Inoue 1994b; Marek et al. 1996], on intuitionistic logic
programming [Bonner 1990; Bonner 1997], and on Prolog [Dikovsky 1993]; see also
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other surveys, e.g., [Cadoli and Schaerf 1993; Schlipf 1995a].

The paper is organized as follows. Section 2 defines syntax and semantics of logic
programs, describe datalog and introduce complexity measures. Computational
models and complexity notation are discussed in Section 3. Section 4 presents
the main complexity results on plain logic programming and datalog. Section 5
discusses various semantics for logic programming with negation and respective
complexity results. Section 6 deals with disjunctive logic programming. Section 7
studies the expressive power of datalog and logic programming with complex values.
Section 8 characterizes the complexity of unification. Section 9 deals with logic
programming extended by equality. Finally, Section 10 describes complexity results
on constraint logic programming.

This article is an extended version of [Dantsin et al. 1997].

2. PRELIMINARIES

In this section, we introduce some basic concepts of logic programming. Due to
space reasons, the presentation is necessarily succinct; for a more detailed treat-
ment, see [Lloyd 1987; Apt 1990; Apt and Bol 1994; Baral and Gelfond 1994].

We use letters p, q, ... for predicate symbols, XY, Z, ... for variables, f,g,h,...
for function symbols, and a,b,c,... for constants; a bold face version of a letter
denotes a list of symbols of the respective type. In logic programs, we sometimes

denote predicate and function symbols by arbitrary strings.

2.1 Syntax of logic programs

Logic programs are formulated in a language £ of predicates and functions of non-
negative arity; O-ary functions are constants. A language L is function-free if it
contains no functions of arity greater than 0.

A term is inductively defined as follows: each variable X and each constant c is
a term, and if f is an m-ary function symbol and ¢1,... ¢, are terms, then f(t1,

..,tp) is a term. A term is ground if no variable occurs in it. The Herbrand
universe of L, denoted Upg, is the set of all ground terms which can be formed with
the functions and constants in L.

An atom is a formula p(t1,...,t,), where p is a predicate symbol of arity n and
each t; is a term. An atom is ground if all ¢; are ground. The Herbrand base of a
language £, denoted B, is the set of all ground atoms that can be formed with
predicates from £ and terms from Up.

A Horn clause is a rule of the form

where each A; is an atom. The parts on the left and on the right of “<” are called
the head and the body of the rule, respectively. A rule r of the form Ay <, i.e.,
whose body is empty, is called a fact, and if Aq is a ground atom, then r is called
a ground fact.

A logic program is a finite set of Horn clauses. A clause or logic program is
ground if it contains no variables.

With each logic program P, we associate the language £(P) that consists of the
predicates, functions and constants occurring in P. If no constant occurs in P, we
add some constant to £(P) to have a non-empty domain. Unless stated otherwise,
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L(P) is the underlying language, and we use simplified notation Up and Bp for
Ur(p) and B py, respectively.

A Herbrand interpretation of a logic program P is any subset I C Bp of its
Herbrand base. Intuitively, the atoms in I are true, while all others are false. A
Herbrand model of P is a Herbrand interpretation of P such that for each rule
Ag + Ay,..., Ay in P, this interpretation satisfies the logical formula VX ((A4; A
<+« NAp) = Ap), where X is a list of the variables in the rule.

Propositional logic programs are logic programs in which all predicates have arity
0, i.e., all atoms are propositional ones.

Example 1. Here is an example of a propositional logic program, which captures
knowledge (in a simplified form) about a steam engine equipped with three signal
gauges.

shut_down < overheat
shut_down <+ leak
leak < walve_closed, pressure_loss
valve_closed + signal_1
pressure_loss < signal_2
overheat < signal_3
signal_-1 +
signal_2 +

Informally, the rules of the program tell that the system has to be shut down
if it is in a dangerous state. Such states are connected to causes and signals by
respective rules. The facts signal-1 and signal_2 state that signals #1 and #2,
respectively, are being observed.

Note that if P is a propositional logic program then Bp is a set of propositional
atoms. Any interpretation of P is a subset of Bp.

2.2 Semantics of logic programs

The notions of a Herbrand interpretation and model can be generalized for infinite
sets of clauses in a natural way. Let P be a set (finite or infinite) of ground clauses.
Such a set P defines an operator Tp : 287 — 2BP where 287 denotes the set of all
Herbrand interpretations of P, by

Tp(I) ={Ap € Bp | P contains a rule Ag + Ay,..., Ap
such that {A4;,..., A} €1 holds }.

3 3

This operator is called the immediate consequence operator; intuitively, it yields all
atoms that can be derived by a single application of some rule in P given the atoms
in I.

Since Tp is monotone, by the Knaster-Tarski Theorem it has a least fixpoint,
denoted by T'5°; since, moreover, T'p is also continuous, by Kleene’s Theorem T'5°
is the limit of the sequence T = 0, Tf;"l =Tp(TE), i > 0.

A ground atom A is called a consequence of a set P of clauses if A € Tg® (we
write P = A). Also, we say that a negated ground atom —A is a consequence of
P and write P |= —A if A ¢ Tg°. Note that |= differs from the standard logical
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consequence relation. The semantics of a set P of ground clauses, denoted M (P),
is defined as the following set consisting of atoms and negated atoms:

M(P)={A| P = A}U{-A| P =-4}
=T U{-A|Ae Bp\T}.
Ezample 2. (See Example 1.) For the program P above, we have
TS =0,
T} = {signal_1, signal 2},
T? = T} U {valve_closed, pressure_loss},
T} = T3 U{leak},
TH =T = T3 U {shutdown}.
Thus, the least fixpoint is reached in four steps; e.g., P | shutdown and P |=
—overheat.

For each set P of clauses, T° coincides with the unique least Herbrand model of
P, where a model M is smaller than a model N, if M is a proper subset of N [van
Emden and Kowalski 1976].

The semantics of nonpropositional logic programs is now defined as follows. Let
the grounding of a clause r in a language £, denoted ground(r, L), be the set of
all clauses obtained from r by all possible substitutions of elements of U, for the
variables in r. For any logic program P, we define

ground(P, L) = U ground(r, L)
reP

and we write ground(P) for ground(P, L(P)). The operator Tp : 287 — 287 asso-
ciated with P is defined by Tp = Tyyouna(p)- Accordingly, M(P) = M(ground(P)).

Ezample 3. Let P be the program

pla) <
p(f(z)) < p(z)

Then, Up = {a, f(a), f(f(a)),...} and ground(P) contains the clauses p(a) <+,
p(f(a)) + p(a), p(f(f(a))) < p(f(a)), .... The least fixpoint of Tp is

Tlgo = Tgo:ound(P) = {p(fn(a)) ‘ n 2 0}
Hence, e.g., P |= p(f(f(a))).

In practice, generating ground(P) is often cumbersome, since, even in case of
function-free languages, it is in general exponential in the size of P. Moreover, it
is not always necessary to compute M(P) in order to determine whether P = A
for some particular atom A. For these reasons, completely different strategies of
deriving atoms from a logic program have been developed. These strategies are
based on variants of the famous Resolution Principle of [Robinson 1965]. The
major variant is SLD-resolution [Kowalski and Kuehner 1971; Apt and van Emden
1982].

Roughly, SLD-resolution can be described as follows. A goal is a conjunction of
atoms, and a substitution is a function ¢} that maps variables vy,...,v, to terms
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t1,...,tn. The result of simultaneous replacement of variables v; by terms ¢; in an
expression F is denoted by E4. For a given goal G and a program P, SLD-resolution
tries to find a substitution ¥ such that G logically follows from P. The initial goal
is repeatedly transformed until the empty goal is obtained. Each transformation
step is based on the application of the resolution rule to a selected atom B; from
the goal By,..., By, and a clause Ay < Ay,..., A, from P. SLD-resolution tries
to unify B; with the head Aq, i.e., to find a substitution ¥ such that AqyY = B;9.
Such a substitution  is called a unifier of Ay and B;. If a unifier 1 exists, a most
general such ¥ (which is essentially unique) is chosen and the goal is transformed
into

(Bi,--, Biz1,A1,..., Ap, Big1, ..., Bp)Y.

For a more precise account see [Apt 1990; Lloyd 1987]; for resolution on general
clauses, see e.g., [Leitsch 1997]. The complexity of unification will be dealt with in
Section 8.

2.3 Datalog

The interest in using logic in databases gave rise to the field of deductive databases;
see [Minker 1996] for a comprehensive overview of the development of this area. It
appeared that logic programming is a suitable formalism for querying relational
databases. In this context, the logic programming based query language datalog
and various extensions thereof have been defined.

In the context of logic programming, relational databases are identified with sets
of ground facts p(ey, ..., ¢,). Intuitively, all ground facts with the same predicate
symbol p represent a data relation. The set of all predicate symbols occurring in
the database together with a possibly infinite domain for the argument constants
is called the schema of the database. With each database D, we associate a finite
universe Up of constants which encompasses at least all constants appearing in D,
but possibly more. In the classical database context, Up is often identified with the
set of all constants appearing in D. But in the datalog context, a larger universe
Up may be suitable in case one wants to derive assertions about items that do not
explicitly occur in the database.

To understand how datalog works, let us consider a clarifying example.

Ezample 4. Consider a database D containing the ground facts

father(john, mary

father(joe, kurt
mother(mary, joe
mother(tina, kurt

2NN s

(_
(_
<_
<_

The schema of this database is the set of relation symbols { father, mother} together
with the domain STRING of all alphanumeric strings. With this database, we
associate the finite universe Up = { john, mary, joe, tina, kurt, susan }. Note that
susan does not appear in the database but is included in the universe Up.

The following datalog program (or query) P computes all ancestor relationships
relative to this database:
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parent(X,Y) « father(X,Y)

parent(X,Y) + mother(X,Y)
ancestor(X,Y) < parent(X,Y)
ancestor(X,Y) < parent(X, Z), ancestor(Z,Y")

person(X) +

In the program P, father and mother are the input predicates, also called database
predicates. Their interpretation is fixed by the given input database D. The pred-
icates ancestor and person are output predicates, and the predicate parent is an
auziliary predicate. Intuitively, the output predicates are those which are computed
as the visible result of the query, while the auxiliary predicates are introduced for
representing some intermediate results, which are not to be considered part of the
final result.

The datalog program P on input database D computes a result database R with
the schema {ancestor, person} containing among others the following ground facts:

ancestor(mary, joe),
ancestor(john, joe),
person(john),
person(susan).

The last fact is in R because susan is included as a constant in Up. However, the
fact person(harry) is not in R, because harry is not a constant in the finite universe
Up of the database D.

Formally, a database schema D consists of a finite set Rels(D) of relation names
with associated arities and a (possibly countable infinite) domain Dom(D). For
each database schema D, we denote by HB(D) the Herbrand base corresponding to
the function-free language whose predicate symbols are Rels(D) and whose constant
symbols are Dom(D).

A database (also, database instance) D over a schema D is given by a finite
subset of the Herbrand base D C HB(D) together with an associated finite universe
Up C Dom(D), containing all constants actually appearing in D. By abuse of
notation, we also write D instead of (D,Up). We denote by D|p the extension of
the relation p € Rels(D) in D. Moreover, INST(D) denotes the set of all databases
over D.

A datalog query or a datalog program is a function-free logic program P with
three associated database schemas: the input schema D;,, the output schema D,
and the complete schema D, such that the following is satisfied:

Dom(D;y,) = Dom(D,y:) = Dom(D),
Rels(Dyy) C Rels(D),
Rels(Dout) C Rels(D), and
Rels(Din) N Rels(Dyyy) = 0.
Moreover, each predicate symbol appearing in P is contained in Rels(D) and no

predicate symbol from D;,, appears in a rule head of P (the latter means that the
predicates of the input database are never redefined by a datalog program).
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The formal semantics of a datalog program P over the input schema D,,,, output
schema D,,;, and complete schema D is given by a partial mapping from instances
of D;, to instances of D,,; over the same universe. A result instance of D,,; is
regarded as the result of the query. More formally, Mp : INST(D;;,) — INST(Doyt)
is defined for all instances Dy, € INST(D;,) such that all constants occurring in P
appear in Up, , and maps every such Dy, to the database D,,; = Mp(D;,) such
that Up,,, = Up,, and, for every relation p € Rels(D,ut)

out Y

Doutlp = {a | p(a) € M(ground(P U D,y,, L(P,D;,)))}

where M and ground are defined as in Section 2.2, and L(P, Dy;,) is the language
of P extended by all constants in the universe Up, . For all ground atoms A €
HB(D ,ut), we write PUD;, = Aif A € Mp(D,;,) and write PU D;,, = —A if
A ¢ Mp(Diy).

The semantics of datalog is thus inherited from the semantics of logic program-
ming. In a similar way, the semantics of various extensions of datalog is inherited
from the corresponding extensions of logic programming.

There are three main kinds of complexity connected to plain datalog and its
various extensions [Vardi 1982]:

e The data complexity is the complexity of checking whether D;, UP = A when
datalog programs P are fized, while input databases D;, and ground atoms A
are an input.

e The program complexity (also called expression complezity) is the complexity
of checking whether D;, U P |= A when input databases D, are fized, while
datalog programs P and ground atoms A are an input.

e The combined complexity is the complexity of checking whether D;, UP = A
when input databases D;,, datalog programs P and ground atoms A are an
input.

Note that for plain datalog, as well as for all other versions of datalog considered
in this paper, the combined complexity is equivalent to the program complexity with
respect to polynomial-time reductions. This is due to the fact that with respect to
the derivation of ground atoms, each pair (D;,, P) can be easily reduced to the pair
(Dg, P*), where Dy is the empty database instance associated with a universe of two
constants ¢; and ca, and P* is obtained from PUD;, by straightforward encoding of
the universe Up,, using n-tuples over {c1, 2}, where n = [|Up,, |]. For this reason,
we mostly disregard the combined complexity in the material concerning datalog.
We remark, however, that due to a fixed universe, program complexity may allow
for slightly sharper upper bounds than the combined complexity (e.g., ETIME vs
EXPTIME).

Another approach to measuring complexity of query languages is the parametric
complezity [Papadimitriou and Yannakakis 1997]. In this approach, the complexity
is expressed as a function of some “reasonable” parameters. An example of such
a parameter is the number of variables appearing in the query (interest in this
parameter is motivated by [Vardi 1995], where it is shown that data and program
complexity become close when the number of query variables is bounded).

As for logic programming in general, a generalization of the combined complexity
may be regarded as the main complexity measure. Below, when we speak about
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the complexity of a fragment of logic programming, we mean the following kind of
complexity:

e The complexity of (some fragment of) logic programming is the complexity of
checking whether P |= A for variable both programs P and ground atoms A.

3. COMPLEXITY CLASSES

This section contains definitions of the standard complexity classes encountered
in this survey and provides other related definitions (we follow the notation of
[Johnson 1990]). A detailed exposition of most complexity notions can be found
e.g. in [Papadimitriou 1994].

3.1 Turing machines

Deterministic Turing machines.. Informally, we think of a Turing machine as a
device able to read from and write on a semi-infinite tape, whose contents may be
locally accessed and changed in a computation. Formally, a deterministic Turing
machine (DTM) is defined as a quadruple (S,X, 4, sg), where S is a finite set of
states, Y is a finite alphabet of symbols, ¢ is a transition function, and sy € S is
the initial state. The alphabet ¥ contains a special symbol |, called the blank. The
transition function ¢ is a map

d: SxE¥ — (SU{halt,yes,no}) x ¥ x{-1, 0, +1},

where halt, yes, and no denote three additional states not occurring in S, and -1,
0, +1 denote motion directions. It is assumed here, without loss of generality, that
the machine is well-behaved and never moves off the tape, i.e., d # -1 whenever
the cursor is on the leftmost cell; this can be ensured by proper design of 6.!

Let T be a DTM (X,S5,4,s0). The tape of T is divided into cells containing
symbols of ¥. There is a cursor that may move along the tape. At the start, T
is in the initial state sg, and the cursor points to the leftmost cell of the tape. An
input string I is written on the tape as follows: the first |I| cells co,...,cjrj—1 of
the tape, where |I| denotes the length of I, contains the symbols of I, and all other
cells contain .

The machine takes successive steps of computation according to §. Namely,
assume that 7 is in a state s € S and the cursor points to the symbol ¢ € ¥ on the
tape. Let

d(s,0) = (s',0',d).

Then T changes its current state to s’, overwrites ¢’ on o, and moves the cursor
according to d. Namely, if d = -1 or d = +1, then the cursor moves to the previous
cell or the next one, respectively; if d = 0, then the cursor remains in the same
position.

When any of the states halt, yes or no is reached, T halts. We say that T
accepts the input I if T halts in yes. Similarly, we say that T rejects the input in
the case of halting in no. If halt is reached, we say that the output of T on I is

1Some texts assume that ¥ has a special symbol which marks the left end of the tape. This
symbol can be eliminated by a proper redesign of the machine. For the purpose of this paper, the
simpler model without a left end marker is convenient.
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computed. This output, denoted by T'(I), is defined as the string contained in the
initial segment of the tape which ends before the first blank.

Nondeterministic Turing machines.. Like a DTM, a nondeterministic Turing ma-
chine, or NDTM, is defined as a quadruple (S, 3, A, s¢), where S, X, sg are the same
as before. Possible operations of the machine are described by A, which is no longer
a function. Instead, A is a relation:

A C (SxX)x(SU{halt,yes,no}) x ¥ x {-1, 0, +1}.

A tuple whose first two members are s and o respectively, specifies the action of
the NDTM when its current state is s and the symbol pointed at by its cursor is o.
If the number of such tuples is greater than one, the NDTM nondeterministically
chooses any of them and operates accordingly.

Unlike the case of a DTM, the definition of acceptance and rejection by a NDTM
is asymmetric. We say that a NDTM accepts an input if there is at least one
sequence of choices leading to the state yes. A NDTM rejects an input if no
sequence of choices can lead to yes.

Time and space bounds.. The time expended by a DTM T on an input [ is
defined as the number of steps taken by T on I from the start to halting. If T
does not halt on I, the time is considered to be infinite. For a NDTM T', we define
the time expended by T on I as 1, if T' does not accept I (respectively, computes
no output for I), and otherwise as the minimum over the number of steps in any
accepting (respectively, output producing) computation of T'.

The space required by a DTM T on I is the number of cells visited by the cursor
during the computation on I. In the case of a NDTM, the space is defined as 1,
if T does not accept I (respectively, computes no output for I), and otherwise as
the minimum number of cells visited on the tape over all accepting (respectively,
output producing) computations.

Let T be a DTM or a NDTM. Let f be a function from the positive integers to
themselves. We say that T' halts in time O(f(n)) if there exist positive integers ¢
and ng such that the time expended by T on any input of length n is not greater
than ¢f(n) for all n > ngy. Likewise, we say that T halts within space O(f(n)) if
the space required by 7' on any input of length n is not greater than cf(n) for all
n > ng, where ¢ and ng are positive integers.

Assume that a DTM (NDTM) T halts in time O(n?), where d is a positive
integer. Then we call T a polynomial-time DTM (NDTM) and we say that T
halts in polynomial time. Similarly, if T halts within space O(n?), we call T a
polynomial-space DTM (NDTM).

3.2 Notation for complexity classes

As above, let X be a finite alphabet containing ;. Let ¥’ = ¥\ {_}, and let L C X'*
be a language in ¥, i.e. a set of finite strings over ¥'. Let T be a DTM or a NDTM
such that (7) if € L then T accepts x, and (i7) if ¢ L then T rejects . Then
we say that T' decides L. In addition, if T halts in time O(f(n)), we say that T
decides L in time O(f(n)). Similarly, if T halts within space O(f(n)), we say that
T decides L within space O(f(n)).

Observe that if f(n) is a sublinear function, then a Turing machine which halts
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within space f(n) can not read the whole input string, nor produce a large output.
To remedy this problem, a Turing machine T' is equipped with a read-only input-
tape and a write-only output tape besides the work tape, which contain the input
string and the output computed by T, respectively. The time and space requirement
of T is defined as above, where only the space used on the work tape counts. In
case T halts within sublinear time f(n), random access to the input symbols on
the input-tape is provided using a further tape which serves as an index register.
In the following, we assume that multi-tape machines as described may be used for
deciding languages within sublinear bounds.

Let f be a function on positive integers. We define the following sets of languages:

TIME(f(n)) = {L | L is decided by some DTM in time O(f(n))},
NTIME(f(n)) = {L | L is decided by some NDTM in time O(f(n))},
SPACE(f(n)) = {L | L is decided by some DTM within space O(f(n))},

NSPACE(f(n)) = {L | L is decided by some NDTM within space O(f(n))}.

All these sets are examples of complexity classes, other examples will be given
below. Note that some functions f can lead to complexity classes with unnatural
properties (see [Papadimitriou 1994] for details). However, for “normal” functions
such as polynomials, exponents or logarithms, the corresponding complexity classes
are “normal” too.

Complexity classes of most interest are not classes corresponding to particular
functions but their unions such as, for example, the union (J,, TIME(n?) taken
over all polynomials of the form n?. The following abbreviations are used to denote
main complexity classes of such a kind:

P = Uy TIME(n?),

NP = s NTIME(n%)
EXPTIME = {J,., TIME(2""),
NEXPTIME = |J,o, NTIME(2""),
PSPACE = ., SPACE(n?),
EXPSPACE = J,., SPACE(2"™"),
L = SPACE(logn)

NL = NSPACE(logn).

3

The list contains no abbreviations for the nondeterministic counterparts of PSPACE
and EXPSPACE because J,5 o NSPACE(n?) coincides with the class PSPACE and

Uaso NSPACE(2"") coincides with the class EXPSPACE [Savitch 1970].

Complementary classes.. Any complexity class C has its complementary class
denoted by co-C and defined as follows. For every language L in ¥', let L denote
its complement, i.e. the set £’ \ L. Then co-C is {L | L € C}.
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The polynomial hierarchy.. To define the polynomial hierarchy classes, we need
to introduce oracle Turing machines. Let A be a language. An oracle DTM T4,
also called a DTM with oracle A, can be thought of as an ordinary DTM augmented
by an additional write-only query tape and additional three states query, € and ¢&.
When T4 is not in the state query, the computation proceeds as usual (in addition,
T4 can write on the query tape). When T4 is in query, 7 changes this state to
€ or ¢ depending on whether the string written on the query tape belongs to A
or not; furthermore, the query tape is instantaneously erased. Like the case of an
ordinary DTM, the expended time is the number of steps and the required space
is the number of cells used on the tape and the query tape. An oracle NDTM is
defined as the same augmentation of a NDTM.

Let C be a set of languages. We define complexity classes P¢ and NP as follows.
For a language L, we have L € P¢ (or L € NPC) if and only if there is some language
A € C and some polynomial-time oracle DTM (or NDTM) T4 such that T4 decides
L.

The polynomial hierarchy consists of classes AP, ¥ and II¥ defined by the fol-
lowing equalities:

AP =3P =TI = P,

p _ pxP
A =P,
P =?
Y = NP~

7, = co-5, 4,
for all i > 0. The class PH is defined as [J;5q X}

Ezponential time.. Besides EXPTIME and NEXPTIME, we mention in this paper
some other classes that characterize computation in exponential time. The classes
ETIME and NETIME are defined as

|J TIME(@2"") and | ] NTIME(2"")
d>0 d>0

respectively; they capture linear exponents instead of polynomial exponents. The
class EXPTIME can be viewed as 1-EXPTIME where 1 means the first level of
exponentiation. Double exponents, triple exponents, etc. are captured by the classes
2-EXPTIME, 3-EXPTIME etc. defined as

nd "d
U TIME@?" ). | TIME@2® ), ...
d>0 d>0

Their nondeterministic counterparts are defined in the same way but with the
replacement of TIME(f(n)) by NTIME(f(n)). The class ELEMENTARY is defined
to be the union of classes k-EXPTIME over all & > 0.

3.3 Reductions
Let Iy and Ly be languages. Assume that there is a DTM R such that

(1) For all input strings x, we have # € L; if and only if R(z) € L, where R(x)
denotes the output of R on input .

(2) R halts within space O(logn).
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Then R is called a logarithmic-space reduction from L; to Lo and we say that L;
is reducible to Ls.

Let C be a set of languages. A language L is called C-hard if any language L' in C
is reducible to L. If L is C-hard and L € C then L is called C-complete or complete
for C.

Besides the above notion of a reduction, complexity theory also considers many
other kinds of reductions, for example, polynomial-time many-one reductions or
polynomial-time Turing reductions (which are both weaker, i.e., more liberal kinds
of reductions). In this paper, unless otherwise stated, a reduction means a loga-
rithmic-space reduction. We note that in several cases, results that we shall review
have been stated for polynomial-time many-one reductions, but the proofs establish
that they hold under logarithmic-space reduction.

Sometimes reductions are considered that are tighter than logarithmic-space re-
ductions. Since such reductions are only of minor importance to this paper, they
will be shortly described in appropriate places below. Note, however, that in case
of such tight reductions, as well as in case of computation with sublinear resource
constraints, the particular representation of the problem input as a string I may be
a matter of concern. However, for most of the problems that we describe, and in
particular those having complexity at least P, this is not an issue; any “reasonable”
representation is appropriate, see e.g. [Johnson 1990].

4. COMPLEXITY OF PLAIN LOGIC PROGRAMMING

In this section, we survey some basic results on the complexity of plain logic pro-
gramming. This section is written in a slightly more tutorial style than the follow-
ing sections in order to help both readers not familiar with logic programming and
readers not too familiar with complexity theory to grasp some key issues relating
complexity theory and logic programming.

4.1 Simulation of deterministic Turing machines by logic programs

Let T be a DTM. Consider the computation of T on an input string I. The purpose
of this section is to describe a logic program L and a goal G such that L |= G if
and only if T accepts I in at most N steps.

The transition function § of a DTM with a single tape can be represented by a
table whose rows are tuples ¢ = (s, 0, s',0',d). Such a tuple ¢ expresses the following
if-then-rule:

if at some time instant 7 the DTM is in state s, the cursor points to cell number
7, and this cell contains symbol o

then at instant 7 + 1 the DTM is in state s’, cell number 7 contains symbol o',
and the cursor points to cell number 7 + d.

It is possible to describe the complete evolution of a DTM T on input string
from its initial configuration at time instant 0 to the configuration at instant IV by
a propositional logic program L(T,I,N). To achieve this, we define the following
classes of propositional atoms:

symbol [r, 7] for 0 <7 < N,0< 7w <N and a € ¥. Intuitive meaning: at instant
7 of the computation, cell number 7 contains symbol a.
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cursor[r,n] for 0 < 7 < N and 0 < «# < N. Intuitive meaning: at instant 7 the
cursor points to cell number 7.
stateg[r] for 0 <7 < N and s € S. Intuitive meaning: at instant 7 the DTM T is
in state s.
accept Intuitive meaning: T has reached state yes.
Let us denote by I the k-th symbol of the string I = In---Ij;—;. The initial

configuration of T on input [ is reflected by the following initialization facts in
L(T,I,N):

symbol [0, 7] + for 0 <7 < |I|, where I, = 0o
symbol [0, 7] for [I| <7 <N
cursor[0,0] «
states, [0]

Each entry (s,0,s',0',d) of the transition table § is translated into the following
propositional Horn clauses, which we call the transition rules. The clauses are
asserted for each value of 7 and 7 such that 0 <7 < N,0 <7 < N, and 0 < 7 +d.

symbol, [T + 1, 7] < states[7], symbol, [T, 7], cursor|r, «]
cursor[t + 1,7 + d] + states[7], symbol |7, 7], cursor|T, 7]
states [T + 1] « states[T], symbol [T, 7], cursor[T, 7]

These clauses almost perfectly describe what is happening during a state transi-
tion from an instant 7 to an instant 7+ 1. However, it should not be forgotten that
those tape cells which are not changed during the transition keep their old values
at instant 7 + 1. This must be reflected by what we term inertia rules. These rules
are agserted for each time instant 7 and tape cells numbers 7, 7/, where 0 < 7 < N,
0 <7 < 7w’ <N, and have the following form:

symbol [T+ 1, 7] « symbol [T, 7], cursor[T, ']
symbol [T + 1,7']  symbol [T, 7'], cursor|r, ]

Finally, a group of clauses termed accept rules derives the propositional atom
accept, whenever an accepting configuration is reached.

accept < stateges|T] for0 <t <N.

Denote by L the logic program L(T, I, N). Note that TP = () and that T} contains
the initial configuration of T' at time instant 0. By construction, the least fixpoint
Tt° of L is reached at Té\’”, and the ground atoms added to 77,2 < 7 < N+1, i.e.,
those in Tf \ T} ', describe the configuration of T on the input I at the time instant
7 — 1. The fixpoint T7° contains accept if and only if an accepting configuration
has been reached by T in at most IV computation steps. We thus have:

Lemma 4.1 L(T,I,N) [ accept if and only if the DTM T accepts the input string
I within N steps.

A somewhat different simulation of deterministic multi-tape Turing machines by
logic programs was given by [Itai and Makowsky 1987]. These authors also note
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that simulating Turing machines by Horn clause theories, and, more generally, by
logical deduction has a long history:

“The idea of simulating Turing machines by logical deduction goes back to Tur-
ing’s original paper [Turing 1937]. Turing introduced his abstract machine concept
at a time when computations were considered to be something mechanical, and felt
it was necessary to show that logical deduction can be reduced to such a mechanistic
model of computation. However, this reduction uses full first-order logic. A reduc-
tion using only universal Horn formulas (with function symbols) appears buried in
the exposition of [Scholz and Hasenjaeger 1961]. It also forms the basis of the the-
ory of formal systems, as presented by Smullyan in his thesis [Smullyan 1961]. The
idea of coding Turing machines by logic Horn formulas appears explicitly in [Biichi
1962] and has been used since 1971 in a series of papers by Aandera, Bdrger, and
Lewis [Aanderaa and Bérger 1979; Borger 1971; Bdrger 1974; Bérger 1984; Lewis
1979] to obtain undecidability and complezity results. Since then, various authors
have rediscovered that such a reduction is possible and have used this observation to
show that logic programming is computationally complete. The earliest reference we
have found that states this result explicitly is [Andréka and Németi 1978]; a slightly
weaker result appears in [Tarnlund 1977].”

Yet another translation and further references can be found in the recent book
[Borger et al. 1997].

4.2 Propositional logic programming

The simulation of a DTM by a propositional logic program, as described in Sec-
tion 4.1 is almost all we need in order to determine the complexity of propositional
logic programming, i.e., the complexity of deciding whether P = A holds for a
given logic program P and ground atom A.

Theorem 4.2 (implicit in [Jones and Laaser 1976; Vardi 1982; Immerman 1986])
Propositional logic programming is P-complete.

PROOF. (1) Membership. It is obvious that the least fixpoint Tp° of the op-
erator Tp, given program P, can be computed in polynomial time: the number
of iterations (i.e. applications of Tp) is bounded by the number of rules plus
one. Each iteration step is clearly feasible in polynomial time.

(2) Hardness. Let A be a language in P. Thus A is decidable in ¢(n) steps
by a DTM T for some polynomial q. Transform each instance I of A to the
corresponding logic program L(T,I,q(|I])) as described in Section 4.1. By
Lemma 4.1, L(T,I,q(|I|)) = accept if and only if T has reached an accepting
state within ¢(n) steps. The translation from I to L(T,I,q(]I])) is very simple
and is clearly feasible in logarithmic space, since all rules of L(T,I,q(|I])) can
be generated independently of each other and each has size logarithmic in |I;
note that the numbers 7 and = have O(log|I|) bits, while all other syntactic
constituents of a rule have constant size. We have thus shown that every lan-
guage A in P is logspace reducible to propositional logic programming. Hence,
propositional logic programming is P-hard.
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Obviously, this theorem can be proved by simpler reductions from other P-
complete problems, for example from the monotone circuit value problem (see
[Papadimitriou 1994]). However, our proof from first principles provides a basic
framework from which further results will be derived by slight adaptations in the
sequel.

Notice that in a standard programming environment, propositional logic pro-
gramming is feasible in linear time by using appropriate data structures, as follows
from results about deciding Horn satisfiability [Dowling and Gallier 1984; Ttai and
Makowsky 1987]. This does not mean that all problems in P are solvable in linear
time; first, the model of computation used in [Dowling and Gallier 1984] is the
RAM machine, and second logarithmic-space reductions may in general polynomi-
ally increase the input.

Theorem 4.2 holds under stronger reductions. In fact, it holds under the require-
ment that the logspace reduction is also a polylogtime reduction (PLT). Briefly,
amap f : I — II' from a problem II to a problem II' is a PLT-reduction, if
there are polylogtime deterministic Turing machines N and M such that for all w,
N(w) = |f(w)| and for all w and n, M (w,n) = Bit(n, f(w)), i.e., the n-th bit of
f(w) (see e.g. [Veith 1998] for details). (Recall that N and M have separate input
tapes whose cells can be accessed by use of an index register tape.) Since the above
encoding of a DTM into logic programming is highly regular, it is easily seen that
it is a PLT reduction.

Syntactical restrictions on programs lead to completeness for classes inside P.
Let LP(k) denote logic programming where each clause has at most k atoms in the
body. Then, by results in [Vardi 1982; Immerman 1987], one easily obtains:

Theorem 4.3 LP(1) is NL-complete.

PROOF. (Sketch)

(1) Membership The membership part can be established by reducing this prob-

lem to graph reachability, i.e., given a directed graph G = (V, E) and vertices
s,t € V, decide whether t is reachable from s. Since graph reachability is in
NL and NL is closed under logarithmic-space reductions (i.e., reducibility of a
problem A to a problem B in NL implies that A is in NL), it follows that LP(1)
is in NL.
For a program P from LP(1), the question whether P |= A is equivalent to
the node true (representing truth) is reachable from the node A in the directed
graph G = (V, E) as follows. The vertex set V is the set of atoms in P plus
true; the edge set E contains an edge (A, B) directed from A to B for every
rule A + B in P, and an edge (A, true) for every fact A « in P. Clearly, the
graph G is constructible from P in logarithmic space. Thus, the problem is in
NL.

(2) Hardness Conversely, graph reachability is easily transformed into P |= A for
a program in LP(1). Since graph reachability is NL-complete (thus NL-hard)
the result is established.



18 . E. Dantsin and T. Eiter and G. Gottlob and A. Voronkov

Observe that the above DTM encoding can be easily modified to programs in
LP(2). Hence, LP(2) is P-complete.

Further syntactical restrictions on LP(1) yield problems complete for L (of course,
under reductions stronger than logspace reductions), which we omit here.

4.3 Complexity of datalog

Let us now turn to datalog, and let us first consider the data complexity. Grounding
P on an input database D yields polynomially many clauses in the size of D; hence,
the complexity of propositional logic programming is an upper bound for the data
complexity. The same holds for the variants of datalog we shall consider in the
sequel. The complexity of propositional logic programming is also a lower bound.
Thus,

Theorem 4.4 (implicit in [Vardi 1982; Immerman 1986]) Datalog is data com-
plete for P.

In fact, this result follows from the proof of Theorem 7.2 below. An alternative
proof of P-hardness can be given by writing a simple datalog meta-interpreter for
propositional LP(k), where k is a constant.

Represent rules Ag < Aq,..., A;, where 0 < i < k, by tuples (4g,...,4;) in an
(i + 1)-ary relation R; on the propositional atoms. Then, a program P in LP(k)
which is stored this way in a database D(P) can be evaluated by a fixed datalog
program Py (k) which contains for each relation R;, 0 < i < k, a rule

T(XO) « T(Xl)a v aT(Xi)aRi(XOa v 3Xl)

Here T'(z) intuitively means that atom z is true. Then, P |= A just if Py U
P(D) | T(A). P-hardness of the data complexity of datalog is then immediate
from Theorem 4.2.

The program complexity is exponentially higher.

Theorem 4.5 (implicit in [Vardi 1982; Immerman 1986]) Datalog is program
complete for EXPTIME.

PROOF. (Sketch)

(1) Membership. Grounding P on D leads to a propositional program P’ whose
size is exponential in the size of the fixed input database D. Hence, by Theo-
rem 4.2, the program complexity is in EXPTIME.

(2) Hardness. In order to prove EXPTIME-hardness, we show that if a DTM T
halts in less than N = 27" steps on a given input I where |I| = n, then T can
be simulated by a datalog program over a fixed input database D. In fact, we
use Dy, i.e., the empty database with the universe U = {0, 1}.

We employ the scheme of the DTM encoding into logic programming from above,
but use the predicates symbol, (X,Y), cursor(X,Y) and states(X) instead of the
propositional letters symbol,[X,Y], cursor[X,Y] and states[X] respectively. The
time points 7 and tape positions 7 from 0 to 2™ — 1, m = n*, are represented by
me-ary tuples over U, on which the functions 7 + 1 and 7 + d are realized by means
of the successor Succ™ from a linear order <™ on U™.
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For an inductive definition, suppose Succ'(X,Y), First'(X), and Last'(X) tell
the successor, the first, and the last element from a linear order <’ on U?, where
X and Y have arity i. Then, use rules

Succ™(2,X,2,Y) « Succ'(X,Y)

Succ™(Z2,X,2',Y) « Succ' (Z, z", Last'(X),Fz'rsti(Y)
Fzrst”'l(Z X) « First' (Z), Fzrst’(X)
Last™(Z,X) « Last'(z), Last'(X)

Here Succ'(X,Y), First'(X), and Last'(X) on U' = U must be provided. For
our reduction, we use the usual ordering 0 <! 1 and provide those relations by the
ground facts Suce' (0,1), First' (0), and Last' (1).

The initialization facts symbol, [0, 7] are readily translated into the datalog rules

symbol (X, t) « First™(X),

where t represents the position 7, and similarly the facts cursor{0, 0] and states, [0].
The remaining initialization facts symbol [0, 7], where |I| < 7 < N, are translated
to the rule

symbol (X,Y) <« First™(X), <™(t,Y)

where t represents the number |I|; the order <™ is easily defined from Succ™ by
two clauses

<M(X,X) « X

<MX,Y) « Succ™(X,Z), <™ (Z,Y)

The transition and inertia rules are easily translated into datalog rules. For re-
alizing 7 + 1 and 7 + d, use in the body atoms Succ™(X,X'). For example, the
clause

symbol,, [T + 1,7 < states[T], symbol [T, 71|, cursor(t, ]
is translated into
symbol, (X', Y)  states(X), symbol (X,Y), cursor(X,Y), Succ™ (X, X").

The translation of the accept rules is straightforward.

For the resulting datalog program P’, it holds that P’ U Dy = accept if and only
if T accepts input [ in at most N steps. It is easy to see that P’ can be constructed
from T and I in logarithmic space. Hence, datalog has EXPTIME-hard program
complexity.

Note that straightforward simplifications in the construction are possible, which
we omit here, as part of it will be reused below. O

Instead of using a generic reduction, the hardness part of this theorem can also
be obtained by applying complexity upgrading techniques [Papadimitriou and Yan-
nakakis 1986; Balcazar et al. 1992]. We briefly outline this in the rest of this section.

This technique utilizes a conversion lemma [Balcdzar et al. 1992] of the form “If
IT X-reduces to I, then s(IT) Y-reduces to s(IT')”; here s(II) is the succinct variant
of II, where the instances I of IT are given by a Boolean circuit C7 which computes
the bits of I (see [Balcazar et al. 1992] for details). The strongest form of the
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conversion lemma appears in [Veith 1998], where X is PLT and Y is monotone pro-
jection reducibility [Immerman 1987]. Informally, monotone projection reductions
are reductions that transform a relational data structure A into a relational data
structure B such that each tuple in B is the projection of a single tuple in A. This
tuple is determined by a quantifier-free formula using just equality and successor.
Note that this reduction is uniform in the sense that the formula is the same for all
tuples of A. Monotone projection reductions are computable in logarithmic time,
which means that the size of B and the value of each bit position in data structure
B can determined in time logarithmic in the size of A on a RAM. They are tighter
than both PLT reductions and first-order reductions where arbitrary first-order for-
mulae (and not just projections) can be used in the transformations. For details,
see [Immerman 1987].

The conversion lemma gives rise to an upgrading theorem, which has been subse-
quently sharpened [Balcazar et al. 1992; Eiter et al. 1994; Gottlob et al. 1995; Veith
1998] and is stated below in the strongest form of [Veith 1998]. For a complexity
class C, denote long(C) = {long(L) | L € C}, where long(L) = Uy;,(nye1£10: 1},
i.e., contains all strings of length n such that n, in binary and with the leading 1
omitted, belongs to L.

Theorem 4.6 Let C; and Co be complexity classes such that long(C1) C Co. If
IT is hard for Co under PLT-reduction, then s(Il) is hard for C; under monotone
projection reduction.

We remark that since monotone projection reduction is very weak, a special en-
coding of succinct problems is necessary. From the observations in Section 4.2, we
then obtain that s(LP(2)) is EXPTIME-hard under monotone projection reductions,
where each program P is stored in the database D(P), which is represented by a
binary string in the standard way.

s(LP(2)) can be reduced to evaluating a datalog program P* over a fixed database
as follows. From a succinct instance of LP(2), i.e., a Boolean circuit Cy for I =
D(P), Boolean circuits C; for computing R;, 0 < 4 < 2 can be constructed which
use negation merely on input gates.

Each such circuit C;(X) can be simulated by straightforward datalog rules. For
example, an A-gate g; with input from gates g; and g is described by a rule
9:(X) + ¢;(X), gr(X), and an V-gate g; is described by the rules ¢;(X) «+ g;(X)
and ¢;(X) « gx(X). Observe that Boolean circuits with arbitrary use of negation
can be easily simulated in stratified datalog [Kolaitis and Papadimitriou 1991] or
disjunctive datalog [Eiter et al. 1997].

The desired program P* comprises the rules for the Boolean circuits C; and the
rules of the meta-interpreter Pys7(k), which are adapted for a binary encoding of the
domain Up(py of the database D(P) by using binary tuples of arity [log|Upp)!].
This construction is feasible in logarithmic space, from which EXPTIME-hard pro-
gram complexity of datalog follows. We refer the reader to [Eiter et al. 1994; Eiter
et al. 1997; Gottlob et al. 1995] for the technical details.
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4.4 Logic programming with functions

Let us see what happens if we allow function symbols in logic programs. In this
case, entailment of an atom is no longer decidable. To prove it, we can, for example,
reduce Hilbert’s Tenth Problem to query answering in full logic programming. Nat-
ural numbers can be represented using the constant 0 and the successor function s.
Addition and multiplication are expressed by the following simple logic program:

X+0=X «
X+sYV)=s(Z2) «+ X+Y =2
Xx0=0 «

Xxs(Y)=Z « XxY=UU+X=2

Now, undecidability of full logic programming follows from the undecidability
of diophantine equations [Matiyasevi¢ 1970]. More precisely, it shows that full
logic programming can express r.e.-complete languages. On the other hand, the
least fixpoint T3° of any logic program P is clearly a r.e. set. This shows r.e.-
completeness of logic programming.

Theorem 4.7 ([Andréka and Németi 1978; Tdrnlund 1977]) Logic programming
is r.e.-complete.?

Of course, this theorem may as well be proved by a simple encoding of Turing
machines similar to the encoding in the proof of Theorem 4.5 (use terms f"(c),
n > 0, for representing cell positions and time instants). It is interesting to note
that [Smullyan 1956] asserted —quite some time before the first proposals to logic
programming — a closely related result which essentially says that, in our terms,
the minimal model semantics of logic programming over arithmetic yields the r.e.
sets.

Theorem 4.7 was generalized in [Voronkov 1995] for more expressive S-semantics
and C-semantics [Falaschi et al. 1989]. On the other hand, it was sharpened to syn-
tactical classes of logic programs. E.g., [Tarnlund 1977] used binary Horn clause
programs to simulate a universal Turing machine. By a transformation from bi-
nary Horn clause programs, [Sebelik and Stépanek 1982] showed that a class of
logic programs called stratifiable (in a sense different from the one in Section 5.1)
is r.e.-complete. Furthermore, [Stépanek and Stépankova 1986] proved that (an
inessential variant of) PRIMLOG (see [Markusz and Kaposi 1982]) is r.e.-complete,
which restricts considerably the size of AND- and OR-branching and allows to use
recursion explicitly in only a single clause of particular type. The proof shows that
all p-recursive functions can be expressed within this fragment.

A natural decidable fragment of logic programming with functions are nonrecur-
sive programs, in which intuitively no predicate depends syntactically on itself (see
Section 5.1 for a definition). Their complexity is characterized by the following
theorem.

2In the context of recursion theory, reducibility of a language (or problem) L1 to Lo is understood
in terms of a Turing reduction, i.e., L1 can be decided by a DTM with oracle Lg, rather than
logarithmic-space reduction.
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Theorem 4.8 ([Dantsin and Voronkov 1997]) Nonrecursive logic programming is
NEXPTIME-complete.

The membership is established by applying SLD-resolution with constraints. The
size of the derivation turns out to be exponential. NEXPTIME-hardness is proved
by reduction from the tiling problem for the square 2" x 2.

Some other fragments of logic programming with function symbols are known
to be decidable too. For example, the following result was established in [Shapiro
1984], by using a simulation of alternating Turing machines by logic programs and
vice versa.

Theorem 4.9 ([Shapiro 1984]) Logic programming with function symbols is
PSPACE-complete, if each rule is restricted as follows: the body contains only one
atom, the size of the head is greater than or equal to that of the body, and the number
of occurrences of any variable in the body is less than or equal to the number of its
occurrences in the head.

The simulation assumed that the input to an alternating Turing machine is writ-
ten on the work-tape. Extending the simulation by a distinguished input-tape,
[Stepanek and Stépankova 1986] showed that the class of logic programs having
logarithmic (respectively, polynomial) goal-size complexity is P-complete (respec-
tively, EXPTIME-complete). Here, the goal-size complexity is the maximal size of
any subgoal (in terms of symbols) occurring in the proof tree of a goal. Related no-
tions of complexity and normal forms of programs, defined in terms of computation
trees [Stépankova and Stépanek 1984], are studied in [Ochozka et al. 1988].

We refer to [Blair 1982; Fitting 1987a; Fitting 1987b] for further material on
recursion-theoretic issues related to logic programming.

4.5 Further issues

Besides data and combined complexity, many other complexity aspects of logic
program have been investigated, in particular in the context of datalog. We discuss
here some of issues that have received broad attention.

Sirups.. A strongly restricted class of logic programs often considered in the
literature is the class of single rule programs (sirups) or programs consisting of one
recursive rule and some nonrecursive (initialization) rules or atoms.

For a long time, the decidability of the following problem was open: Given an
LP P (with function symbols) that consists of a unique recursive rule and a set of
ground atoms, and given a ground goal G, does it hold that P = G? This problem
is equivalent to the Horn clause implication problem, i.e., checking whether the
universal closure of a Horn clause C; logically implies the universal closure of a
Horn clause C. The problem was shown to be undecidable in [Marcinkowski and
Pacholski 1992]. Some decidable special cases of this problem were studied in
[Gottlob 1987; Leitsch and Gottlob 1990; Leitsch 1990].

Several undecidability results of inference and satisfiability problems for various
restricted forms of sirups with non-ground atoms or with nonrecursive rules can be
found in [Devienne 1990; Devienne et al. 1993; Hanschke and Wiirtz 1993; Devienne
et al. 1996].
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Datalog sirups are EXPTIME complete with respect to program and combined
complezity; this remains true even for datalog sirups consisting of a unique rule
and no facts [Gottlob and Papadimitriou 1999]. It follows that deciding whether
(the universal closure of) a datalog clause logically implies (the universal closure
of) another datalog clause is EXPTIME complete, too. The problem of evaluating a
nonrecursive Horn clause (with or without function symbols) over a set of ground
facts is NP-complete [Chandra and Merlin 1977] (even for a fixed set of ground
facts). (Here by “evaluation”, we mean determining whether a rule fires.) This
problem is computationally equivalent to the problem of evaluating a Boolean con-
junctive query over a database, i.e., a datalog clause whose body contains only input
predicates, and also to the well known NP-complete clause subsumption problem
[Garey and Johnson 1979] (see below). The parametric complexity of conjunctive
queries is studied on [Papadimitriou and Yannakakis 1997].

With respect to data complezity, datalog sirups are complete for P, and thus
in general inherently sequential, cf. [Kanellakis 1988]. There are, however, many
interesting special cases in which sirup queries can be evaluated in parallel.

Inside P and parallelization issues.. In [Ullman and van Gelder 1988] the polyno-
mial fringe property is studied. Roughly, a datalog program P has the polynomial
fringe property if it is guaranteed that for each database D and goal G such that
PUD |= G, there is a derivation tree whose fringe (i.e., set of leaves) is of poly-
nomial size. The data complexity of datalog programs with the polynomial fringe
property is in LOGCFL, which is the class of all languages (that is, problems) that
are reducible in logarithmic space to a context-free language. LOGCFL is a subclass
of NC?, and thus contains highly parallelizable problems [Johnson 1990]; further-
more, programs whose fringe is superpolynomial (i.e., O(210gk ™)) are in NC [Ullman
and van Gelder 1988; Kanellakis 1988]. Here NC? is the second level of the NC-
hierarchy of complexity classes NC'. These classes are defined by families of uniform
Boolean circuits of depth O(log’n) [Johnson 1990]. An example of programs with
the polynomial fringe property are linearly recursive sirups; however, there also
exist nonlinear sirups that are not equivalent to any linear sirup and are still in NC
[Afrati and Cosmadakis 1989].

In [Kanellakis 1988], the polynomial (superpolynomial) tree-size property for width
k is considered. Roughly, a datalog program has this property if every derivable
atom can be obtained by a width-k derivation tree of polynomial (superpolyno-
mial) size. A width-k derivation tree is a generalized derivation tree, where each
node may represent up to k& ground atoms. For width ¥ = 1, the polynomial
(resp., superpolynomial) tree-size property coincides with the polynomial (resp.,
superpolynomial) fringe property; however, for higher widths, the former properly
generalizes the latter. [Kanellakis 1988] shows that the data complexity of datalog
programs having the polynomial (resp., superpolynomial) tree-size property for any
fixed constant width is in LOGCFL (resp., in NC).

The hypergraph (V, E) associated with a Horn clause or conjunctive query has as
set V of vertices the set of variables occurring in the rule; its set E of hyperedges
contains for each atom A in the rule body a hyperedge consisting of the variables
occurring in A. If the hypergraph associated with a nonrecursive rule is acyclic,
the evaluation problem is feasible in polynomial time [Yannakakis 1981] and is
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actually complete for LOGCFL and thus highly parallelizable [Gottlob et al. 1998].
For generalizations of this result to various types of nearly acyclic hypergraphs,
see [Gottlob et al. 1999a].

While determining whether a datalog program is parallelizable, i.e., has data
complexity in NC, is in general undecidable [Ullman and van Gelder 1988; Gaifman
et al. 1987], the problem has been completely resolved by [Afrati and Papadimitriou
1993] for an interesting and relevant class of sirups called simple chain queries.
These are logic programs with a single recursive rule whose right hand side consists
of binary relations forming a chain. An example of such a rule, involving a database
predicate a, is

s(X,Y) < a(X, Z1),8(Z1, Z2),8(Z2, Z3),a(Z3,Y ).

Y Y

[Afrati and Papadimitriou 1993] show that (unless P = NC) simple chain queries
are either complete for P or in NC. They give a precise characterization of the
P-complete and NC-computable simple chain queries.

Boundedness.. Many papers have been devoted to the decidability of the bound-
edness problem for datalog programs. A datalog program P is bounded, if there
exists a constant k such that for all databases D, the number of iteration steps
needed in order to compute the least fixed point M(ground(P U D, L(P, D))) is
bounded by k and is thus independent of D (it depends on P only). Boundedness
is an interesting property, because as shown in [Ajtai and Gurevich 1994], a dat-
alog program is bounded if and only if it is equivalent to a first-order query. For
important related results on the equivalence of recursive and nonrecursive datalog
queries, see [Chaudhuri and Vardi 1997]. The undecidability of the boundedness
for general datalog programs was shown in [Gaifman et al. 1987], for linear recur-
sive queries in [Vardi 1988], and for sirups in [Abiteboul 1989]. There is a very
large number of papers discussing the decidability of boundedness issues, both for
syntactic restrictions of datalog programs or sirups and for variants of boundedness
such as uniform boundedness. Good surveys of early work are given in [Kanellakis
1988] and in [Kanellakis 1990]. The following is an incomplete list of papers where
important results and further relevant references on decidability issues of bounded-
ness or uniform boundedness can be found: [Hillebrand et al. 1995; Marcinkowski
1996b; Marcinkowski 1996a; Marcinkowski 1999]. Sufficient conditions for bound-
edness were given in [Minker and Nicolas 1983; Sagiv 1985; Ioannidis 1986; Vardi
1988; Naughton 1989; Cosmadakis 1989; Naughton and Sagiv 1987; Naughton and
Sagiv 1991].

Containment, equivalence, and subsumption.. Issues that have been studied re-
peatedly in the context of query optimization are query equivalence and contain-
ment. Query containment is the problem, given two datalog programs P; and P,
having the same input schema D;,, and output schema D ,,;, whether for every input
database D, , the output of P, is contained in the output of P, i.e, Mp, (D;y)|p
C Mp,(D;pn)|p holds, for every relation p € Dyy:. As shown by [Shmueli 1987],
containment and equivalence are undecidable for datalog programs; however, a
stronger form of uniform containment is decidable [Sagiv 1988].

In the case where P; and P, contain only conjunctive queries, containment and
equivalence are NP-complete [Sagiv and Yannakakis 1980], and remain NP-complete
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even if P, and P consist of single conjunctive queries [Chandra and Merlin 1977].
If the domain has a linear order < and comparison literals t; < to, t; < to, and
t; # ty may be used in rule bodies, then the containment problem for single con-
junctive queries is IT5-complete [van der Meyden 1997]; this result generalizes to
sets of conjunctive queries. As shown in [van der Meyden 1997], conjunctive query
containment is still co-NP-complete if the database relations are monadic, but poly-
nomial if an additional sequentiality restrictions is imposed on order literals.

Containment of a nonrecursive datalog program P, in a recursive datalog pro-
gram P, is decidable, since P; can be rewritten to a set of conjunctive queries, and
deciding whether a conjunctive query is contained in an arbitrary (recursive) dat-
alog program is EXPTIME-complete [Cosmadakis and Kanellakis 1986; Chandra
et al. 1981]. [Chaudhuri and Vardi 1994] have investigated the converse prob-
lem, i.e., containment of a recursive datalog program P; in a nonrecursive datalog
program P,. They showed that the problem is 3-EXPTIME-complete in general
and 2-EXPTIME-complete if P, is a set of conjunctive queries. Furthermore, they
showed that deciding equivalence of a recursive and a nonrecursive datalog program
is 3-EXPTIME-complete.

We observe that the containment problem for conjunctive queries is equivalent
to the clause subsumption problem. A clause C' subsumes a clause D, if there
exists a substitution 8 such that C§ C D; subsumption algorithms are discussed in
[Gottlob and Leitsch 1985b; Gottlob and Leitsch 1985a; Bachmair et al. 1996]. This
equivalence extends to sets of conjunctive queries, i.e., in essence to nonrecursive
datalog programs [Sagiv and Yannakakis 1980]. For a discussion of subsumption-
based and other notions of equivalence for logic programs, see [Maher 1988].

The clause subsumption problem plays a very important role in the field of in-
ductive logic programming (ILP) [Muggleton 1992]. For complexity results on ILP
consult [Kietz and Dzeroski 1994; Gottlob et al. 1997]. A problem related to clause
subsumption is clause condensation: given a clause C, find a smallest subset of C
which subsumes C. Complexity results and algorithms for clause condensation can
be found in [Gottlob and Fermiiller 1993]. The complexity of the clause evalua-
tion problem and of other related problems on generalized Herbrand interpretations,
which may contain nonground atoms, is studied in [Gottlob and Pichler 1999].

5. COMPLEXITY OF LOGIC PROGRAMMING WITH NEGATION
5.1 Stratified negation

A literal L is either an atom A (called a positive literal) or a negated atom —A
(called a megative literal). Literals A and —A are complementary; for any literal
L, we denote by —.L its complementary literal, and for any set Lit of literals,
—.Lit ={-.L | L € Lit}.

A normal clause is a rule of the form

AeLi,....Ln  (m>0) (1)

where A is an atom and each L; is a literal. A normal logic program is a finite set
of normal clauses.

The semantics of normal logic programs is not straightforward, and numerous
proposals exist, cf. [Bidoit 1991; Apt and Bol 1994]. However, there is general
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consensus for stratified normal logic programs.

A normal logic program P is stratified, see [Apt et al. 1988], if there is an assign-
ment str(-) of integers 0,1,... to the predicates p in P, such that for each clause r
in P the following holds: If p is the predicate in the head of r and ¢ the predicate
in an L; from the body, then str(p) > str(q) if L; is positive, and str(p) > str(q)
if L; is negative.

Ezample 5. Reconsider the steam turbine scenario in Example 1, and let us add
the following rules to the program there:

check_sensors < signal_error
signal_error < walve_closed, —signal_1
signal_error < pressure_loss, msignal_2
signal_error < overheat, ~signal_3

These rules express knowledge about potential signal errors, which must handled

by checking the sensors. The augmented program P is stratified: E.g. for the
assignment str(A) = 1 for A € {check_sensors, signal_error} and str(B) = 0 for
any other atom B occurring in P, the condition of stratification is satisfied.

The reduct of a normal logic program P by a Herbrand interpretation I [Gel-
fond and Lifschitz 1988], denoted P!, is the set of ground clauses obtained from
ground(P) as follows: first remove every clause r with a negative literal L in the
body such that —.L € I, and then remove all negative literals from the remaining
rules. Notice that P’ is a set of ground Horn clauses.

The semantics of a stratified normal program P is then defined as follows. Take
an arbitrary stratification str. Denote by P the set of rules r such that str(p) = k,
where p is the head predicate of r. Define a sequence of Herbrand interpretations:
My = 0, and My is the least Herbrand model of Pi/,[f U M, for k > 0. Finally, let

Mgy (P) = U M;U{-A|A¢ UMZ.}.

The semantics Mg, does not depend on the stratification str [Apt et al. 1988].
Note that in the propositional case Mg, (P) is polynomially computable.

Ezample 6. We consider the program P in Example 5. For the stratification
str(-) of P given there, P—y contains the clauses listed in Example 1, and P—; the
clauses introduced in Example 5. Then,

My=0 PM =p,,
My =Tg PMv — {check_sensors « signal_error, signal_error < overheat)
My =Tp

where Tp" = {signal_1, signal_2, valve_closed, pressure_loss, leak, shutdown}. Thus,

Msir(P) = Tg U{—signal_3, —overheat, —signal_error, ~check_sensors}.

Theorem 5.1 (implicit in [Apt et al. 1988]) Stratified propositional logic program-
ming with negation is P-complete. Stratified datalog with negation is data complete
for P and program complete for EXPTIME.

For full logic programming, stratified negation yields the arithmetical hierarchy.
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Theorem 5.2 ([Apt and Blair 1988]) Logic programming with n levels of stratified
negation is E?H_l-complete.

Recall here that £9,, denotes the relations over the natural numbers that are
definable in arithmetic by means of a first-order formula

H(Y) = IXVX; - Qe X (Xo, ..., X, Y)

3

with free variables Y, where the quantifiers alternate and v is quantifier-free; in
particular, %9 contains the r.e. sets. Further complexity results on stratification
can be found in [Cholak and Blair 1994; Palopoli 1992].

A particular case of stratified negation are nonrecursive logic programs. A pro-
gram is nonrecursive if and only if it has a stratification such that each predicate
p occurs in its defining stratum P_ g, (,) only in the heads of rules.

Theorem 5.3 (implicit in [Immerman 1987; Vardi 1982]) Nonrecursive proposi-
tional logic programming with negation is P-complete. Nonrecursive datalog with
negation is program complete for PSPACE, and its data complexity is in the class
AC?, which contains the languages recognized by unbounded fan-in circuits of poly-
nomial size and constant depth [Johnson 1990).

[Vorobyov and Voronkov 1998] classified the complexity of nonrecursive logic pro-
gramming depending on the signature, presence of negation and range-restriction.
A clause P is called range-restricted if every variable occurring in this clause also
occurs in a positive literal in the body. A program P is range-restricted if so is
every clause in P. Range-restricted clauses have a number of good properties,
for example domain-independence. Before presenting the results of [Vorobyov and
Voronkov 1998], we explain the notation for signatures used in their paper. The tu-
ple (k,1,m) denotes the signature with k constants, [ unary function symbols and m
function symbols of arity > 2. The complexity of nonrecursive logic programming
is summarized in Table 1.

In this table TA(f(n), g(n)) means the class of functions computable on alter-
nating Turing machines [Chandra et al. 1981] using g(O(n)) alternations with time
f(O(n)) on every branch. Such classes are closed under polylin (and loglin) reduc-
tions, i.e., those running in polynomial time (respectively, logarithmic space), with
output linearly bounded by the input. Such complexity classes arise in connec-
tion with the complexity characterization of logical theories [Berman 1977; Berman
1980].

To define the classes NONELEMENTARY(n), we define functions e, (m) by recur-
sion: eg(m) = m and epqq(m) = 267" Note that ELEMENTARY is the class of
languages decided within time ey (0) for some fixed k. Then NONELEMENTARY (n)
is the class of languages decided with lower and upper time bounds e.,(0) and
ean(0) respectively for some ¢,d > 0. In all cases in the table we have completeness
in the corresponding complexity class, except for NONELEMENTARY(n) (in this
case both lower and upper bounds are linearly growing towers of 2’s).

Thus, there is a huge difference between nonrecursive datalog with negation and
nonrecursive logic programming with negation in their program complexity, namely
PSPACE vs. NONELEMENTARY(n). At the same time, as [Vardi 1982] and the
following result show, both the languages have polynomial data complexity.
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signature (>2,0,0) | (_,1,0) | (,>2,0) (,_,>1)
not range-restricted
no negation PSPACE PSPACE | NEXPTIME NEXPTIME
with negation | PSPACE | PSPACE | TA(2°("/°¢™) (O(n/logn)) | NONELEMENTARY (n)
range-restricted
no negation PSPACE PSPACE | PSPACE NEXPTIME
with negation | PSPACE PSPACE | PSPACE TA(2"/ 8™ n/logn)
Table 1. Summary of results.
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Theorem 5.4 ([Dantsin and Voronkov 2000]) Nonrecursive logic programming
with negation has polynomial data complexity.

5.2 Well-founded negation

Roughly speaking, the well-founded semantics (WFS) [van Gelder et al. 1991] as-
signs value “unknown” to an atom A, if it is defined by unstratified negation.
Briefly, WFS can be defined as follows [Baral and Subrahmanian 1993]. Let Fp([)
be the operator Fp(I) = Tp3. Since Fp(I) is anti-monotone, F3(I) is monotone,
and thus has a least and a greatest fixpoint, denoted by F31>° and F3]°°, respec-
tively. Then, the meaning of a program P under WFS, M, (P), is

Mups(P) = FEt* U {=A| A ¢ FR1™}.

Note that on stratified programs, WFS and stratified semantics coincide.

Theorem 5.5 (implicit in [van Gelder 1989; van Gelder et al. 1991]) Proposi-
tional logic programming with negation under WFS is P-complete. Datalog with
negation under WFS is data complete for P and program complete for EXPTIME.

The question whether P |=,y A can be decided in linear time is open [Berman
et al. 1995]. A fragment of datalog with well-founded negation that has linear data
complexity and, under certain restrictions, also linear combined complexity, was
recently identified and studied in [Gottlob et al. 2000b; Gottlob et al. 2000a]. This
fragment, called datalog LITE, is well-suited for expressing temporal properties of
a finite state system represented as a Kripke structure. It is more expressive than
CTL and some other well-known temporal logics used in automatic verification.

For full logic programming, the following is known.

Theorem 5.6 ([Schlipf 1995b]) Logic programming with negation under WFS is
I} -complete.

The class [T} belongs to the analytical hierarchy (in a relational form) and contains
those relations which are definable by a second-order formula ®(X) = VP¢(P; X),
where P is a tuple of predicate variables and ¢ is a first-order formula with free
variables X. For more details about this class in the context of logic programming,
see e.g. [Schlipf 1995b; Eiter and Gottlob 1997].

5.3 Stable model semantics

An interpretation I of a normal logic program P is a stable model of P [Gelfond
and Lifschitz 1988] if I = T3, i.e., I is the least Herbrand model of pr

In general, a normal logic program P may have zero, one, or multiple stable
models.

Example 7. Let P be the following non-stratified program:

sleep < —work
work < —sleep

Then M; = {sleep} and My = {work} are the stable models of P.
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Denote by SM(P) the set of stable models of P. The meaning My; of P under
the stable model semantics (SMS) is

Mu(Py= () (MU-.(Bp\M)).
MeSM(P)

Note that every stratified P has a unique stable model, and its stratified and stable
semantics coincide. Unstratified rules increase complexity.

Theorem 5.7 ([Marek and Truszczyniski 1991], [Bidoit and Froidevauz 1991])
Given a propositional normal logic program P, deciding whether SM(P) # 0 is
NP-complete.

PROOF. (1) Membership. Clearly, P is polynomial time computable from P
and I. Hence, a stable model M of P can be guessed and checked in polynomial
time.

(2) Hardness. Modify the DTM encoding in Section 4 for a nondeterministic
Turing machine T as follows. For each state s and symbol ¢, introduce atoms
Bs 51[7],. ., Bsok|7] for all 1 < 7 < N and transitions (s, o, s;,0},d;), where
1 <i<k. Add Bs,;[7] in the bodies of the transition rules for (s, 0, s;, o}, d;)
and the rule

Bs 5i[T] ¢ —Bsonlt], ..., 7 Bs gi-1]T],
—|Bs7g7i+1[7'], P —IBsJ’k[T].
Intuitively, these rules nondeterministically select precisely one of the possible

transitions for s and o at time instant 7, whose transition rules are enabled via
Bs ».4[7]. Finally, add a rule

acceptl < —accept.

It ensures that accept is true in every stable model. The stable models M of
the resulting program correspond to the accepting runs of T'.

O

As an easy consequence, we obtain

Theorem 5.8 ([Marek and Truszczyriski 1991]; [Schlipf 1995b] and [Kolaitis and
Papadimitriou 1991]) Logic programming with negation under SMS is co-NP-
complete. Datalog with negation under SMS is data complete for co-NP and program
complete for co-NEXPTIME.

The co-NEXPTIME result for program complexity, which is not stated in [Schlipf
1995b], follows from an analogous result for datalog under fixpoint models in [Ko-
laitis and Papadimitriou 1991] and a simple, elegant transformation of this seman-
tics to SMS [Schlipf 1995b].

For full logic programming, SMS has the same complexity as WFS.

Theorem 5.9 ([Schlipf 1995b; Marek et al. 1994]) Logic programming with nega-
tion under SMS is I1} -complete.
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Further results on stable models of recursive (rather than only finite) logic pro-
grams can be found in [Marek et al. 1992].

Beyond inference, further complexity aspects of stable models have been ana-
lyzed, including compact representations of stable models and the well-founded
semantics of nonground logic programs [Gottlob et al. 1996; Eiter et al. 1998], and
optimization issues such as determining symmetries across stable models [Eiter
et al. 1997b].

5.4 Inflationary and noninflationary semantics

The inflationary semantics (INFS) [Abiteboul and Vianu 1991a; Abiteboul et al.
1995] is inspired by inflationary fixpoint logic [Gurevich and Shelah 1986]. In place
of Tp°, it uses the limit T2° of the sequence

TS = 0,
T = Tp(T}), ifi >0,
where Tp is the inflationary operator T(I) = IUTp:(I). Clearly, T3 is computable
in polynomial time for a propositional program P. Moreover, T5° coincides with
T for Horn clause programs P. Therefore, by the above results,

Theorem 5.10 ([Abiteboul and Vianu 1991af; implicit in [Gurevich and Shelah
1986]) Logic programming with negation under INFS is P-complete. Datalog with
negation under INFS is data complete for P and program complete for EXPTIME.

The noninflationary semantics (NINFS) [Abiteboul and Vianu 1991a], in the

version of [Abiteboul and Vianu 1995, page 373], uses in place of T2° the limit fgo
of the sequence

TO = ¢,
TE = Tp(T}), ifi >0,

where fp(I) = Tp:(I), if it exists; otherwise, ff;’ is undefined. Similar equivalent
algebraic query languages have been earlier described in [Chandra and Harel 1982;
Vardi 1982]. In particular, datalog under NINFS is equivalent to partial fixpoint
logic [Abiteboul and Vianu 1991a; Abiteboul et al. 1995].

As easily seen, TR is for a propositional program P computable in polynomial
space; this bound is tight.

Theorem 5.11 ([Abiteboul and Vianu 1991a; Abiteboul et al. 1995]) Logic pro-
gramming with negation under NINFS is PSPACE-complete. Datalog with negation
under NINFS is data complete for PSPACE and program complete for EXPSPACE.

5.5 Further semantics of negation

A number of interesting further semantics for logic programming with negation
have been defined, among them partial stable models, maximal partial stable mod-
els, regular models, perfect models, 2- and 3-valued completion semantics, and
fixpoint models; see e.g. [Schlipf 1995b; You and Yuan 1995; Przymusinski 1988a;
Kolaitis and Papadimitriou 1991]. There is no space to discuss these semantics
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here; see e.g. [Schlipf 1995b; Sacca 1995; Dudakov 1999; Kolaitis and Papadimit-
riou 1991] for more details and complexity results. However, we remark that when a
logic program has a perfect model, then this model is unique [Przymusinski 1988a;
Przymusinski 1988b]. As recently shown in [Dudakov 1999], propositional logic
programming under perfect model semantics is in A, and its precise complexity
can be characterized through an interesting variant of the DTM with an oracle
for the classical propositional satisfiability problem (SAT): if the SAT-instance in
the query has more than one satisfying assignment, then the machine immediately
rejects the input (i.e., changes its state to no rather than to €). Deciding whether
a given propositional logic program P has a perfect model (resp., P |= A under
perfect models), is complete for the class of languages accepted by such machines
in polynomial time (resp., for the complementary class).

Extensions of logic programming with negation have been proposed which handle
different kinds of negation, namely strong and default negation, see e.g. [Gelfond
and Lifschitz 1991; Pearce and Wagner 1991]. The semantics we have considered
above use default negation as the single kind of negation. Different kinds of nega-
tion increase the suitability of logic programming as a knowledge representation
formalism [Baral and Gelfond 1994].

In the approach of [Gelfond and Lifschitz 1991], strong negation is interpreted as
classical negation. E.g., the rule

flies(X) + ~ —flies(X), bird(X)

naturally expresses that a bird flies by default; here, “~” is default negation and

“=” ig classical negation. The language of extended logic programs treats literals
with classical negation as atoms, on which default negation may be applied. The
notion of answer set for such a program is defined by a natural generalization of
the concept of stable model [Gelfond and Lifschitz 1991].

As for the complexity, there is no increase for extended logic programs over
normal logic programs under SMS.

Theorem 5.12 ([Ben-FEliyahu and Dechter 1994]) Given a propositional extended
logic program P, deciding whether P has an answer set is NP-complete, and ez-
tended logic programming is co-NP-complete.

Complexity results on extended logic programs with rule priorities can be found
in [Brewka and Eiter 1998], and for an extension of logic programming using hier-

3

archical modules in [Buccafurri et al. 1998].

6. DISJUNCTIVE LOGIC PROGRAMMING

Informally, disjunctive logic programming (DLP) extends logic programming by
adding disjunction in the rule heads, in order to allow more natural and flexible
knowledge representation. For example,

male(X) V female(X) + person(X)

naturally represents that any person is either male or female.
A disjunctive logic program is a set of clauses
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AV VA, < Lqy,..., Ly, (kzl,mZO), (2)

where each A4; is an atom and each L; is a literal. For a background, see [Lobo
et al. 1992] and the more recent [Minker 1994].

The semantics of negation-free disjunctive logic programs is based on minimal
Herbrand models, as the least (unique minimal) model does not exist in general.

Ezample 8. Let P consist of the single clause pV ¢ + . Then, P has the two
minimal models My = {p} and M> = {q¢}.

Denote by MM(P) the set of minimal Herbrand models of P. The Generalized
Closed World Assumption (GCWA) [Minker 1982] for negation-free P amounts to
the meaning M gewa(P) = {L | MM(P) |= L}.

Ezample 9. Consider the following propositional program P’, describing the be-
havior of a reviewer while reviewing a paper:

goodV bad < paper
happy <+ good
angry < bad
smoke < happy
smoke — angry
paper <+

The following models of P’ are minimal:

M, = {paper, good, happy, smoke} and
Ms = {paper, bad, angry, smoke}.

Under GCWA, we have P |=gowa smoke, while P gow a good and P Eqow a
—good.

Theorem 6.1 ([Eiter and Gottlob 1993; Fiter et al. 1994]) Let P be a proposi-
tional negation-free disjunctive logic program and A be a propositional atom. (i) De-
ciding whether P =gewa A is co-NP-complete. (ii) Deciding whether P =gow 4
—A is 1Y -complete.

ProOOF. It is not hard to argue that for an atom A, we have P =qowa A if
and only if P =pc A, where |=p¢ is the classical logical consequence relation. In
addition, it is not hard to argue that any set of clauses can be represented by a
suitable disjunctive logic program. Hence, by the well-known NP-completeness of
SAT, part (i) is obvious.

Let us thus consider part (i4).

(1) Membership. We have P #~gowa —A if and only if there exists an M €
MM(P) such that M [~ —A, i.e., A€ M. Clearly, a guess for M can be verified
with an oracle for NP in polynomial time; from this, membership of the problem
in % follows.

(2) Hardness. We show II5-hardness by an encoding of alternating Turing ma-
chines (ATM) [Chandra et al. 1981]. Recall that an ATM T has its set of states
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partitioned into existential (3) and universal (V) states. If the machine reaches
an J-state (respectively, V-state) s in a run, then the input is accepted if the
computation continued in some (respectively, all) of the possible successor con-
figurations is accepting. As in our simulations above, we assume that 7" has a
single tape.

The polynomial-time bounded ATMs which start in a V-state sq and have one
alternation, i.e., precisely one transition from a V-state to an 3-state in each
run (and no reverse transition), solve precisely the problems in II5 [Chandra
et al. 1981].

By adapting the construction in the proof of Theorem 5.7, we show how any
such machine T on input I can be simulated by a disjunctive logic program
P under GCWA. Without loss of generality, we assume that each run of T is
polynomial-time bounded [Balcédzar et al. 1990].

We start from the clauses constructed for the NTM T on input I in the proof
of Theorem 5.7, from which we drop the clause accept < —accept and replace
the clauses

Bsm‘,i[T] — _'Bs,a'71[7-]a R _'BS,CT7i—1 [T]=
_'Bs,a'7i+1[7-]a sy _'Bsp,k[T]-

for s and o by the logically equivalent disjunctive clause
B galT]V -V By g [7]

Intuitively, in a minimal model precisely one of the atoms Bs ,;[7] will be
present, which means that one of the possible branchings is followed in a run.
The current clauses constitute a propositional program which derives accept
under GCWA if and only if 7" would accept I if all its states were universal.
We need to respect the J-states, however. For each 3-state s and time point
7 > 0, we set up the following clauses, where s’ is any J-state, 7 < 7/ < N,
0<7m<N,and 1<i<k:

states/ [T'] < naccept, states[T]
symbol [T', 7] < naccept, states[T]
cursor|t’,w| < mnaccept, states[T]
Bs »i[T'] < mnaccept, states[T].

Intuitively, these rules state that if a nonaccepting run enters an 3-state, i.e.,
naccept is true, then all relevant facts involving a time point 7/ > 7 are true.
This way, nonaccepting runs are corrupted. Finally, we set up for each nonac-
cepting terminal 3-state s the clauses

naccept < stateg[t], 0 <1 < N.

These clauses state that naccept is true if the run ends in a nonaccepting state.
Let Pt be the resulting program. The minimal models M of Pt which do not
contain naccept correspond to the accepting runs of 7.

It can be seen that the minimal models of Pt which contain naccept correspond
to the partial runs of T from the initial state sg to an J-state s from which no
completion of the run ending in an accepting state is possible. This implies that
P has some minimal model M containing naccept precisely if T, by definition,
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does not accept input I. Consequently, PT =gowa —naccept, i.e., naccept is
in no minimal model of P, if and only if T accepts input I. It is clear that the

program PT can be constructed in logarithmic space. Consequently, deciding
P |:GCWA —A is Hg—hard.

O

Note that many problems in the field of nonmonotonic reasoning are II5-complete,
e.g. [Gottlob 1992; Eiter and Gottlob 1992; Eiter and Gottlob 1995a].

Stable negation naturally extends to disjunctive logic programs, by adopting
that I is a (disjunctive) stable model of a disjunctive logic program P if and only
if I € MM(PT) [Przymusinski 1991; Gelfond and Lifschitz 1991]. The disjunctive
stable model semantics subsumes the disjunctive stratified semantics [Przymusinski
1988a]. For well-founded semantics, no such natural extension is known; the seman-
tics in [Brass and Dix 1995; Przymusinski 1995] are the most appealing attempts
in this direction.

Clearly, PT is easily computed, and P’ = P if P is negation-free. Thus,

Theorem 6.2 ([Eiter and Gottlob 1995b; Fiter et al. 1994; Eiter et al. 1997])
Propositional DLP under SMS is 115 complete. Disjunctive datalog under SMS is
data complete for 115 and program complete for co-N EXPTIMENP.

The latter result was derived by utilizing complexity upgrading techniques as
described above in Section 4.3. We remark that a sophisticated algorithm for
computing stable models of propositional disjunctive logic programs, which mirrors
the complexity of the problem in its structure, is described in [Leone et al. 1997].

For full DLP, we have:

Theorem 6.3 ([Chomicki and Subrahmanian 1990]) DLP under GCWA is 13-
complete.

Theorem 6.4 ([Eiter and Gottlob 1995b]) Full DLP under SMS is IIi -complete.

Thus, disjunction adds complexity under GCWA and under SMS in finite Her-
brand universes (unless co-NP = IIY), but not in infinite ones. This is intuitively
explained by the fact that DLP under SMS corresponds to a weak fragment of I3
which can be recursively translated to II}.

Many other semantics for DLP have been analyzed. For some of them, the
complexity is lower than for SMS, for example for the coinciding possible worlds
and possible model semantics [Chan 1993; Sakama and Inoue 1994a], as well as
for the causal model semantics [Dix et al. 1996], which are all co-NP-complete.
Others have higher complexity, for example the regular model semantics and the
maximal partial stable model semantics [Eiter et al. 1998]. However, typically they
are TI5-complete in the propositional case.

Extended disjunctive logic programs (EDLPs), which have default and classical
negation, are defined analogously to the case of non-disjunctive logic programs
[Gelfond and Lifschitz 1991]. The notion of answer set is generalized in the same
way as stable model from a non-disjunctive program to a disjunctive one. There



36 . E. Dantsin and T. Eiter and G. Gottlob and A. Voronkov

is no complexity increase over disjunctive stable models; in particular, extended
disjunctive logic programming is ITI5-complete in the propositional case [Eiter and
Gottlob 1995b].

Fragments of EDLPs that have lower complexity are known. The most important
such fragment are headcycle-free programs. Informally, an EDLP P is headcycle-
free, if there are no two distinct atoms A and B which mutually depend on each
other through positive recursion (i.e., default negation is disregarded), such that
A and B occur in the head of the same rule of P. As shown in [Ben-Eliyahu and
Dechter 1994], extended disjunctive logic programming for headcycle-free programs
is co-NP-complete, and thus polynomial-time transformable to (disjunction-free)
normal logic programming under stable model semantics.

A generalization of EDLPs by allowing default negation in the head has been
studied in [Inoue and Sakama 1998]. As the authors show, the complexity of both
arbitrary and headcycle-free programs does not increase. Other extensions of dis-
junctive logic programming and their complexities are studied in e.g. [Marek et al.
1995; Minker and Ruiz 1994; Buccafurri et al. 1997; Buccafurri et al. 1998; Buc-
cafurri et al. 2000; Rosati 1997; Rosati 1998]. In particular, [Buccafurri et al.
1997; Buccafurri et al. 2000] analyzes the effect of different kinds of constraints on
stable models. Weak constraints may be violated at a penalty, leading to a cost-
based notion of stable models whose complexity is characterized as an optimization
problem. In [Buccafurri et al. 1998], disjunctive logic programs are extended by
classical negation and modularization with inheritance; as shown, these features
do not increase the complexity. The papers [Rosati 1997; Rosati 1998] address the
complexity of using epistemic operators such as minimal knowledge and belief in
disjunctive logic programs.

7. EXPRESSIVE POWER OF LOGIC PROGRAMMING

The expressive power of query languages such as datalog is a topic common to
database theory [Abiteboul et al. 1995] and finite model theory [Ebbinghaus and
Flum 1995] that has attracted much attention by both communities. By the ex-
pressive power of a (formal) query language, we understand the set of all queries
expressible in that language. Note that we will not only mention query languages
used in database systems, but also formalisms used in formal logic and finite model
theory such as first and second-order logic over finite structures or fixpoint logic
(for precise definitions consult [Ebbinghaus and Flum 1995]).

In general, a query ¢ defines a mapping M, that assigns to each suitable input
database D;, (over a fixed input schema) a result database D ,,; = My(Dip) (over
a fixed output schema); more logically speaking, a query defines global relations
[Gurevich 1988]. For reasons of representation independence, a query should, in
addition, be generic, i.e., invariant under isomorphisms. This means that if 7 is a
permutation of the domain Dom(D), then M(7(D;,)) = 7(Dout). Thus, when we
speak about queries, we always mean generic queries.

Formally, the ezpressive power of a query language () is the set of mappings M,
for all queries ¢ expressible in the language @ by some query expression (program)
E; this syntactic expression is commonly identified with the semantic query it
defines, and simply (in abuse of definition) called a query.

There are two important research tasks in this context. The first is comparing
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two query languages @; and o in their expressive power. One may prove, for
instance, that @ ; ()2, which means that the set of all queries expressible in @
is a proper subset of the queries expressible in ()2, and hence, ()5 is strictly more
expressive than ;. Or one may show that two query languages )1 and ()5 have
the same expressive power, denoted by @)1 = @2, and so on.

The second research task, more related to complexity theory, is determining the
absolute expressive power of a query language. This is mostly achieved by proving
that a given query language @ is able to express exactly all queries whose evaluation
complexity is in a complexity class C. In this case, we say that @ captures C and
write simply @ = C. The evaluation complezity of a query is the complexity of
checking whether a given atom belongs to the query result, or, in the case of Boolean
queries, whether the query evaluates to true [Vardi 1982; Gurevich 1988].

Note that there is a substantial difference between showing that the query eval-
uation problem for a certain query language @ is C-complete and showing that @
captures C. If the evaluation problem for @) is C-complete, then at least one C-hard
query is expressible in Q. If @) captures C, then Q) expresses all queries evaluable in
C (including, of course, all C-hard queries). Thus, usually proving that @) captures
C is much more involved than proving that evaluating Q-queries is C-hard. Note
also that it is possible that a query language @ captures a complexity class C for
which no complete problems exist or for which no such problems are known. As an
example, second-order logic over finite structures captures the polynomial hierarchy
PH, for which no complete problem is known. However, the existence of a complete
problem of PH would imply that it collapses at some finite level, which is widely
believed to be false.

The subdiscipline of database theory and finite model theory dealing with the
description of the expressive power of query languages and related logical for-
malisms via complexity classes is called descriptive complezity theory [Immerman
1987; Leivant 1989; Immerman 1999]. An early foundational result in this field was
[Fagin 1974]’s theorem stating that existential second-order logic captures NP. In
the eighties and nineties, descriptive complexity theory has become a flourishing
discipline with many deep and useful results.

To prove that a query language () captures a machine-based complexity class
C, one usually shows that each C-machine with (encodings of) finite structures
as inputs that computes a generic query can be represented by an expression in
language @. There is, however, a slight mismatch between ordinary machines and
logical queries. A Turing machine works on a string encoding of the input database
D. Such an encoding provides an implicit linear order on D, in particular, on all
elements of the universe Up. The Turing machine can take profit of this order and
use this order in its computations (as long as genericity is obeyed). On the other
hand, in logic or database theory, the universe Up is a pure set and thus unordered.
For “powerful” query languages of inherent nondeterministic nature at the level
of NP this is not a problem, since an ordering on Up can be nondeterministically
guessed. However, for many query languages, in particular, for those corresponding
to complexity classes below NP, generating a linear order is not feasible. Therefore,
one often assumes that a linear ordering of the universe elements is predefined, i.e.,
given explicitly in the input database. More specifically, by ordered databases or
ordered finite structures, we mean databases whose schemas contain special relation
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symbols Suce, First, and Last, that are always interpreted such that Succ(z,y) is
a successor relation of some linear order and First(xz) determines the first element
and Last(x) the last element in this order. The importance of predefined linear
orderings becomes evident in the next two theorems.

Before coming to the theorems, we must highlight another small mismatch be-
tween the Turing machine and the datalog setting. A Turing machine can consider
each input bit independently of its value. On the other hand, a plain datalog pro-
gram is not able to detect that some atom is not a part of the input database. This
is due to the representational peculiarity that only positive information is present
in a database, and that the negative information is understood via the closed world
assumption. To compensate this deficiency, we will slightly augment the syntax of
datalog. Throughout this section, we will assume that input predicates may appear
negated in datalog rule bodies; the resulting language is datalog®. This extremely
limited form of negation is much weaker than stratified negation, and could be
easily circumvented by adopting a different representation for databases.

Theorem 7.1 (a fortiori from [Chandra and Harel 1982]) Datalog* 7C¢ P.

PrRoOOF. (Hint.) Show that there exists no datalog™ program P that can tell
whether the universe U of the input database has an even number of elements. [

Clearly, plain datalog (without negation of the input predicates) can only define
monotonic queries, i.e., the output grows monotonically with the input, and thus
datalog can not express all queries computable in polynomial time. The natural
question is thus to ask whether datalog expresses all monotone queries computable
in polynomial time. As shown in [Afrati et al. 1995], the answer is negative. In
particular, datalog” (i.e., datalog augmented by inequality) can not express whether
a given set of linear constraints of the form x +y 4+ z = 1 or z = 0 is inconsistent,
even on ordered databases [Afrati et al. 1995]. Furthermore, deciding whether a
directed graph has path with length a perfect square is not expressible in datalog®#
(datalogt with inequality). The language datalog? was first studied by [Shmueli
1987], who showed that is more expressive than plain datalog. Properties and
expressiveness aspects of this language have been further studied e.g. in [Gaifman
et al. 1987; Lakshmanan and Mendelzon 1989; Ajtai and Gurevich 1994; Kolaitis
and Vardi 1995; Afrati 1997].

The perfect square query is expressible in datalogt# on ordered databases, how-
ever. This is a corollary to the next result.

Theorem 7.2 ([Papadimitriou 1985; Grdadel 1992]; implicit in [Vardi 1982; Im-
merman 1986; Leivant 1989]) On ordered databases, datalog" captures P.

PROOF. (Sketch) By Theorem 5.1, query answering for a fixed datalog™ program
is in P. It thus remains to show that each polynomial-time DTM T on finite input
databases D € INST(D;,) can be simulated by a datalogt program. To show this,
we first make some simplifying assumptions.

(1) The universe Up is an initial segment [0,n — 1] of the integers, and Succ,
First, and Last are from the natural linear ordering over this segment.
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(2) The input database schema D;,, consists of a single binary relation G, plus
the predefined predicates Suce, First, Last. In other words, D is always (an
ordered) graph (U, G).

(3) T operates in < n* steps, where n = |U| > 1.

(4) T computes a Boolean (0-ary) predicate.

The simulation is akin to the simulation used in the proofs of Theorems 4.2
and 4.5.

Recall the framework of Section 4.1. In the spirit of this framework, it suffices to
encode n* time-points 7 and tape-cell numbers 7 within a fixed datalog program.
This is achieved by considering k-tuples X = (X1, ..., X}) of variables X; ranging
over U. Each such k-tuple encodes the integer int(X) = Zle X; -nk-i,

At time point 0 the tape of T contains an encoding of the input graph. Recall
that in Section 4.1 this was reflected by the following initialization facts

symbol [0, 7] for 0 <7 < |I|, where I = 0.

Before translating these rules into appropriate datalog rules, we shall spend a word
about how input graphs are usually represented by a binary strings. A graph
(U, G) is encoded by binary string enc(U,G) of length |U|*: if G(i,7) is true for
i,j7 € U =[0,n —1] then the bit number i*xn+ j of enc(U, G) is 1, otherwise this bit
is 0. The bit positions of enc(U, G) are exactly the integers from 0 to n? — 1. These
integers are represented by all k-tuples (0=2,a,b) such that a,b € U. Moreover,
the bit-position int((0¥=2, X, Y)) of enc(U,G) is 1 if and only if G(X,Y) is true in
the input database and 0 otherwise.

The above initialization rules can therefore be translated into the datalog rules

symbol, [0%,0F=2 X V] «+ G(X,Y)
symbol,[0%, 082, X V] + -G(X,Y)

Intuitively, the first rule says that at time point 0 = int(0*), the bit number
int((0¥~2,X,Y)) on the tape is 1 if G(X,Y) is true. The second rule states that
the same bit is false if G(X,Y) is false. Note that the second rule applies negation
to an input predicate. Only this rule in the entire datalogt program uses negation.
Clearly, these two rules simulate that at time point 0, the cells cg,. .., ¢,2_; contain
precisely the string enc(U, G).

The other initialization rules described in Section 4.1 are also easily translated
into appropriate datalog rules. Let us now see how the other rules are translated
into datalog.

From the linear order given by Succ(X,Y"), First(X), and Last(X), it is easy to
define by datalog clauses a linear order <* on k-tuples Succ®(X,Y), First"(X),
Last" (X) (see the proof of Theorem 4.5), by using Suce' = Succ, First' = First and
Last' = Last. By using Succ®, transition rules, inertia rules and the accept rules
are easily translated into datalog as in the proof of Theorem 4.5.

The output schema of the resulting datalog program P7 is defined to be D,y =
{accept}. Tt is clear that this program evaluates to true on input D = (U, G), i.e.,
Pt UD = accept if and only if T accepts enc(U, G).

The generalization to a setting where the simplifying assumptions 1-3 are not
made is rather straightforward and is omitted. Assumption 4 can also be easily
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lifted to the computation of output predicates. We consider here the case where
the output scheme D,,; contains a single binary relation R. Then, the output
database D' computed by T', which is a graph (U, R), can be encoded similarly to
the input database as a binary string enc(U, R) of length |U|>. We may suppose
that when the machine enters the halt state, this string is contained in the first
\U|? cells of the tape. To obtain the positive facts of the output relation R, we add

the following rule:
R(X,Y) « symbol,[Y,0=2 XY]), statena1[Y]
O

We remark that a result similar to Theorem 7.2 was independently obtained by
[Livchak 1983].

Let us now state somewhat more succinctly further interesting results on datalog.
A prominent query language is fizpoint logic (FPL), which is the extension of first-
order logic by a least fixpoint operator Ifp(X, ¢, S), where S is a |X|-ary predicate
occurring positively in the formula ¢ = p(X; S), and X is a tuple of free variables
in ¢; intuitively, it returns the least fixpoint of the operator I' defined by ['(S) =
{a| D |= p(a;S)}. We refer to [Chandra and Harel 1982; Abiteboul et al. 1995;
Ebbinghaus and Flum 1995] for details. As shown in [Chandra and Harel 1982],
FPL expresses a proper subset of the queries in P. Datalog™ relates to FPL as
follows.

Theorem 7.3 (/Chandra and Harel 1985]) Datalogt = FPL'(3), i.e., Datalog*
coincides with the fragment of FPL having negation restricted to database relations
and only existential quantifiers.

As for expressibility in first-order logic, [Ajtai and Gurevich 1994] have shown
that a datalog query is equivalent to a first-order formula if and only if it is bounded,
and thus expressible in existential first-order logic.

Adding stratified negation does not preserve the equivalence of datalog and fix-
point logic in Theorem 7.3.

Theorem 7.4 ([Kolaitis 1991]; implicit in [Dahlhaus 1987]) Stratified datalog G
FPL.

This theorem is not obvious. In fact, for some time coincidence of the two
languages was assumed, based on a respective statement in [Chandra and Harel
1985].

The nonrecursive fragment of datalog coincides with well-known database query
languages.

Theorem 7.5 (cf. [Abiteboul et al. 1995]) Nonrecursive range-restricted datalog
with negation = relational algebra = relational calculus. Nonrecursive datalog with
negation = first-order logic (without function symbols).

The expressive power of relational algebra is equivalent to that of a fragment of
the database query language SQL (essentially, SQL without grouping and aggregate
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functions). The expressive power of SQL is discussed in [Libkin and Wong 1994;
Dong et al. 1997; Libkin 1997].
Unstratified negation yields higher expressive power.

Theorem 7.6 (i) Datalog under WFS = FPL ([van Gelder 1989]).
(i4) Datalog under INFS = FPL ([Abiteboul and Vianu 1991a], using [Gurevich
and Shelah 1986]).

As recently shown, the first result holds also for total WFS (i.e., the well-founded
model is always total) [Flum et al. 1997].

We remark that the variants of datalog mentioned above can only define queries
which are expressible in infinitary logic with finitely many variables (L%, ) [Kolaitis
and Vardi 1995]. It is known that LY has a 0-1 law, i.e., every query definable
in this language is either almost surely true or almost surely false, if the size of
the universe grows to infinity [Kolaitis and Vardi 1992]. It is easy to see that the
boolean Fven-query qg, which tells if the domain of a given input database D;,
(over a fixed schema) contains an even number of elements, is not almost surely
true or almost surely false. Thus, a fortiori, this query— which is computable in
polynomial time—- is not expressible in the above variants of datalog.

On ordered databases, Theorem 7.2 and the theorems in Section 5 imply

Theorem 7.7 On ordered databases, the following query languages capture P: strat-
ified datalog, datalog under INFS, and datalog under WF'S.

Syntactical restrictions allow us to capture classes within P. Let datalogt(1) be
the fragment of datalog™ where each rule has most one nondatabase predicate in the
body, and let datalog™(1,d) be the fragment of datalog® (1) where each predicate
occurs in at most one rule head.

Theorem 7.8 ([Grddel 1992; Veith 1994]) On ordered databases, datalog™ (1) cap-
tures NL and datalogt (1,d) captures L.

Due to inherent nondeterminism, stable semantics is much more expressive.

Theorem 7.9 ([Schlipf 1995b]) Datalog under SMS captures co-NP.

Note that for this result an order on the input database is not needed. Informally,
in each stable model such an ordering can be guessed and checked by the program.
By [Fagin 1974]’s Theorem, this implies that datalog under SMS is equivalent to
the existential fragment of second-order logic over finite structures.

Theorem 7.10 ([Abiteboul and Vianu 1991a]) On ordered databases, datalog un-
der NINFS captures PSPACE.

Here ordering is needed. An interesting result in this context, formulated in
terms of datalog, is the following [Abiteboul and Vianu 1991a]: datalog under INFS
= datalog under NINFS on arbitrary finite databases if and only if P = PSPACE.
While the “only if” direction is obvious, the proof of the “if” direction is involved. It
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is one of the rare examples that translates open relationships between deterministic
complexity classes into corresponding relationships between query languages.
We next briefly address the expressive power of disjunctive logic programs.

Theorem 7.11 ([Eiter et al. 1994; Eiter et al. 1997]) Disjunctive datalog under
SMS captures T15.

It appears that fragments of disjunctive datalog have interesting properties.
While disjunctive datalog™# expresses only a subset of the queries in co-NP (e.g.,
it can not express the Even-query), it expresses all of % under the credulous notion
of consequence, i.e., P =, A if A is true in some stable model. Furthermore, under
credulous consequence every query in nondisjunctive datalog™ 7 is expressible in
disjunctive datalog™, even though the inequality predicate can not be recognized.

Finally, we consider full logic programs. In this case, the input databases are
arbitrary (not necessarily recursive) relations on the genuine (infinite) Herbrand
universe of the program.

Theorem 7.12 [Schlipf 1995b; Eiter and Gottlob 1997] Each of logic programming
under WFS, logic programming under SMS, and DLP under SMS captures T1}.

Thus, different from the function-free case, adding disjunction does not increase
the expressive power of normal logic programs. The reason is that disjunctive logic
programs can be expressed in a weak fragment of the class II3 of second-order logic,
which in the case of an infinite Herbrand universe can be coded to the I} fragment.

For further expressiveness results on logic programs see e.g. [Schlipf 1995b; Sacca
1995; Sacca 1997; Greco and Sacca 1997; Greco and Sacca 1996; Eiter et al. 1998;
Cadoli and Palopoli 1998]. In particular, co-NP can be captured by a variant
of circumscribed datalog [Cadoli and Palopoli 1998], and further classes of the
polynomial hierarchy can be captured by variants of stable models [Sacca 1995;
Sacca 1997; Eiter et al. 1998; Buccafurri et al. 1997] as well as through modular logic
programming [Eiter et al. 1997; Eiter et al. 2000; Buccafurri et al. 1998]. Results on
the expressiveness of the stable model semantics over disjunctive databases, which
are given by sets of ground clauses rather than facts, can be found in [Bonatti and
Eiter 1996].

We conclude this subsection with a brief look on expressiveness results for nonde-
terministic queries. A nondeterministic query maps an input database to one from
a set of possible output databases; it can be viewed as a multi-valued function. For
example, a query which returns as output a Hamiltonian cycle of given input graph
is a nondeterministic query. The (deterministic) queries that we have considered
above are a special case of nondeterministic queries.

It has been shown that the class NDB-P of nondeterministic queries which are
computable in polynomial time can be captured by suitable nondeterministic vari-
ants of datalog, e.g., by a procedure-style variants [Abiteboul and Vianu 1991a], by
datalog” (datalog with inequality) extended with a choice operator, or by datalog
with stable models [Corciulo et al. 1993; Giannotti and Pedreschi 1998]. Also NDB-
PSPACE, the class of nondeterministic queries computable in polynomial space, is
captured by a nondeterministic variant of datalog [Abiteboul and Vianu 1991a].
For a tutorial survey of such and related deterministic languages, we recommend
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[Vianu 1997]. For further issues on nondeterministic queries, we refer to [Giannotti
et al. 1997; Grumbach and Lacroix 1997; Leone et al. 1999].

7.1 The order mismatch and relational machines

Many results on capturing the complexity classes by logical languages suffer from
the order mismatch. For example, the results by Immerman and Vardi (Theo-
rems 7.7 and 7.10) show that P = PSPACE if and only if Datalog under INFS and
Datalog under NINFS coincide on ordered databases. The order appears when we
code the input for a standard computational device, like a Turing machine, while
the semantics of Datalog and logic is defined directly in terms of logical structures,
where no order on elements is given.

To overcome this mismatch, [Abiteboul and Vianu 1991b; Abiteboul and Vianu
1995] introduced relational complezity theory, where computations on unordered
structures are modeled by relational machines. In [Abiteboul and Vianu 1991b;
Abiteboul and Vianu 1995; Abiteboul et al. 1997] several relational complexity
classes are introduced, such as P, (relational polynomial time), NP, (relational
nondeterministic polynomial time), PSPACE, (relational polynomial space) and
EXPTIME, (relational exponential time). Tt follows that all separation results
among the standard complexity classes translate into separation results among
relational complexity classes. For example, P = NP if and only if P, = NP,..

It happens that Datalog under various semantics captures the relational com-
plexity classes on unordered databases. For example (cf. Theorems 7.7 and 7.10),
we have

Theorem 7.13 Datalog under INFS captures P,.. Datalog under NINFS captures
PSPACE,..

Note that together with the correspondence of the separation results between
the standard complexity classes and the relational complexity classes, this theorem
implies that Datalog under INFS coincides with Datalog under NINFS if and only if
P = PSPACE. Therefore, the results of [Abiteboul and Vianu 1991b; Abiteboul and
Vianu 1995; Abiteboul et al. 1997] provide an order-free correspondence between
questions in computational and descriptive complexity.

7.2 Expressive power of logic programming with complex values

The expressive power of datalog queries is defined in terms of input and output
databases, i.e., finite sets of tuples. In order to extend the notion of expressive
power to logic programming with complex values, we need to define what we mean
by an input. For example, in the case of plain logic programming, an input may be
a finite set of ground terms, i.e. a finite set of trees. In the case of logic programming
with sets, an input may be a set whose elements may be sets too and so on.
Various models and languages for dealing with complex values in databases have
been proposed, e.g. [Abiteboul and Kanellakis 1989; Abiteboul and Grumbach 1988;
Kifer and Wu 1993; Kifer et al. 1995; Abiteboul and Beeri 1995; Buneman et al.
1995; Suciu 1997; Greco et al. 1995; Libkin et al. 1996; Abiteboul et al. 1995]. The
functional approach to such languages dominates the logic programming one. To
extend variants of nested relational algebra as in [Buneman et al. 1995] to datalog,
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bounded fixpoint constructs have been proposed [Suciu 1997], as well as deflationary
fixpoint constructs [Colby and Libkin 1997].

The comparative expressive power of languages for complex values is studied in
e.g. [Abiteboul and Grumbach 1988; Vadaparty 1991; Suciu 1997; Abiteboul and
Beeri 1995; Dantsin and Voronkov 2000]. For example, [Abiteboul and Beeri 1995]
introduce a model for restricted combinations of tuples and sets and several cor-
responding query languages, including the algebraic and logic programming ones.
It is proved that all these languages define the same class of queries. [Dantsin and
Voronkov 2000] show that nonrecursive logic programming with negation has the
same expressive power as nonrecursive datalog with negation (under a natural rep-
resentation of inputs). Thus, the use of recursive data structures, namely trees, in
nonrecursive datalog gives no gain in the expressiveness. It follows from this result
that nonrecursive logic programming with negation is polynomial-time. [McAllester
1993; Givan and McAllester 2000] study logic programs without negation in which
every term occurring in the head of a clause also occurs in its body. It is proved
that this class captures P on ground terms (one can define a linear order on the set
of ground terms using logic programs of this kind).

The absolute expressive power of languages for complex values is also studied in
[Sazonov 1993; Suciu 1997; Sazonov and Lisitsa 1995; Grumbach and Vianu 1995;
Gyssens et al. 1995; Lisitsa and Sazonov 1997]; further issues, such as expressibility
of particular queries or faithful extension of datalog, are studied in [Libkin and
Wong 1995; Wong 1996; Paredaens and van Gucht 1992].

Results on the expressive power of different forms of logic programming with
constraints can be found e.g. in [Cosmadakis and Kuper 1994; Kanellakis et al.
1995; Benedikt et al. 1996; Vandeurzen et al. 1996].

Unlike research on the expressive power of datalog, there is no mainstream in
research on the expressive power of logic programming with complex values. Ex-
tension of declarative query languages by complex values is more actively studied
in database theory.

8. UNIFICATION AND ITS COMPLEXITY

What is the complexity of query answering for very simple logic programs con-
sisting of one fact? This problem leads us to the problem of solving equations
over terms, known as the unification problem. Unification lies in the very heart of
implementations of logic programming and automated reasoning systems.

Atoms or terms s and ¢ are called unifiable if there exists a substitution 1) that
makes them equal, i.e., the terms st and ¢ coincide; such a substitution 1 is called
a unifier of s and ¢t. The unification problem is the following decision problem:
given terms s and ¢, are they unifiable?

[Robinson 1965] described an algorithm that solves this problem and, if the an-
swer is positive, computes a most general unifier of given two terms. His algorithm
had exponential time and space complexity mainly because of the representation of
terms by strings of symbols. Using better representations (for example, by directed
acyclic graphs), Robinson’s algorithm was improved to linear time algorithms, e.g.
[Martelli and Montanari 1976; Paterson and Wegman 1978].

Theorem 8.1 ([Dwork et al. 1984; Yasuura 1984; Dwork et al. 1988]) The uni-
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fication problem is P-complete.

P-hardness of the unification problem was proved by reductions from some ver-
sions of the circuit value problem in [Dwork et al. 1984; Yasuura 1984; Dwork et al.
1988]. (Note that [Lewis and Statman 1982] states that unifiability is complete for
co-NL; however, [Dwork et al. 1984] gives a counterexample to the proof in [Lewis
and Statman 1982].)

Also, many quadratic time and almost linear time unification algorithms have
been proposed because these algorithms are often more suitable for applications
and generalizations (see a survey of the main unification algorithms in [Baader and
Siekmann 1994]). Here we mention only [Martelli and Montanari 1982]’s algorithm
based on ideas going back to [Herbrand 1972]’s famous work. Modifications of
this algorithm are widely used for unification in equational theories and rewriting
systems. The time complexity of Martelli and Montanari’s algorithm is O(nA~! (n))
where A~! is a function inverse to Ackermann’s function and thus A~! grows very
slowly.

9. LOGIC PROGRAMMING WITH EQUALITY

The relational model of data deals with simple values, namely tuples consisting of
atomic components. Various generalizations and formalisms have been proposed to
handle more complex values like nested tuples, tuples of sets, etc; see Section 7.2 and
[Abiteboul and Beeri 1995]. Most of these formalisms can be expressed in terms of
logic programming with equality [Gallier and Raatz 1986; Gallier and Raatz 1989;
Holldobler 1989; Hanus 1994; Degtyarev and Voronkov 1996] and constraint logic
programming considered in Section 10.

9.1 Equational theories

Let £ be a language containing the equality predicate =. By an equation over £ we
mean an atom s = ¢ where s and t are terms in £. An equational theory E over L is
a set, of equations closed under the logical consequence relation, i.e., a set satisfying
the following conditions: (i) E contains the equation x = z; (ii) if E contains s = ¢
then E contains t = s; (iii) if E contains r = s and s = t then E contains r = t;
(iv) if E contains s1 = t1,..., 8, = t, then E contains f(s1,...,8,) = f(t1,...,tn)
for each n-ary function symbol f € £; and (v) if E contains s = ¢ then E contains
s = t1d for all substitutions .

The syntax of logic programs over an equational theory E coincides with that
of ordinary logic programs. Their semantics is defined as a generalization of the
semantics of logic programming so that terms are identified if they are equal in E.

Ezxample 10. We demonstrate logic programs with equality by a logic program
processing finite sets. Finite sets are a typical example of complex values handled
in databases. We represent finite sets by ground terms as follows: (i) the constant
{} denotes the empty set, (ii) if s represents a set and ¢ is a ground term then
{t | s} represents the set {t} U s (where {t} and s are not necessarily disjoint).
However the equality on sets is defined not as identity of terms but as equality in
the equational theory in which terms are considered to be equal if and only if they
represent equal sets (we omit the axiomatization of this theory).
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Consider a very simple program that checks whether two given sets have a
nonempty intersection. This program consists of one fact

non_empty_intersection({X | Y1},{X | Ya}) « .

For example, to check that the sets {1,3,5} and {4,1, 7} have a common member,

we ask the query non_empty_intersection({1,3,5},{4,1,7}). The answer will be
positive. Indeed, the following system of equations has solutions in the equational
theory of sets:

{X | Yl} = {173:5}7 {X | YQ} = {471,7}

For example, set X =1,Y; = {3,5}, Yo = {4,7}.
Note that if we represent sets by lists in plain logic programming without equality,
any encoding of non_empty_intersection will require recursion.

The complexity of logic programs over E depends on the complexity of solving
systems of term equations in E. The problem of whether a system of term equations
is solvable in an equational theory E is known as the problem of simultaneous E-
unification.

A substitution 9 is called an E-unifier of terms s and ¢ if the equation s = to
is a logical consequence of the theory E. By the E-unification problem we mean
the problem of whether there exists an FE-unifier of two given terms. Ordinary
unification can be viewed as E-unification where E contains only trivial equations
t = t. It is natural to think of an F-unifier of s and ¢ as a solution to the equation
s =t in the theory F.

9.2 Complexity of E-unification

Solving equations is a traditional subject of all mathematics. Since any result on
solving equation systems can be viewed as a result on FE-unification, it is thus
practically impossible to overview all results on the complexity of E-unification.
Therefore, we restrict this survey to only few cases closely connected with logic
programming. The general theory of E-unification may be found e.g. in [Baader
and Siekmann 1994].

Let E be an equational theory over £ and - be a binary function symbol in
L (written in the infix form). We call - an associative symbol if E contains the
equation z - (y - z) = (x - y) - 2, where z,y and z are variables. Similarly, - is
called an AC-symbol (an abbreviation for an associative-commutative symbol) if -
is associative and, in addition, E contains z -y = y - x. If - is an AC-symbol and
E contains = - x = z, we call - an ACI-symbol (I stands for idempotence). Also, -
is called an AC1-symbol (or an ACI1-symbol) if - is an AC-symbol (an ACI-symbol
respectively) and E contains the equation z -1 = z where 1 is a constant belonging
to L.

Theorem 9.1 ([Makanin 1977; Baader and Schulz 1992; Benanav et al. 1987;
Koscielski and Pacholski 1996]) Let E be an equational theory defining a function
symbol - in L as an associative symbol (E contains all logical consequences of x - (y -
2) = (z-y)-z and no other equations). The following upper and lower bounds on the
complezxity of the E-unification problem hold: (i) this problem is in 3-NEXPTIME,
(i) this problem is NP-hard.
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Basically, all algorithms for unification under associativity are based on [Makanin
1977)’s algorithm for word equations. The 3-NEXPTIME upper bound is obtained
in [Koscielski and Pacholski 1996].

The following theorem characterizes other popular kinds of equational theories.

Theorem 9.2 ([Kapur and Narendran 1986; Kapur and Narendran 1992; Baader
and Schulz 1996]) Let E be an equational theory defining some symbols as one of
the following: AC-symbols, ACI-symbols, AC1-symbol, or ACI1-symbols (there can
be one or more of these kinds of symbols). Suppose the theory E contains no other
equations. Then the E-unification problem is NP-complete.

9.3 Complexity of nonrecursive logic programming with equality

In the case of ordinary unification, there is a simple way to reduce solvability of
finite systems of equations to solvability of single equations. However, these two
kinds of solvability are not equivalent for some theories: there exists an equational
theory E such that the solvability problem for one equation is decidable, while
solvability for (finite) systems of equations is undecidable [Narendran and Otto
1990].

Simultaneous FE-unification determines decidability of nonrecursive logic pro-
gramming over E.

Theorem 9.3 (implicit in [Dantsin and Voronkov 1997]) Let E be an equational
theory. Nonrecursive logic programming over E is decidable if and only if the prob-
lem of simultaneous E-unification is decidable.

An equational theory E is called NP-solvable if the problem of solvability of
equation systems in E is in NP. For example, the equational theory of finite sets
mentioned above, the equational theory of bags (i.e. finite multisets) and the equa-
tional theory of trees (containing only equations ¢t = t) are NP-solvable [Dantsin
and Voronkov 1999].

Theorem 9.4 ([Dantsin and Voronkov 1997; Dantsin and Voronkov 1999])
Nonrecursive logic programming over an NP-solvable equational theory E is in
NEXPTIME. Moreover, if E is a theory of trees, or bags, or finite sets, or any com-
bination of them, then nonrecursive logic programming over E is also NEXPTIME-
complete.

10. CONSTRAINT LOGIC PROGRAMMING

Informally, constraint logic programming (CLP) extends logic programming by in-
volving additional conditions on terms. These conditions are expressed by con-
straints, i.e., equations, disequations, inequations etc. over terms. The semantics
of such constraints is predefined and does not depend on logic programs.

Example 11. We illustrate CLP by the standard example. Suppose that we would
like to solve the following puzzle:

S
M
@)

2|0 =
= > =
plole

+
M
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All these letters are variables ranging over decimal digits 0,1,...,9. As usual,
different letters denote different digits and S, M # 0. This puzzle can be solved by
a constraint logic program over the domain of integers (Z,=,#,<,+, x,0,1,...).
Informally, this program can be written as follows.

find(S,E,N,D, M,O,R,E, M,0,N,E,Y) «
1<8<9, ...,0<Y <0,
S#E, ..., R#Y,
1000- S +100- E+10- N + D+
1000- M +100-O +10- R+ E =
10000 - M +1000- O +100-N +10- E+Y

The query find(S,E,N,D, M,O,R,E, M,O,N,E,Y) will be answered by the
only solution

L 9 5 6 7
1 0 8 5
1T 0 6 5 2

A structure is defined by an interpretation I of a language £ in a nonempty set
D. For example, we shall consider the structure defined by the standard interpre-
tation of the language consisting of the constant 0, the successor function symbol
s and the equality predicate = on the set N of natural numbers. This structure
is denoted by (N, =,s,0). Other examples of structures are obtained by replacing
N by the sets Z (the integers), Q (the rational numbers), R (the reals) or C (the
complex numbers). Below we denote structures in a similar way, keeping in mind
the standard interpretation of arithmetic function symbols in number sets. The
symbols x and / stand for multiplication and division respectively. We use k - = to
denote unary functions of multiplication by particular numbers (of the correspond-
ing domain); x* is used similarly. All structures under consideration are assumed
to contain the equality symbol.

Let S be a structure. An atom c¢(t1,...,t;) where t1,...,t; are terms in the
language of S is called a constraint. By a constraint logic program over S we mean
a finite set of rules

p(X) ~ Cla---:cm:QI(Xl)a---aQn(Xn)

where ¢y, ..., ¢y, are constraints, p,qi, ..., q, are predicate symbols not occurring

in the language of S, and X, X1, ..., X,, are lists of variables. The semantics of CLP
is defined as a natural generalization of semantics of logic programming, e.g. [Jaffar
and Maher 1994]. If S contains function symbols interpreted as tree constructors
(i.e. equality of corresponding terms is interpreted as ordinary unification) then
CLP over S is an extension of logic programming. Otherwise, CLP over S can be
regarded as an extension of Datalog by constraints.

10.1 Complexity of constraint logic programming

There are two sources of complexity in CLP: complexity of solving systems of con-
straints and complexity coming from the logic programming scheme. However, in-
teraction of these two components can lead to complexity much higher than merely
the sum of their complexities. For example, Datalog (which is EXPTIME-complete)
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with linear arithmetic constraints (whose satisfiability problem is in NP for integers
and in P for rational numbers and reals) is undecidable.

Theorem 10.1 ([Cox et al. 1990]) CLP over (N,=,s,0) is r.e.-complete. The
same holds for each of Z, Q, R, and C instead of N.

The proof uses the fact that CLP over (N,=,s,0,1) allows one to define addi-
tion and multiplication in terms of successor. Thus, diophantine equations can be
expressed in this fragment of CLP.

On the other hand, simpler constraints, namely constraints over ordered infinite
domains (of some particular kind), do not increase the complexity of Datalog.

Theorem 10.2 ([Cox and McAloon 1993]) CLP over (Z,=,<,0,+1,£2,...) is
EXPTIME-complete. The same holds for Q or R instead of Z.

Decidable fragments of CLP over more complex structures are obtained by re-
strictions imposed on constraint logic programs. For example, we consider a con-
servative CLP in which rules satisfy the restriction: all variables occurring in the
body occur in the head.

Theorem 10.3 ([Cox et al. 1990]) Conservative CLP is EXPTIME-complete over
each of the following structures:

Q,=,<,<,+,—,k-x,0,1,...), i.e. linear inequations over the rational numbers;
(R,=,<,<,+,—,k-2,0,1,...), i.e. linear inequations over the reals;
(R,=,<,<,+,—, %, /,2%,0,1,...), i.e. polynomial inequations over the reals;
(C,=,+,—,%,/,2%,0,1,...), i.e. polynomial equations over the complex num-
bers.

The proof is based on the known results on the complexity of algorithms for
the corresponding algebraic structures [Canny 1988; Renegar 1988; Grigoryev and
Vorobjov 1988; Terardi 1989]. If we allow nonground queries, EXPTIME-completeness
has to be replaced by NEXPTIME-completeness.

A very general formalism for logic programming with constraints is the constraint
database model introduced by [Kanellakis et al. 1990]. They define a constraint
database as a quantifier-free formula over a given mathematical structure (e.g. the
field of the real numbers). In the simplest case, this could be a finite relational
database, but in general, a constraint database finitely represents an infinite number
of tuples. They investigate the data complexity of first-order logic (FO) and datalog
over constraint databases and prove that for the case of the real field, FO queries
over constraint databases are in the parallel complexity class NC, while datalog
queries are in P. For finite databases, [Benedikt and Libkin 1996] improved the NC
upper bound to the parallel class TC?, which contains the languages recognized by
constant depth threshold circuits [Johnson 1990].

10.2 Expressiveness of constraints

There are various different settings in which expressiveness issues of logic program-
ming formalisms with constraints have been studied. Expressiveness of first-order
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logic and of datalog with constraints is currently an intensive research area of
Database Theory. Many important papers on this subject can be found in the
proceedings of recent PODS, ICDT or LICS conferences.? A detailed and uniform
treatment is beyond the scope of this paper. In this section, we limit ourselves to
a brief description of a number of relevant references, most closely related to the
setting of [Kanellakis et al. 1990].

A main research issue was the question whether properties such as parity that
cannot be expressed in FO or stratified datalog (without order) could be expressed
in the respective formalisms extended by constraints. This question has two dif-
ferent interpretations, depending on how we interpret the variables in a query.
The active interpretation restricts the domain of possible values for a variable to
those values that effectively appear in the database (i.e., to the active domain).
The natural interpretation does not make this restriction and allows a variable to
be interpreted by any value of the underlying domain (e.g. the reals). Note that
these two interpretations coincide for classical relational calculus [Hull and Su 1994;
Benedikt and Libkin 1997].

For the active interpretation of first-order constraint queries, the above question
was solved independently by [Benedikt et al. 1996] and by [Otto and van den Buss-
che 1996]. It was shown that the generic queries expressible by FO with constraints
are contained in those expressible by FO plus linear order. In particular, it follows
that parity is not expressible in the constraint setting. The expressiveness problem
for datalog with constraints was resolved in [Benedikt and Libkin 1997] by using
Ramsey Theory. In analogy to the results for first-order logic, it was shown that
datalog with constraints is not more expressive than datalog plus linear order.

For the natural interpretation, it was shown in [Grumbach and Su 1995] that ev-
ery recursive query is definable by FO with polynomial constraints over the natural
numbers. As shown in [Kanellakis and Goldin 1994; Grumbach et al. 1995], and
[Benedikt et al. 1996], similar results do not hold for the reals. In particular, in
[Benedikt et al. 1996] it was shown that over the field of reals, every generic query of
first-order logic with constraints can be rewritten as an equivalent query that uses
only the natural order “<”. From this result, together with results in [Paredaens
et al. 1998], it follows that every generic query of first-order logic with constraints
under the natural interpretation can be expressed as an equivalent query under
the active interpretation. Therefore, the same expressivity bound as for the active
interpretation holds (see the previous paragraph); in particular, parity cannot be
expressed.

In [Benedikt and Libkin 1996] and [Benedikt and Libkin 1997] it was shown
that for polynomial constraints over the reals, the active and the natural semantics
actually coincide. This result can be generalized — with some care — to fixpoint logic
and datalog [Benedikt and Libkin 1997]. If function symbols are allowed to occur
in the bodies of datalog rules, then every recursive query is expressible. However,
if a hybrid approach is taken, where the fixpoint computation is restricted to the
active domain of a database, while quantification refers to the natural domain,

3PODS=ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems;
ICDT = International Conference on Database Theory; LICS = IEEE Symposium on Logic in
Computer Science.
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then a similar collapse as for FO also happens for fixpoint logic and datalog. These
results for the reals generalize to a large class of other structures with quantifier
elimination.
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