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The P versus NP problem is to determine whether every language accepted
by some nondeterministic Turing machine in polynomial time is also accepted
by some deterministic Turing machine in polynomial time. Unquestionably
this problem has caught the interest of the mathematical community. For
example, it is the first of seven million-dollar “Millennium Prize Problems”
listed by the Clay Mathematics Institute [www.claymath.org]. The Riemann
Hypothesis and Poincaré Conjecture, both mathematical classics, are farther
down the list. On the other hand Fields Medalist Steve Smale lists P versus
NP as problem number three, after Riemann and Poincaré, in “Mathematical
Problems for the Next Century” [Sma98].

But P versus NP is also a problem of central interest in computer science.
It was posed thirty years ago [Coo71, Lev73] as a problem concerned with
the fundamental limits of feasible computation. Although this question is
front and center in complexity theory, NP-completeness proofs have become
pervasive in many other areas of computer science, including artificial in-
telligence, data bases, programming languages, and computer networks (see
[GJ79] for 300 early examples).

If the question is resolved, what would be the consequences? Consider first a
proof of P=NP. It is possible that the proof is nonconstructive, in the sense
that it does not yield an algorithm for any NP-complete problem. Or it might
give an impractical algorithm, for example running in time n'%. In either
of these cases the proof would probably have few practical consequences
other than to disappoint complexity theorists. However experience has shown
that when natural problems are proved to be in P, a feasible algorithm
can be found. There are potential counterexamples to this assertion, most
famously the deep results of Robertson and Seymour [RS95]. They prove
that every minor closed family of graphs can be recognized in time O(n?),

IThis is mostly abstracted from the author’s article “The P versus NP Problem”,
available at www.claymath.org/prizeproblems/pvsnp.htm.



but their algorithm has such huge constants it is not practical. But practical
algorithms are known for some specific minor-closed families (such as planar
graphs), and possibly could be found for other examples if sufficient effort is
expended.

If P=NP is proved by exhibiting a truly feasible algorithm for an NP-
complete problem such as SATISFIABILITY (deciding whether a collection
of propositional clauses has a satisfying assignment), the practical conse-
quences would be stunning. First, most of the hundreds of problems shown
to be NP-complete can be efficiently reduced to SATISFIABILITY, so many
of the optimization problems important to industry could be solved. Second,
mathematics would be transformed, because computers could find a formal
proof of any theorem which has a proof of reasonable length. This is because
formal proofs (say in Zermelo-Fraenkel set theory) are easily recognized by
efficient algorithms, and hence bounded proof existence is in NP. Although
the formal proofs may not be intelligible to humans, the problem of finding
intelligible proofs would be reduced to that of finding a good recognition algo-
rithm for formal proofs. Similar remarks apply to the fundamental problems
of artificial intelligence: planning, natural language understanding, vision,
and even creative endeavors such as composing music and writing novels. In
each case success would depend on finding good algorithms for recognizing
good results, and this fundamental problem itself would be aided by the SAT
solver by allowing easy testing of recognition theories.

One negative consequence of a feasible proof that P=NP is that complexity-
based cryptography would become impossible. The security of the Internet,
including most financial transactions, depends on assumptions that com-
putational problems such as large integer factoring or breaking DES (the
Data Encryption Standard) cannot be solved feasibly. All of these problems
are efficiently reducible to SATISFTABILITY. (On the other hand, quantum
cryptography would survive a proof of P=NNP, and might solve the Internet
security problem.)

Now consider the consequences of a proof that P#NP. Such a proof might
just answer the most basic of a long list of important related questions that
could keep complexity theorists busy far in the future. How large is the
time lower bound for SATISFTABILILITY: is it barely super polynomial
or is it truly exponential, or is it in between? Does it apply just for the



worst case inputs, or are there convincing average case lower bounds [Lev86,
Gur91]? What about lower bounds for NP approximation problems [Vaz01]?
Are there lower bounds for problems such as integer factorization that are
reducible to NP problems but may not be NP-hard? In general, proving
the security of cryptographic protocols such as RSA or DES is much harder
than proving P#NP.

Most complexity theorists, including the author, believe that P£ANP (see
[Gas02] for a recent poll). I would summarize the argument in favor of PANP
by saying that we are really good at inventing efficient algorithms, but really
bad at proving algorithms don’t exist. There are powerful techniques which
are part of the standard undergraduate computer science curriculum for de-
vising efficient algorithms for diverse problems. Millions of smart people,
including engineers and programmers, have tried hard for many years to find
a provably efficient algorithm for one or more of the 1000 or so NP-complete
problems, but without success.

Contrast this with the efforts of the small set of mathematicians who seriously
work on proving P#ZNP. There are reasons why the main techniques tried
for proving complexity lower bounds may not work for showing P#NP: a
proof based on diagonalization cannot relativize [BGS75], and a proof based
on Boolean circuit lower bounds cannot be “natural” [RR97]. Further, there
are natural complexity class separations which we know exist but we cannot
prove. Consider the sequence of complexity class inclusions

LOGSPACE C P C NP C PSPACE

A simple diagonal argument shows that the first is a proper subset of the
last, so it follows that one of the three adjacent inclusions must be proper.
But no proof is known that any particular one is proper.

Assuming that P#NP, when and if will a proof be found? Apparently by
the year 2100, if one believes the majority opinion from the poll [Gas02].
It is difficult to say whether much progress has been made to date, since
there is no convincing program toward finding a proof. There are recent
beautiful results in complexity theory involving probabilistically checkable
proofs [ALM*98] and derandomization [ISW99] which create deep insights
into the nature of computation, and it is nice to think that these ideas will
someday contribute to a proof of P#NP.
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