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Abstract. Decompositions of graphs play a central role in the field of
parameterized complexity and are the basis for many fixed-parameter
tractable algorithms for problems that are NP-hard in general. Tree de-
compositions are the most prominent concept in this context and several
tools for computing tree decompositions recently competed in the 1st
Parameterized Algorithms and Computational Experiments Challenge.
However, in practice the quality of a tree decomposition cannot be judged
without taking concrete algorithms that make use of tree decompositions
into account. In fact, practical experience has shown that generating de-
compositions of small width is not the only crucial ingredient towards
efficiency. To this end, we present htd, a free and open-source software
library, which includes efficient implementations of several heuristic ap-
proaches for tree decomposition and offers various features for normal-
ization and customization of decompositions. The aim of this article is
to present the specifics of htd together with an experimental evaluation
underlining the effectiveness and efficiency of the implementation.
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1 Introduction

Graph decompositions are an important concept in the field of parameterized
complexity and a wide variety of such approaches can be found in the litera-
ture including tree decompositions [11, 23, 37], branch decompositions [38], and
hypertree decompositions [22] (of hypergraphs), to mention just a few. The con-
cept of tree decompositions gained special attention since many NP-hard search
problems become tractable when the parameter treewidth is bounded by some
constant k [8, 12, 36]. A problem that exhibits tractability by bounding some
problem-inherent constant is also called fixed-parameter tractable (FPT) [18].

The standard technique for solving a given problem using this concept is the
computation of a tree decomposition followed by a dynamic programming (DP)
algorithm that traverses the nodes of the decomposition and consecutively solves
the respective sub-problems [36]. For problems that are FPT w.r.t. treewidth,
the general run-time of such algorithms for an instance of size n is f(k) · nO(1),
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where f is an arbitrary function over width k of the used tree decomposition. In
fact, this approach has been used for several applications including the solving
of inference problems in probabilistic networks [32], frequency assignment [30],
computational biology [42], logic programming [33], routing problems [17], and
solving of quantified boolean formulae [14].

From a theoretical point of view the actual width k is the crucial parame-
ter towards efficiency for FPT algorithms that use tree decompositions. In the
literature various approaches for optimizing width when computing decomposi-
tions have been proposed (see Section 2), but to the best of our knowledge no
software frameworks exist which offer the feature to customize tree decomposi-
tions by other criteria than just minimizing the plain width. However, experience
shows that even decompositions of the same width can lead to significant dif-
ferences in the run-time of DP algorithms and recent results confirm that the
width is indeed not the only important parameter that has a significant influence
on the performance [27, 33]. In particular, [4, 6] has underlined that considering
such additional criteria is highly beneficial. Nevertheless, a post-processing phase
based on machine learning was needed to determine “good” tree decompositions.
Therefore we see a strong need to offer a specialized decomposition framework
that allows for directly constructing customized decompositions, i.e., decompo-
sitions which reflect certain preferences of the developer, in order to optimally
fit to the DP algorithm in which they are used. In this paper we present a free,
open-source framework (htd) which supports a vast amount of input graph types
and different types of decompositions. htd includes efficient implementations of
several heuristic approaches for computing tree decompositions. Furthermore,
htd provides various built-in customization and manipulation operations in or-
der to fit the needs of developers of DP algorithms. These include normalizations,
optimization of tree decompositions, computation of induced edges and labeling
operations (see Section 3).

Just recently, htd participated in the “First Parameterized Algorithms and
Computational Experiments Challenge” (“PACE16”)1 where it was ranked at
the third place in the heuristics track. Although htd provides lots of additional
convenience functions, the results of htd with respect to the optimization of width
are very close to those of the heuristic approaches ranked at the first two places.
In Section 4, we will present some complementing experimental evaluation that
also sheds light on the effect of customization when decompositions are used in
a specific DP algorithm.

htd has been already used successfully in different projects, like D-FLAT [2],
a framework for rapid-prototyping of dynamic programming algorithms on tree
decompositions, or dynQBF [14], a DP-based solver for quantified boolean for-
mulae. Our framework is available for download as free, open-source software at
https://github.com/mabseher/htd. We consider htd as a potential starting
point for researchers to contribute their algorithms in order to provide a new
framework for all different types of graph decompositions. A detailed report on
htd and all its features can be found in [5].

1 See https://pacechallenge.wordpress.com/track-a-treewidth/ for more details.
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2 Background

The intuition underlying tree decompositions is to obtain a tree from a (po-
tentially cyclic) graph by subsuming multiple vertices in one node and thereby
isolating the parts responsible for the cyclicity. Formally, the notions of tree
decomposition and treewidth are defined as follows [37, 13].

Definition 1. Given a graph G = (V,E), a tree decomposition of G is a pair
(T, χ) where T = (N,F ) is a tree and χ : N → 2V assigns to each node a set of
vertices (called the node’s bag), such that the following conditions hold:

1. For each vertex v ∈ V , there exists a node i ∈ N such that v ∈ χi.
2. For each edge (v, w) ∈ E, there exists an i ∈ N with v ∈ χi and w ∈ χi.
3. For each i, j, k ∈ N : If j lies on the path between i and k then χi ∩χk ⊆ χj.

The width of a given tree decomposition is defined as max i∈N |χi| − 1 and the
treewidth of a graph is the minimum width over all its tree decompositions.

Note that the tree decomposition of a graph is in general not unique. In the
following we consider rooted tree decompositions.

Definition 2. A normalized (or nice) tree decomposition of a graph G is a
rooted tree decomposition (T, χ) where each node i ∈ N is of one of the following
types: (1) Leaf: i has no child nodes; (2) Introduce Node: i has one child j with
χj ⊂ χi and |χi| = |χj |+ 1; (3) Forget Node: i has one child j with χj ⊃ χi and
|χi| = |χj | − 1; (4) Join Node: i has two children j, k with χi =χj =χk.

Each tree decomposition can be transformed into a normalized one in linear
time without increasing the width [29]. Apart from nice tree decompositions,
one can find numerous other normalizations in the literature [3].

While the problem of constructing an optimal tree decomposition, i.e. a de-
composition with minimal width, is intractable [7], researchers have proposed
several exact methods for small graphs and efficient heuristic approaches that
usually construct tree decompositions of almost optimal width for larger graphs.
Examples of exact algorithms for tree decompositions are [39, 21, 9]; greedy
heuristic algorithms include Minimum Degree heuristic [10], Maximum Cardi-
nality Search (MCS) [40], and Min-Fill heuristic [16]. Metaheuristic techniques
have been provided in terms of genetic algorithms [31, 35], ant colony optimiza-
tion [25], and local search based techniques [28, 15, 34]. Recent surveys [13, 26]
provide further details.

Several software frameworks that implement some of the tree decomposi-
tion algorithms mentioned above are publicly available. These libraries include
QuickBB [21]2, htdecomp [19]3 and Jdrasil4. Very recently, also an open database
for computation, storage and retrieval of tree decompositions was initiated [41].

2 Available at http://www.hlt.utdallas.edu/∼vgogate/quickbb.html
3 Available at http://www.dbai.tuwien.ac.at/proj/hypertree/downloads.html
4 Available at https://github.com/maxbannach/Jdrasil
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3 A Framework for (Customized) Tree Decompositions

The aforementioned tree decomposition software frameworks focus mainly on
computing tree decompositions of small width; optimizing the resulting decom-
position with respect to a concrete DP algorithm to be applied is therefore
left to the user. Our system, htd, provides an efficient implementation of sev-
eral algorithms that compute tree decompositions of small width and aims for
much richer customizations of the resulting tree decomposition: this includes
normalizations, further optimization criteria (for instance, minimizing the total
number of children of join nodes), or augmenting the information in the bags
(for instance, including the subgraph induced by the vertices of the bag) of the
provided decomposition. In what follows we highlight the main features.

Computing Tree Decompositions: The framework provides efficient implemen-
tations of several heuristic approaches for tree decompositions including MCS,
Minimum Degree heuristic, Min-Fill heuristic and their combination. The default
tree decomposition strategy in htd is Min-Fill.

Manipulation Operations and Normalizations: Manipulations in the context of
htd refer to all operations which alter a given decompositions, e.g., by ensur-
ing that the maximum number of children of decomposition nodes is limited.
Normalizations are manipulations which combine multiple base manipulation
operations, e.g., one can use them to request only nice tree decompositions.

Optimization: In the context of htd, the term “optimization” is used to refer to
operations which improve certain properties of a decomposition. Via optimiza-
tion the obtained decomposition adheres to certain preferences. htd offers the
ability to optimize by searching for the optimal root node and also by choosing
the best tree decomposition based on a custom (potentially multi-level) criterion.
Combining these two strategies might yield even better results.

Computation of Induced Edges: Any DP algorithm needs precise knowledge
about the (hyper-)edges of the problem instance’s graph representation induced
by a bag because this is the information which actually matters when the prob-
lem at hand has to be solved. Computing this information inside the DP step
is not only time-consuming, it also potentially destroys the property of fixed-
parameter tractability in practice because in each bag one might need to scan
the whole edge set of the input. htd computes and delivers this information very
efficiently by extending decomposition algorithms appropriately.

Labels and Labeling Operations: Labels generalize the concept that is used for
the induced edges to arbitrary information. They can be used to take care of
supplemental information of the input instance and they can enhance the knowl-
edge base represented by a decomposition. In both cases, one can define labeling
functions and operations which automate the process of assigning labels.

All these customization features can be applied directly in the context of the
decomposition procedure and no further code changes are necessary. The basic
work-flow of how to obtain a customized decomposition of a problem instance
using htd is the following: At first, the input specification which represents an
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instance of a given problem must be transformed to its corresponding instance
graph. Depending on the actual need, a developer can choose from several built-
in graph types, like directed and undirected ones as well as hypergraphs. In order
to be able to manage additional information about the input instance, htd also
offers labeled and so-called named counterparts for each graph type. A labeled
graph type allows to add arbitrary labels to the vertices and edges of the graph.

Named graph types extend this helpful feature by providing a bi-directional
one-to-one mapping between labels and the vertices or edges, respectively. This
can be useful in cases where one wants to access vertices and edges not only by
their identifiers but also by a custom “name” which can be of arbitrary data
type. Importers for graph formats like DIMACS and GraphML are provided by
htd, but one can also construct the graph manually using a custom importer.

After all information of the input instance is parsed, the next step for a
developer is to decide for the decomposition algorithm to use and (optionally)
choose from the wide range of built-in manipulation operations or to implement
its own, custom manipulation. By running the decomposition algorithm with
the instance graph as its input, we obtain a customized decomposition which
then can be used in the dynamic programming algorithm. Alternatively, the
decomposition can be exported or printed using built-in functionality.

4 Experimental Evaluation

In this section we give first results regarding the performance characteristics of
our framework. The experiments in this paper are based on two investigations.
At first, we have a look at the actual efficiency of htd in terms of the minimum
width achieved within a fixed time period. Afterwards we highlight the usefulness
of htd ’s ability to optimize tree decompositions based on custom criteria.

All our experiments were performed on a single core of an Intel Xeon E5-
2637@3.5GHz processor running Debian GNU/Linux 8.3. For repeatability of the
experiments we provide the complete testbed and the results under the following
link: www.dbai.tuwien.ac.at/proj/dflat/evaluation htd100b1.zip

4.1 Efficient Computation of Minimum-Width Decompositions

In order to have an indication for htd ’s actual competitiveness, we compare htd
1.0.0-beta1 [1] to the participants of Track A (“Treewidth”) of the Parameterized
Algorithms and Computational Experiments Challenge 2016 (“PACE16”).

The following list of algorithms contains htd and all further participants of
the sequential heuristics track of the PACE treewidth challenge in the variant in
which they were submitted. For each of the algorithms we provide the name of
the binary, the ID in the PACE challenge (if applicable), the location of its source
code and the exact identifier of the program version in the GitHub repository.
Most of the algorithms use Min-Fill as basic decomposition strategy.

– htd 0.9.9: “htd gr2td minfill exhaustive.sh” (PACE-ID: 5)
Available at https://github.com/mabseher/htd
GitHub-Commit-ID: f4f9b8907da2025c4c0c6f24a47ff4dd0bde1626
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– htd 1.0.0-beta1: “htd gr2td exhaustive.sh” (No participant of PACE)
Available at https://github.com/mabseher/htd

GitHub-Commit-ID: f04bfd256e0be0eb536ef04410b541b15206255d
– “tw-heuristic” (PACE-ID: 1)

Available at https://github.com/mrprajesh/pacechallenge.
GitHub-Commit-ID: 6c29c143d72856f649de99846e91de185f78c15f

– “tw-heuristic” (PACE-ID: 6)
Available at https://github.com/maxbannach/Jdrasil

GitHub-Commit-ID: fa7855e4c9f33163606a0677485a9e51d26d7b0a
– “tw-heuristic” (PACE-ID: 9)

Available at https://github.com/elitheeli/2016-pace-challenge

GitHub-Commit-ID: 2f4acb30b5c48608859ff27b5f4e217ee8346ca5
– “tw-heuristic” (PACE-ID: 10) [20]

Available at https://github.com/mfjones/pace2016

GitHub-Commit-ID: 2b7f289e4d182799803a014d0ee1d76a4de70c1f
– “flow cutter pace16” (PACE-ID: 12) [24]

Available at https://github.com/ben-strasser/flow-cutter-pace16

GitHub-Commit-ID: 73df7b545f694922dcb873609ae2759568b36f9f

htd already proved its efficiency on the instances of the PACE challenge
by achieving the third place in the competition5. Because these instances are
relatively small – htd is able to decompose any of the instances in less than two
seconds – we want to present here also results for larger instances.

For this purpose we consider in our experiments instances which are used in
competitions for quantified boolean formulas (QBFs). In fact, we decompose here
the Gaifman graph underlying the CNF matrix of the QBFs thus ignoring the
actual quantifier prefix (DP-based solvers for QBFs like dynQBF [14] handle
the quantifier information internally and only require a decomposition of the
matrix as input). We used DataSet 1 from the QBFEVAL’16 competition6. The
data set contains 825 instances, most of them being significantly larger than the
instances of the PACE challenge. In the experiments, each test run was limited
to a run-time of at most 100 seconds and 32 GB of main memory. For the actual
evaluation we use the testbed of the PACE challenge7.

In Figure 1 we present the outcome of our experiments in a plot of the
cumulative frequency of the obtained widths for each of the algorithms (IDs are
those of the PACE challenge). A point (x, y) in the diagram indicates that y
decompositions have a width of x or less. This means, an algorithm is better in
terms of decomposition width when its line chart reaches the top with minimal
width. We can see that already the “old” version of htd used in the PACE
challenge outperforms its competitors in the region between width 250 and 1000.
The recent version of htd improves upon these results and shows that only in
regions with very high width, two of its competitors are able to decompose more
instances.

5 See https://pacechallenge.wordpress.com/2016/09/12/here-are-the-results-

of-the-1st-pace-challenge/
6 Available at http://www.qbflib.org/TS2016/Dataset 1.tar.gz
7 Available at https://github.com/holgerdell/PACE-treewidth-testbed
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Fig. 1. Decomposition quality for instances of QBFEVAL2016 challenge

Iterations Solved Instances (Total) Solved Instances (Mean) Total User-Time

1 491 98.2 5904.54
5 512 102.4 6375.08
10 512 102.4 5908.78

Table 1. Results for dynQBF using tree decompositions with low join node complexity

4.2 Using Customized Tree Decompositions to Increase Efficiency

Next, we highlight the usefulness of htd ’s ability to optimize tree decompositions
via an application scenario using the QBF solver dynQBF [14]8. dynQBF makes
extensive use of htd ’s features (especially concerning induced edges) and benefits
from customized tree decompositions as provided by htd.

For the following experiments we consider the 200 instances of the 2QBF
track of the QBFEVAL2014 competition9. These instances differ from those
used in Section 4.1 due to the fact that after decomposing we still need to run
the dynamic programming algorithm. For each of the test runs we allow a single
thread, 10 minutes execution time and 16 GB of main memory. This time, we
only consider htd as decomposition library as, to the best of our knowledge,
currently no other framework considers custom preferences for optimization.

Table 1 shows the results of the experiments running dynQBF (using htd
1.0.0-beta1). For each instance, five different tree decompositions were generated
using the Min-Fill heuristics with different seeds. The first column shows the
number of optimization iterations, i.e., the number of iterations after which the
best known decomposition is returned. The second and third column show the
total and average number of instances over the five repetitions which were solved
successfully using the best decomposition found and the last column shows the
total amount of solving time, restricted to the instances successfully solved.

As fitness function for the optimization we aim at minimizing the complexity
of join nodes given by the formula

∑
j∈J

∏
c∈Cj

|χc| where J is the set of join

8 Available at https://github.com/gcharwat/dynqbf/releases/tag/v0.3-beta
9 Available at http://www.qbflib.org/TS2010/2QBF.tar.gz
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nodes and Cj is the set of children of node j. That is, we want the total sum of
the products of the join node children’s bag sizes to be as small as possible. The
intuition is that when the given measure is small, the dynamic programming
algorithm is more efficient in join nodes.

We can see that with a single iteration, i.e., without optimization, dynQBF
solves about 98 out of 200 instances in average. The table illustrates that the
number of solved instances in our example scenario increases when we use five
iterations for the optimization phase. Therefore the total solving time increases.
An interesting observation is the fact that using ten optimization iterations we
need almost the same amount of time as without optimization, but we still
can solve more instances.10 That means that the (on average) four additional
instances come for free in our scenario.

Note that with a statistical significance of over 99.95%, the width of the
obtained decompositions does not change with the number of iterations, i.e., the
customized tree decompositions indeed increase the efficiency of the dynQBF
algorithm. Hence, by using an optimization function of not more than ten lines
of code, one can already achieve improvements using htd.

5 Conclusion

In this paper we presented a new open-source framework for tree decompositions
called htd. To the best of our knowledge, htd is the first software framework
which aims for optimizing tree decompositions by other criteria than just the
plain width. We gave an overview over its features and provided an introduction
on how to use the library (for more details, see [5]). Moreover, we evaluated
our approach by comparing the performance of htd and other participants of
the Parameterized Algorithms and Computational Experiments Challenge 2016.
The outcome of the evaluation indicates that the performance characteristics of
the new framework are indeed encouraging. Furthermore, we showed that cus-
tomizing tree decompositions is a powerful feature which can improve efficiency
of dynamic programming algorithms using those decompositions.

For future work we want to further improve the built-in heuristics and al-
gorithms in order to enhance the capabilities for generation of customized de-
compositions of small width. Furthermore we are currently working on making
some exact algorithms for tree decompositions amenable to customization. Last,
but not least, we invite researchers and software developers to contribute to the
library as we try to initiate a joint collaboration on a powerful framework for
graph decompositions and any input is highly appreciated.

Acknowledgments This work has been supported by the Austrian Science Fund
(FWF): P25607-N23, P24814-N23, Y698-N23.

10 When we use a pool of ten decompositions to choose from, the chance for obtaining an
even better decomposition increases. However, no additional instance is solved when
we change from five to ten iterations, but the run-time for the solved instances further
decreases (compensating the time required for computing more decompositions).
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