
A Multi-stage Simulated Annealing Algorithm
for the Torpedo Scheduling Problem

Lucas Kletzander and Nysret Musliu

TU Wien,
Karlsplatz 13, 1040 Wien, Austria

{lkletzan,musliu}@dbai.tuwien.ac.at

Abstract. In production plants complex chains of processes need to be
scheduled in an efficient way to minimize time and cost and maximize
productivity. The torpedo scheduling problem that deals with optimiz-
ing the transport of hot metal in a steel production plant was proposed
as the problem for the 2016 ACP (Association for Constraint Program-
ming) challenge. This paper presents a new approach utilizing a multi-
stage simulated annealing process adapted for the provided lexicographic
evaluation function. It relies on two rounds of simulated annealing each
using a specific objective function tailored for the corresponding part of
the evaluation goals with an emphasis on efficient moves. The proposed
algorithm was ranked first (ex aequo) in the 2016 ACP challenge and
found the best known solutions for all provided instances.

Keywords: torpedo scheduling; simulated annealing; lexicographic eval-
uation function

1 Introduction

Production plants have a wide range of complex chains of processes that raise
the need for optimization. To be competitive, cost needs to be minimized and
efficiency and productivity need to be maximized. A selected scheduling problem
in steel production was chosen for the 2016 ACP (Association for Constraint
Programming) challenge [12]. The aim was to provide the best solutions for the
torpedo scheduling problem where the transport of hot metal across various zones
needs to optimized. The goal is to use as few transport vehicles (torpedoes) as
possible and keep the time spent for a chemical process called desulfurization low
while satisfying all deadlines and moving through the zones respecting capacity
and duration constraints.

So far we know one other approach to the same problem by Geiger [4] ranking
third in the competition. He used a branch and bound procedure to traverse feasi-
ble transport assignments and solved a resource-constrained scheduling problem
based on variable neighborhood search to minimize desulfurization times. Other
optimization problems in steel production have been researched in the past years.
The molten iron allocation problem, modeled as a parallel machine scheduling
problem [13] and the molten iron scheduling problem modeled as a flow shop



2 Lucas Kletzander and Nysret Musliu

problem [6, 9] deal with assignments of torpedoes to machines. Various torpedo
scheduling problems are defined for planning the transport of hot metal with the
focus on vehicle routing across a network of rails and the objective to minimize
transportation times [7, 2, 10]. Further production stages of steel making are also
considered, e.g. steelmaking-continuous casting [14] which comes after the stage
considered in this paper.

The approach we used is to utilize a multi-stage simulated annealing pro-
cess adapted for the provided lexicographic evaluation function. The technique
to simulate the physical process of annealing was introduced in [8] and is a
widely used technique in many applications [3, 11]. Applications of multi-stage
algorithms can be found in the domain of vehicle routing problems with time
windows. These applications range back to [5] and also include application of
simulated annealing [1], however, only for one stage. Several of these problems
share a primary goal to minimize a number of vehicles, but pursue very different
secondary objectives.

In our approach the first round of simulated annealing focuses on the primary
goal of optimizing the number of torpedoes while the second round deals with the
secondary goal of reducing the desulfurization time. The algorithm is designed
to try a large number of moves in a short time by emphasis on efficient move
calculations. Various parameters for the algorithm were determined by empiric
evaluation. With this process it was possible to obtain the best solutions found
in the competition for all given instances.

2 Problem Definition

The selected problem represents a part of the steel production process in a steel
production plant. The blast furnace (BF) continually produces hot metal with
a certain level of sulfurization that needs to be picked up at certain deadlines.
From there the metal is transported via torpedoes which are cars suited for the
transport of hot metal. There are two possible routes the torpedoes can take.

The first and standard route is to transition to a buffer zone (full buffer, FB)
where torpedoes can wait for an arbitrary amount of time. Afterwards they reach
the desulfurization zone (D) where the sulfurization level of the hot metal can be
lowered. The time that needs to be spend at this station is proportional to the
desired decrease in sulfurization levels. The delivery zone is at the converter (C)
where the hot metal is unloaded from the torpedoes. The hot metal is required at
certain deadlines at the converter. However, there is a maximum sulfuriziation
level set for each deadline that the delivered hot metal must respect. Finally,
the torpedo returns to another buffer zone (empty buffer, EB) where empty
torpedoes wait for their next turn.

The other route can be used in order to get rid of excess hot metal that is not
needed at the converter. It consists of a transition to the emergency pit where
the torpedo disposes the hot metal and then returns to the buffer zone for empty
torpedoes (EB). This route takes a fixed amount of time.



Multi-stage Simulated Annealing for Torpedo Scheduling 3

2.1 Instance Representation

For each instance of the problem several global parameters specifying the details
of the production plant are given. durBF specifies the duration of filling a torpedo
at the blast furnace. durConverter specifies the duration of unloading a torpedo
at the converter.

The sulfurization level of hot metal is assumed to have five possible levels from
1 (low) to 5 (high). durDesulf specifies the time needed at the desulfurization
zone to lower the sulfurization level by 1.

Further the three parameters specifying the amount of available slots in indi-
vidual zones are nbSlotsFullBuffer , nbSlotsDesulf and nbSlotsConverter . These
denote the maximum number of torpedoes that are allowed to stay at the zone
at any given time. For the blast furnace and any transition between stations
only one torpedo is allowed at the same time. There are no limits for the empty
buffer and the emergency pit.

Finally the minimum transition times between any two adjacent zones are
specified via the values tt〈Zone1 〉To〈Zone2 〉.

The goal of the algorithm is to schedule the routes of the torpedoes for an
extended period of time. For this purpose, a series of blast furnace deadlines and
converter deadlines is included in every instance.

Blast furnace deadlines are described as BF 〈id〉 〈time〉 〈sulf 〉 where 〈id〉 iden-
tifies the individual deadline. 〈time〉 denotes the exact point in time when the
hot metal will be released, therefore at this point in time a torpedo must be
waiting to receive the metal. 〈sulf 〉 denotes the sulfurization level the metal will
have.

Converter deadlines are similarly described as C 〈id〉 〈time〉 〈maxSulf 〉 where
〈id〉 identifies the individual deadline. 〈time〉 denotes the exact point in time
when the hot metal has to be provided by a torpedo located at the converter.
〈maxSulf 〉 denotes the maximum sulfurization level that can be accepted.

The instance files for the competition can be found on the web page.1

2.2 Solution Representation

The solution format contains the used number of torpedoes nbTorpedoes, fol-
lowed by a list of torpedo tours. Each tour first contains three IDs. idTorpedo
specifies the torpedo used for this tour in the range [0,nbTorpedoes − 1]. idBF
specifies the ID of the blast furnace output the torpedo receives on this tour and
idC denotes the ID of the converter demand the torpedo satisfies on this tour
or −1 in case the metal is disposed at the emergency pit.

Next for each tour a set of time points is given, determining the exact se-
quence of the tour. For each zone start〈Zone〉 and end〈Zone〉 are specified ac-
cording to the order the torpedo passes through the zones. The time points from
startFB to endC are only specified for regular tours, but are missing for tours
using the emergency pit.

1 http://cp2016.a4cp.org/program/acp-challenge-app/instance



4 Lucas Kletzander and Nysret Musliu

2.3 Evaluation Function

The function given for the evaluation of the solution quality considers the neces-
sary number of torpedoes and the time spent in the desulfurization zone. First
a solution is only valid if all deadlines at the blast furnace and the converter are
met, the maximum sulfurization levels are respected, torpedoes move through
the system correctly according to the specified transition and duration times and
capacity constraints in the various zones are respected.

Then valid solutions are evaluated according to the lexicographic evaluation
function that ranks solutions first based on the number of torpedoes and then
on the total desulfurization time timeDesulf . More precisely the function

cost = nbTorpedoes + timeDesulf /(upperBoundTorpedo · durDesulf ) (1)

is used and the goal is to minimize the cost. Here upperBoundTorpedo is four
times the number of converter deadlines as in the worst case every single torpedo
tour to the converter needs to lower the sulfurization level from 5 (maximum)
to 1 (minimum), therefore spending 4 · durDesulf in this zone each time. This
way for any reasonable solution the desulfurization time is normalized to the
interval [0, 1), the integer value of the cost represents the number of torpedoes
and the part after the comma represents the desulfurization time, enforcing the
lexicographic order.

3 Solution Approach

To solve the given problem we introduce a two-stage simulated annealing based
algorithm. We first formulate solution candidates and a set of equations to effi-
ciently track data determining the solution quality. We then provide the overview
of the algorithm and describe the motivation for the design of individual parts
and their contributions for improving the solution quality. Emphasis is put on
the design of the objective functions to use the power of the two-stage approach.

3.1 Representing a Solution Candidate

We model a possible solution with the concept of a torpedo run. Such a run
represents one round trip of a torpedo and is tied to exactly one blast furnace
deadline and either one converter deadline or the emergency pit. This is very
similar to a tour in the required solution representation except that no specific
torpedo ID is assigned. It allows to determine the amount of such runs directly
from the given instance. The total amount of runs is equal to the number of
blast furnace deadlines. The amount of runs targeting the converter is equal to
the number of converter deadlines and the rest is targeting the emergency pit.

As a solution candidate we use an array of such torpedo runs that contains the
correct number of runs targeting the converter and emergency pit. The algorithm
is designed to respect the order of zones, prevent violations of zone durations
and transition times and to always meet the blast furnace deadlines. All other



Multi-stage Simulated Annealing for Torpedo Scheduling 5

violations of the constraints previously described are possible in the algorithm.
Instead of preventing them they are monitored and penalized by the objective
functions used in the simulated annealing algorithm.

Monitoring Constraint Violations. Constraint violations are tracked by
maintaining an array of 10 values called badness each representing a certain
kind of violation that can be individually weighted in the objective function.

The first set of constraint violations regarding the converter demands can
be described as follows given the notation that RC is the set of torpedo runs
targeting the converter and BF and C hold the corresponding blast furnace and
converter deadline objects:∑

i∈RC

max{startC i − C[idC i].time, 0} (2)

diff i = BF [idBF i].sulf −
⌊

endD i − startD i

durD

⌋
− C[idC i].maxSulf (3)

∑
i∈RC

max{diff i, 0} (4)

Equation (2) counts the total converter deadline miss time by summing up
the delay across all runs i that miss their deadline, in which case the start time
at the converter startC i will be after the time of the assigned converter deadline.

Equation (3) first calculates the final sulfurization level for torpedo run i
using the level at the blast furnace and the amount of time spend in the desul-
furization zone. By subtracting the maximum allowed level at the converter it
calculates the difference diff i between the maximum allowed level and the actual
level. Values below 0 mean that the hot metal has lower sulfurization level than
the allowed maximum indicating a potentially wasteful, but feasible pairing. A
value of 0 exactly meets the requirement and values above 0 indicate sulfuriza-
tion level misses and therefore constraint violations. Equation (4) sums up this
difference in sulfurization levels across all runs that miss this requirement.

For each of the remaining capacity constraints the algorithm maintains an
array with the size T equal to the amount of time units in the whole planning
period. One such array is maintained for each capacitated zone (cBF , cFB , cD
and cC ) and for the corresponding transitions (cBFtoFB , cFBtoD , cDtoC and
cCtoE ). Each element of such an array counts the amount of torpedo runs using
the respective zone or transition at the given point in time.

To track the violations for each of these arrays X the corresponding badness
value is calculated by∑

0≤t<T

max{X[t]−maxOccupationX , 0} (5)

where maxOccupationX is either one of the given capacities nbSlotsFullBuffer ,
nbSlotsDesulf , nbSlotsConverter for the corresponding arrays or 1 in all other
cases.



6 Lucas Kletzander and Nysret Musliu

Monitoring Optimization Goals. To keep track of the number of torpedos
another array spanning across the whole time span of the planning period is
used. The array occupation counts for each point in time how many torpedo
runs are currently active. Therefore the maximum value of this array represents
the current value of the main evaluation goal.

However, for this array tracking the sum of all values is not good enough for
use in the objective functions. Therefore the array occupationCount counts the
number of elements of occupation having a certain value by

occupationCount [i] = count{t : occupation[t] = i} , (6)

e.g. occupationCount [1] counts the amount of time points where exactly one
torpedo run is active. This concept allows to individually weight specific levels
of occupation.

Finally the desulfurization is tracked by timeDesulf holding the total amount
of desulfurization time for all torpedo runs. Further the array desulfMismatch
keeps track of the difference between the sulfurization levels of the metal provided
at the blast furnace compared to the required levels at the converter. It calculates

desulfMismatch[i] = count{j : BF [idBF j ].sulf − C[idC j ].maxSulf = i} (7)

for 0 ≤ i < 5, e.g. desulfMismatch[3] counts the amount of torpedo runs that
need at least 3 desulfurization steps in order to be feasible. This again allows
individual weights for specific difference values.

3.2 The Simulated Annealing Algorithm

The simulated annealing process is done in two rounds using almost the same
parameters, but very different objective functions. The general design of each
round uses the usual process of simulated annealing:

generateInitialSolution();

for round = 0...1 {

value = evaluateSolution();

t = value / 10;

for outer = 0...10000 {

for inner = 0...innerIterations() {

chooseMove();

newValue = evaluateSolution();

if (shouldAccept()) {

acceptMove();

} else {

abortMove();

}

}

t *= 0.998;

}

}



Multi-stage Simulated Annealing for Torpedo Scheduling 7

Heuristic Generation of the Initial Solution Candidate. The concept of
generateInitialSolution() is to take the ordered lists of blast furnace and con-
verter deadlines and pair them according to this ordering. The torpedo runs are
initialized to spend the minimum amount of time in the desulfurization zone
that allows them to meet the sulfurization level requirement of the assigned con-
verter. They arrive at the converter just at the time of the deadline or too late
in case this pairing is actually not feasible and spend any required waiting time
in the full buffer.

As long as emergency pit runs are available, they are set whenever it is
possible to put the current blast furnace output to the emergency pit and still
transport the next blast furnace output to the current converter deadline in time.
As emergency pit runs tend to get scheduled a bit too early by this approach
and cause converter deadline misses a few runs later, the algorithm includes
backtracking on such deadline misses to remove earlier emergency pit runs again
and schedule those later.

At first time and space proportional to the total length of the planning period
are required as all the capacity tracking arrays need to be initialized. The effort
of constructing the initial solution is proportional to the number of blast furnace
deadlines (actually not linear due to the backtracking, but in practice still very
close) times the duration of a run as each run needs to be added to the capacity
tracking system.

Note that in most cases the initial solution will not be feasible as some degree
of constraint violation in regard to missing deadlines and capacity constraints
is to be expected. However, it is designed to have a structure that produces a
small amount of constraint violations while still keeping the execution very fast.

Parameter Tuning. The parameters for the algorithm were carefully chosen
by experimental evaluation of various combinations of parameters to increase the
performance. In the following the best values used in the final computation for
the competition are presented. Reasons for the provided choice are given as well
as problems encountered with different values. Unless otherwise stated, changes
in most parameters only resulted in small changes in the results.

Iteration Parameters. For each round the algorithm uses a fixed number of
outer iterations that was set to 10000. This value ensures that the algorithm
converges to a stable result.

The temperature was set to start with a value of one tenth of the initial value
of the objective function. In each outer iteration the temperature is decreased
by multiplying with the factor 0.998. This choice, especially combined with the
starting temperature and the number of inner iterations was one of the more
critical choices for the quality of the results and therefore subject of detailed
empirical evaluation. The initial solution is constructed in a way to already have
a structure limiting the amount of constraint violations. While a certain increase
in such violations is expected in the early stage of the simulated annealing process
to prevent getting stuck too close to the initial solution, keeping the temperature



8 Lucas Kletzander and Nysret Musliu

high for too long destroys the structure of the initial solution requiring extensive
amounts of repair at lower temperatures that make the overall result worse. On
the other hand, dropping the temperature too fast leads to getting stuck in local
optima.

The number of inner iterations innerIterations() depends on the size of the
instance, more precisely it is the number of blast furnace deadlines. This choice
was made as the number of possible moves also depends on this value. For the
second round experiments showed an increase by a factor of 4 to be beneficial.

Efficient Moves. We proposed three moves that are chosen randomly with
certain probabilities in chooseMove(). The first move is a switch between the
assigned converter deadlines for two torpedo runs. It is chosen with a probability
of 0.4 in the first round and 0.6 in the second round. The rather high probability
is due to the fact that this is the move with the highest impact on the structure
of the solution. The selection of the two runs is not randomized, but actually a
sensitive choice. The reason is that choosing two runs at very different time points
in the whole planning period will likely not be a good move as large deadline
misses can be expected. On the other hand, only switching closely adjacent runs
will likely end up in local optima too soon. Therefore selecting the distance of the
two runs when sorted by their start times randomly between 1 and 10 showed
to provide good results.

Additionally runs are locally improved after such a move to reduce the
amount of converter deadline misses and sulfurization level misses. First the
time spent at the desulfurization station is set to exactly the amount of time
needed to pass the required maximum sulfurization level at the converter. Sec-
ond if the converter deadline is missed the time at the full buffer is reduced just
enough to get the deadline, or to 0 if the deadline miss is larger than the full
buffer time.

The other moves consist of changing the time spend at the full buffer (prob-
ability 0.4 in the first round and 0.2 in the second), the time spend at the
desulfurization zone (probability 0.1) or the time spend at the converter (proba-
bility 0.1). As these moves are intended to change the internal structure of a run
towards a good feasible solution, new values for the respective times are chosen
randomly within limits preventing a converter deadline miss if possible.

The key concept in tracking the capacity and goal data is to allow very fast
calculation of changes triggered by moves in the algorithm and therefore be able
to try a lot of moves in a short amount of time. For the moves it is necessary
to first compute the effects of the move and then either accept or reject it.
Therefore, every move is reflected by first creating copies of the torpedo runs
that are affected by the move. Then all tracking data is updated by removing
the original runs and adding the changed copies. In case the move is rejected,
the copies are removed again and the originals added back to the tracking data.
In case it is accepted, the copies replace the originals in the array of torpedo
runs.



Multi-stage Simulated Annealing for Torpedo Scheduling 9

The important aspect is that all badness and goal tracking data can be
updated incrementally. The sums or counts in (2), (4) and (7) allow easy removal
and addition of torpedo runs. For (5) and (6) only the parts of the arrays X and
occupation affected by the currently changed torpedo runs need to be updated,
the effects on the sum and the count can easily be computed incrementally again.

Using this principle it is possible to update all tracked data in time that
just depends on the duration of the respective torpedo runs that are removed or
added. This duration is usually very small compared to the whole time span of
the planning period and is independent of the number of torpedo runs.

Moves are accepted by shouldAccept() if their evaluation yields a better
or equal result according to evaluateSolution() or else with a probability of
exp

(
value−newValue

t

)
.

Selection Bias. As the main objective in the first round is to reduce the maxi-
mum number of torpedoes used, optimization in areas with already low numbers
of torpedoes might not be relevant for the result at all while a single point with
a high number determines the value of the result. Therefore, the selection for a
move is biased to prefer runs in areas with a high number of torpedoes in use. On
the other hand, for the desulfurization time the total sum is relevant, therefore
every optimization matters and no selection bias is used in the second round.

3.3 Objective Functions

To use the power of the two-stage approach we proposed specific objective func-
tions for evaluateSolution() for each round tailored to the respective goals:∑

0≤i<10

w1[i] · badness[i] +
∑
i≥0

occupationCount [i] · i4 + cost (8)

∑
0≤i<10

w2[i] · badness[i] +
∑

i>fixed

1000000 · occupationCount [i] · i4+

∑
0≤i<5

10000 · desulfMismatch[i] · i + timeDesulf (9)

Equation (8) denotes the objective function for the first round and (9) the
objective function for the second round. Again, the weights were chosen by ex-
perimental evaluation.

Constraint Violations. First, both objective functions take into account the
constraint violations maintained by badness, however, with different weight vec-
tors w1 and w2.

Both objective functions use a weight of 100000 for the total converter dead-
line miss time as missing such deadlines potentially indicates structural problems
of the solution and therefore is considered a priority for optimization.



10 Lucas Kletzander and Nysret Musliu

For optimization of the sulfurization level misses the first round again uses
a weight of 100000 as it focuses on finding a feasible solution with the least
possible amount of torpedoes. The high value ensures the focus on feasibility.
For the second round, however, the weight is only 1000 as there is a special part
of the objective function that also deals with the sulfurization level misses in
more detail.

Capacity constraint violations are all penalized by a weight of 10000 in the
first round. Again the values were chosen rather high to focus on feasibility. For
the second run weights for capacity misses at specific zones are only weighted
by 10, for transitions by 1000. Transitions need to be weighted higher as their
maximum occupation of 1 leaves less margin in general, but the weights for the
zones were chosen very low to prevent the algorithm to get stuck in local optima.
This actually introduces a small probability for constraint violations still present
in the final result, however, higher values focused the process more on these
constraints in the first place and only afterwards optimizing the desulfurization
times within the limits already set by the constraints while the low values allow a
kind of parallel optimization of both desulfurization times and capacity violations
at a similar pace.

Number of Torpedoes. The next part of the objective functions uses the
occupationCount array. For the first round each element occupationCount [i] is
weighted by i4. This polynomial weighting strategy ensures a strong optimization
towards a small number of currently active torpedo runs at any point in time
with a special emphasis on eliminating areas using a high number of torpedoes.
This showed to be a successful approach to optimize the first objective.

For the second round the goal of this part of the objective function is com-
pletely changed. This part is the reason for choosing to use two separate rounds
of optimization in the first place. The key point is the structure of the solution
created in the first round. The number of currently active torpedoes is kept as
low as possible across the whole time span in order for the optimization to work.
However, as only the maximum number of torpedoes counts for the value of the
solution and this maximum value might only be reached at a small part of the
whole process, this kind of optimization restricts the possibilities to optimize the
desulfurization time more than necessary. Section 4.1 will highlight this in the
results.

Therefore, the second round memorizes the amount of torpedoes reached in
the first round (fixed) and sets the weight for every i up to this value to 0.
For all i above this value previous weights are increased by a factor of 1000000.
This allows free use of any number of torpedoes up to the set limit allowing
much more flexibility for the reduction of desulfurization times by utilization of
torpedoes that would otherwise be on standby. On the other hand the excessive
weights for going beyond this limit ensure that the optimization result from the
first round is kept throughout the second round.



Multi-stage Simulated Annealing for Torpedo Scheduling 11

Desulfurization. In the first round the objective function is completed by
adding the actual evaluation function used for the final solution as given by (1).
This adds the optimization of desulfurization times as a low priority goal to the
process.

In the second round the desulfurization times are included in more detail to
encourage better matching of blast furnace and converter deadlines with respect
to their sulfurization levels. To incorporate the difference in initial sulfurization
levels compared to the actual converter level demands the array desulfMismatch
is used. A level miss is weighted by 10000 · i where i counts the number of
missed levels, therefore linearly penalizing the distance to the required level.
Here a range of other methods was tried as well, in particular using polynomial
strategies like for the number of torpedoes or also penalizing levels that are lower
than required in order to reduce potentially wasteful situations where torpedo
runs with low level are used for converter demands with high maximum level.
However, none of these strategies gave better results than the one described
above.

Finally, the total desulfurization time is added to the objective function as
well. Using a weight of 1, this (actually the overall optimization goal of the sec-
ond round) is a rather low priority target in the optimization process. This is
because putting more emphasis on parts like the sulfurization level mismatch
works towards producing an optimal structure of the solution earlier. This is
important especially regarding the assignment of converter deadlines to the tor-
pedo runs. As such switches can easily produce at least temporary constraint
violations it is beneficial to work on an optimized assignment while the temper-
ature is still high and then focus on optimizations within runs by shifting times
to reduce desulfurization times locally at a later point in the process.

4 Results

The algorithm was executed on an Intel Core i7-6700K with 4 x 4.0 GHz. Table 1
shows the main characteristics of the competition instances. The duration and
capacity constraints were rather similar for the given instances while the main
differences were in the number of blast furnace and converter deadlines and the
time span covered. A single run for each instance used only 4 to 10 minutes on
a single CPU core for all instances except 6. Here, even though the instance size
is not that different, one run takes almost 30 minutes due to the structure of the
instance creating longer torpedo runs.

4.1 Structure of a Solution

To see the importance of using two rounds of simulated annealing, data collected
from one particular computation of instance 1 is presented after the creation of
the initial solution and after each round of simulated annealing. The resulting
distribution is similar in all instances, therefore it is only described for instance
1 to highlight the way the algorithms transforms the solution.



12 Lucas Kletzander and Nysret Musliu

Table 1. Instance characteristics

Instance 1 2 3 4 5 6

Blast furnace deadlines 850 1500 2200 1000 1800 2500

Converter deadlines 800 1400 2100 1000 1780 2350

Time span 131100 144165 394723 133798 256216 251460

Table 2 shows the elements of occupationCount and timeDesulf for instance 1.
All values occupationCount [i] with i > 5 are 0.

Table 2. Objective values in various stages of the algorithm (instance 1)

Value [0] [1] [2] [3] [4] [5] timeDesulf

Initial 41077 58754 25050 6091 239 11 18333

Round 0 68141 49830 12136 1053 62 0 18512

Round 1 681 17303 55387 46254 11597 0 7776

The initial solution generated by the heuristic typically uses only few tor-
pedoes more than the final result, in this case 5 torpedoes are used. However,
as to be expected, this solution is not feasible, capacity constraints are slightly
violated at the transitions FBtoD , DtoC and CtoE as well as at the desulfuriza-
tion zone. Figure 1 shows the distribution of the occupation values. The most
frequent occupation at this stage is to have 0 or 1 torpedo active.

After the first round of simulated annealing the number of torpedoes was
lowered to 4, however, the desulfurization time slightly increased despite the
fact that desulfurization is added as a low level optimization goal to this stage.
This solution is already feasible and fixes the number of torpedoes used in the
final solution. As the figure shows, the distribution for occupationCount is shifted
as far as possible to the lower indices. The highest number of torpedoes is only
used at a very small number of time points. In fact, for almost half the time no
torpedoes are active at all.

In the second round of simulated annealing this distribution completely
changes as the algorithm now permits free use of any number of torpedoes up to
4 in order to optimize the desulfurization time as much as possible. The results
show that there is almost no time left without any torpedo on the move while
the most frequent occupation shifts to 2 and 3. This allows much more flexibil-
ity for optimizing the desulfurization time and results in less than half the time
compared to the first round.



Multi-stage Simulated Annealing for Torpedo Scheduling 13

0 1 2 3 4 5
0

2

4

6

·104

V
a
lu

e

Initial

Round 0

Round 1

(a) occupationCount [i]

0

0.5

1

1.5

2

·104

(b) timeDesulf

Fig. 1. Objective values in various stages of the algorithm (instance 1)

4.2 Results for Competition Instances

For the competition 50 runs were performed for each instance and the best result
was handed in. There were no restrictions on computation times.

Table 3 presents the results obtained by the 50 runs for each instance. Some
runs did not find the best number of torpedoes. In case a previous run already
got less torpedoes, the run was aborted after the first round of simulated an-
nealing (Abort 1). Some runs resulted in minor levels of constraint violations
and were discarded (Abort 2). The amount of times the best result (Minimum)
was produced is also shown (Freq.). Maximum, mean and standard deviation
are calculated from runs that were not aborted only.

Table 3. Computation results (50 runs for each instance)

Instance Abort 1 Abort 2 Minimum Freq. Maximum Mean Std. dev.

1 1 4 4.0890625 3 4.09094907 4.089995 0.000484

2 1 0 4.08607143 16 4.08712662 4.086279 0.000217

3 16 0 3.12928571 5 3.12964286 3.129415 0.000080

4 0 3 3.157 47 3.157 3.157 0

5 6 1 4.08483146 1 4.08609551 4.085374 0.000282

6 1 0 4.075 1 4.07585106 4.075358 0.000172

The results show that in general the algorithm produces very stable solutions
that do not differ much. This is important for practical use as the calculation
could be done with only few runs in a short time while still staying within a short
distance to the best solutions the algorithm might find given more runs. For the
competition, however, distances between the participants were small leading to



14 Lucas Kletzander and Nysret Musliu

the need to obtain the best results the algorithm can offer. With 50 runs per
instance we were able to obtain the first place (ex aequo) on all instances.

The best result was produced in at least 3 out of the 50 runs for the first
four instances making those results easily reproducible and increasing the con-
fidence that these are the best results the algorithm can produce. For the last
two instances, however, the best solution was only found in 1 out of 50 runs.
These two turned out to be the most difficult instances in the competition. To
gain more confidence, several recomputations of the whole 50 runs on these two
instances were able to reproduce these results, even though only about every
second recomputation for instance 5, but did not find any better results.

Constraint violations in the results were only encountered in a minor fraction
of the runs (maximum of 4 out of 50). Moreover, for all aborted instances the
violations only occurred at most at 2 time units across the whole planning period.
Given the fact that penalties for capacity violations were deliberately set low in
the second round of simulated annealing to focus further on the optimization of
desulfurization times this is considered a good result.

Instance 3, a large instance with the longest time span, yet a very small
amount of torpedoes in the solution, showed to be the hardest instance for the
first round. Here 32% of runs did not find the best amount of torpedoes compared
to at most 12% for any other instance.

Instance 4 was clearly the easiest instance, being one of the smaller instances,
but also providing equal amounts of blast furnace and converter deadlines. This
eliminates the need for emergency pit runs. In fact, 47 out of 50 runs on this
instance produced the best found result.

5 Conclusion

This paper presented an approach using a multi-stage simulated annealing pro-
cess to solve a scheduling problem in steel production plants. Utilizing efficient
moves it optimizes results for the lexicographic evaluation function using two
different objective functions each tailored for optimal progress towards the cor-
responding part of the evaluation in a two-stage simulated annealing process.

The results show that the approach is a valid and competitive method to
solve the given problem. As the general idea is generic, it can also be adapted
to various other problems utilizing lexicographic evaluation functions. Further
the framework to track changing capacity violations in a fast manner showed to
improve efficiency of the algorithm.

Future work could include the adaption of the approach to various other
problems in this domain to see how well it competes with different approaches.
Further the selection of critical parameters for simulated annealing, especially
regarding automated parameter selection, could be the goal of research.

Acknowledgments. This work was supported by the Austrian Science Fund
(FWF): P24814-N23.



Multi-stage Simulated Annealing for Torpedo Scheduling 15

References

1. Russell Bent and Pascal Van Hentenryck. A Two-Stage Hybrid Local Search for the
Vehicle Routing Problem with Time Windows. Transportation Science, 38(4):515–
530, November 2004.

2. Mingcong Deng, Akira Inoue, and Satoru Kawakami. Optimal path planning for
material and products transfer in steel works using ACO. In The 2011 International
Conference on Advanced Mechatronic Systems, pages 47–50. IEEE, 2011.

3. Kathryn A. Dowsland and Jonathan M. Thompson. Simulated Annealing. In
Grzegorz Rozenberg, Thomas Bck, and Joost N. Kok, editors, Handbook of Natural
Computing, pages 1623–1655. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

4. Marting Josef Geiger. Optimale Torpedo-Einsatzplanung – Analyse und Lösung
eines Ablaufplanungsproblems der Stahlindustrie. In Entscheidungsunterstützung
in Theorie und Praxis - Tagungsband des gemeinsamen Workshops der GOR-
Arbeitsgruppen ”Entscheidungstheorie und -praxis”, ”Fuzzy Systeme, Neuronale
Netze und Künstliche Intelligenz” sowie ”OR im Umweltschutz” am 10. und 11.
März 2016 in Magdeburg. Springer-Verlag, in press.

5. Jörg Homberger and Hermann Gehring. Two evolutionary metaheuristics for the
vehicle routing problem with time windows. INFOR: Information Systems and
Operational Research, 37(3):297–318, 1999.

6. Hui Huang, Tianyou Chai, Xiaochuan Luo, Binglin Zheng, and Hong Wang. Two-
Stage Method and Application for Molten Iron Scheduling Problem between Iron-
Making Plants and Steel-Making Plants. IFAC Proceedings Volumes, 44(1):9476–
9481, January 2011.

7. Junji Kikuchi, Masami Konishi, and Jun Imai. Transfer Planning of Molten Metals
in Steel Worksby Decentralized Agent. Memoirs of the Faculty of Engineering,
Okayama University, 42(1):60–70, 2008.

8. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated An-
nealing. Science, 220(4598):671–680, May 1983.

9. Jun-qing Li, Quan-ke Pan, and Pei-yong Duan. An Improved Artificial Bee Colony
Algorithm for Solving Hybrid Flexible Flowshop With Dynamic Operation Skip-
ping. IEEE Transactions on Cybernetics, 46(6):1311–1324, June 2016.

10. Y.Y Liu and G.S Wang. The Mix Integer Programming Model for Torpedo Car
Scheduling in Iron and Steel Industry. In International Conference on Computer
Information Systems and Industrial Applications, pages 731–734. Atlantis Press,
2015.

11. Duc Pham and Dervis Karaboga. Intelligent optimisation techniques: genetic al-
gorithms, tabu search, simulated annealing and neural networks. Springer Science
& Business Media, 2012.

12. P. Schaus, C. Dejemeppe, S. Mouthuy, F.-X. Mouthuy, D. Allouche, M. Zytnicki,
C. Pralet, and N Barnier. The torpedo scheduling problem: Description. http://

cp2016.a4cp.org/program/acp-challenge/problem.html, 2016. Accessed: 2017-
02-02.

13. Lixin Tang, Gongshu Wang, and Jiyin Liu. A branch-and-price algorithm to solve
the molten iron allocation problem in iron and steel industry. Computers & Oper-
ations Research, 34(10):3001–3015, October 2007.

14. Lixin Tang, Yue Zhao, and Jiyin Liu. An Improved Differential Evolution Algo-
rithm for Practical Dynamic Scheduling in Steelmaking-Continuous Casting Pro-
duction. IEEE Transactions on Evolutionary Computation, 18(2):209–225, April
2014.


