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Abstract. High School Timetabling (HSTT) is a well known and wide
spread problem. The problem consists of coordinating resources (e.g.
teachers, rooms), time slots and events (e.g. lectures) with respect to
various constraints. Unfortunately, HSTT is hard to solve and just find-
ing a feasible solution for simple variants of HSTT has been proven to be
NP-complete. In addition, timetabling requirements vary from country
to country and because of this many variations of HSTT exist. Recently,
researchers have proposed a general HSTT problem formulation in an
attempt to standardize the problem from different countries and school
systems.

In this paper, for the first time we provide a new detailed modeling of
the general HSTT as SAT, in which all constraints are treated as hard
constraints. In order to take into account soft constraints, we extend the
previous model to Partial Weighted maxSAT. In addition, we present
experimental results and compare to other approaches, using both arti-
ficial and real-world instances, all of which were taken from the Third
International Timetabling Competition 2011 benchmark repository. Our
approach gives competitive results and in some cases outperforms the
winning algorithm from the competition.
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1 Introduction

In this paper, we describe a modeling of the high school timetabling problem
(HSTT) as a maximum propositional satisfiability problem (maxSAT). By doing
so, we were able to find solutions for many instances which were proposed by
the Internation Timetabling Competition 2011 [13], and in some cases managed
to outperform the winning algorithm of the competition, GOAL.

The problem of timetabling is to coordinate resources (e.g. rooms, teachers,
students) with time slots in order to fulfill certain goals or events (e.g. lectures).

Timetabling is encountered in a number of different domains. Every educa-
tional institution, airport, public transport system, etc requires some form of
timetabling. The difference between a good and a bad timetable can be signifi-
cant, but constructing timetables by hand can be time consuming, very difficult,
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error prone and in some cases impossible. Therefore, developing high quality
algorithms which would automatically do so is of great importance. Note that
there are many different timetabling problems and as such algorithms for one
type of problem (e.g. HSTT) might not directly be suitable for another prob-
lem (e.g. University Timetabling), because of their different requirements. In this
work, we focus on HSTT. Respecting constraints is very important, as timetables
directly contribute to the quality of the educational system, satisfaction of stu-
dents and staff and other matters. Every timetabling decision affects hundreds
of students and teachers for prolonged amounts of time, since each timetable is
usually used for at least a semester.

Unfortunately, High School Timetabling is hard to solve and just finding a
feasible solution of simple variants of High School Timetabling has been proven
to be NP-complete [6]. Apart from the fact that problems that need to be solved
can be very large and have many different constraints, high school timetabling
requirements vary from country to country and because of this many variations
of the timetabling problem exist. Because of this, it was unclear what the state
of the art was, as comparing algorithms was difficult. Recently researchers have
proposed a general high school timetabling problem formulation [14] in an at-
tempt to standardize the problem from different countries and school systems
and this formulation has been endorsed by the Third Iternational Timetabling
Competition 2011 (ITC 2011) [13] [14]. This was a significant contribution, as
now algorithms can be compared on standardized instances, that were proposed
from different researchers [12]. The winner of the competition was the group
GOAL, followed by Lectio and HySST. All of the algorithms were based on
heuristics. In GOAL, an initial solution is generated, which is further improved
by using Simulated Annealing and Iterated Local Search, using seven different
neighborhoods [7]. Lectio uses an Adaptive Large Neighborhood Search [17],
while HySST uses a Hyper-Heuristic Search [8]. Recently, [18] used Integer Pro-
gramming (IP) in a Large Neighborhood Search algorithm and [16] introduced
a two phase IP algorithm for a different timetabling problem, but have managed
to adjust the method for a number of HSTT instances. All the best algorithms
on the competition were heuristic algorithms and this is why introducing a new
exact method (our approach) is important. Some advantages would include be-
ing able to provide proofs of optimality or infeasibility, calculate lower bounds
as well as an opportunity to hybridize algorithms, as well as create valuable
benchmarks for maxSAT solvers. Even though significant work has been put
into HSTT, optimal solutions for most instances are still not known and this is
still an active research area.

In this paper, we investigate the formulation of HSTT as maxSAT. There is a
natural connection between timetabling and SAT. HSTT as itself has many logic
based characteristics and as such some of its constraints can easily be encoded as
SAT. This has motivated us to investigate how efficient can a SAT formulation
for HSTT be. However, due to the generality of the specification that we use,
devising a complete model is not a trivial task, because as we will see later,
some of the constraints are cumbersome. In addition to formulating a general
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formulation, one needs to take care of important special cases which arise in
practice and can significantly simplify the encoding.

The main contributions of this paper are as follows:

– We show that HSTT can be modeled as a Weighted Partial maxSAT prob-
lem, despite the fact that HSTT is very general and has many different con-
straints, both hard and soft versions. All constraints are included in their
general formulations, as well as important alternative encodings for special
cases.

– We investigate empirically the performance of our model using both artificial
and real-world instances, all of which were taken from the Third International
Timetabling Competition 2011 benchmark repository. A comparison with
the winning algorithm from ITC 2011 is given and the results show that our
approach outperforms it in some cases.

The rest of the paper is organized as follows: in the next section, we give a
more detailed look into the problem description which serves as an introduction
for Section 3, where the detailed presentation of our approach in modeling HSTT
as maxSAT is given. In Section 4, we provide computational results obtained on
artificial and real life problems. Finally, we give concluding remarks and ideas
for future work.

2 Problem Description

In our research we consider the general formulation of the High School Timetabling
problem, as described in [14].

The general High School Timetabling formulation specifies three main enti-
ties: times, resources and events. Times refer to time slots which are available,
such as Monday 9:00-10:00, Monday 10:00-11:00, etc. Resources correspond to
available rooms, teachers, students, etc. Main entities are the events, which in
order to take place require certain times and resources. An event could be a
Mathematics lecture, which requires a math teacher and a specific student group
(both considered resources) and two time slots.

Constraints impose limits on what kind of assignments are legal. As for some
examples, these may constraint that a teacher can teach no more than five lessons
per day, that younger students should attend more demanding subjects (e.g.
Mathematics) in the morning, etc. We do not describe constraints in this section,
but will rather do so in the next section when we present the SAT formulations.

Each constraint has a nonnegative cost function associated with it, which
penalizes assignments that violate it. It is important to differentiate between
hard and soft constraints. Hard constraints are constraints that define the feasi-
bility of the solution and are required for the solution to make sense, while soft
constraints define desirable situations, which define the quality of the solution.
Therefore, we have two parts: infeasibility value and objective value part. The
goal is to first minimize the infeasibility and then minimize the objective func-
tion value part. The exact way these two are calculated will be discussed in the
next section.



IV

3 Our Approach - Modeling HSTT as maxSAT

3.1 Cardinality Constraints

Cardinality constraints impose limits on the truth values assign to a set of liter-
als. These are atLeast k[xi : xi ∈ X], atMost k[xi : xi ∈ X] and exactly k[xi, xi ∈
X], which constraint that at least, at most or exactly k literals out of the speci-
fied ones must or may be assigned true. Many different encodings of these con-
straints exist (e.g. see [15]) and here we will describe only the ones used in our
implementation.

Basic Encoding One way to encode the cardinality constraints is to simply
enumerate all legal assignments. We refer to this as the basic encoding. Since
the number of clauses grows exponentially, we use these encoding if |X| < 50
and k < 4. Otherwise, the bit adder encoding would be used. These values were
determined ad hoc for the instances at hand.

Bit Adders The idea is to regard each variable as a 1-bit number, take the
sum of all the chosen variables by using a series of adders which sum a binary
number and a 1-bit number. The end result is a binary representation of the
number of variables set. Appropriate clauses would then be created to forbid
specified outputs. The number of clauses and auxiliary variables is O(nlog(n)).

Unary Representation We present an exactly k encoding which was used in
our modeling. The unary number representation as given in [4] is:∧

∀i∈[1,n−1]

(ui ⇒ ui−1). (1)

The interpretation is that the value assigned with this representation is equal
to i, where i is the largest number such that ui = >. For the case k = 1, we create
a variable that can take values from [0, n] and do so in the unary representation
as described above and add the following constraints:∧

∀i∈[1,n−1]

(ui ∧ ui+1 ⇔ xi) ∧ u0 (2)

For the case when k > 1, we encode k constraints of the form exactly 1 and
let ui,j represent the j − th auxiliary variable used in the i− th constraint. We
then complete the encoding:∧

∀i∈[0,k−2]
∀j∈[0,n]

(ui,j ⇒ ui+1,j+1) ∧
∧

∀i∈[0,k−2]
∀j∈[k−i+1,n]

(ui,j) (3)
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3.2 Soft Cardinality Constraints

soft cardinality constraints are similar to the previous ones, except that penalize
violations of the constraint rather than forbidding it.

Basic Encoding We presented the encoding for the soft cardinality constraint
atLeast k[xi : xi ∈ X], while atMost k[xi : xi ∈ X] is done in a similar fashion:∧

j∈P
(Aj → atLeast j[xi : xi ∈ X]) ∧

∧
j∈P

(w(j)(Aj)) (4)

Where Ai are new auxiliary variable, P is a set of integers in the interval
[1, k] and w(j) is a weight function which depends on j, while the atLeast in
encoded by a basic encoding. The second equation is a series of soft unit clauses
containing Aj and its weights are w(j).

Bit Adders We use bit adder encoding described previously, but instead of
forbidding certain outputs, we penalizes their assignments. It is important to
note that the weights may be assigned to each undesired output completely
independently, unlike in the basic encoding.

Special Cases A very important special case for atLeast k[xi : xi ∈ X] is when
k = |X| (a similar case for atMost k[xi : xi ∈ X] occurs when k = 0) and the
weight function w(j) is of the form w(j) = c ∗ j, where c is some constraint.
In this case, instead of using the previously described encoding, we encode the
following soft clauses: ∧

xi∈X
((w)(xi)) (5)

3.3 Constraints

In practice, some constraints are never used as soft constraint. Because of this,
we only give the encodings for soft constraint where it is appropriate in order to
avoid unnecessary technicalities.

Each constraint has its points of application and each point generates a num-
ber of deviations. Cost of the constraint is obtained by applying a cost function
on the set of deviations produced and multiplying it by a weight (e.g. a cost
function may simply be the sum of all deviations). Our approach supports cost
functions of sums of (squares of) deviations. The HSTT specification allows for
other cost functions as well, but we do not have an encoding for them currently.
Fortunately, only two instances use nonsupported cost functions.

We simplify the objective function by not tracking the infeasibility value,
rather regarding it was zero or nonzero. By doing so we simplify the computation,
possibly offering a faster algorithm.
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In addition, E, T and R are sets of events, times and resources, respectively.
Each constraint is applied to some subset of those three and within the text are
notated as Espec, Tspec and Rspec. These subsets are in general different from
constraint to constraint. Note that it is possible to have several constraints of
the same type, but with different subsets defined for them.

Due to space limitations, we present the encoding of only a subset of the
constraints used in HSTT and provide a detailed longer version of this paper
online (dbai.tuwien.ac.at/user/demir/sat2014long.pdf).

Assign Time Constraints Every event must be assigned a given amount of
times. For example, if a lecture lasts for two hours, two time slots must be
assigned to it.

We define decision variables Ye,t and other constraints rely on them heavily.
For each e ∈ E and t ∈ T , variable Ye,t indicates whether event e is taking place
at time t. Each event must take place for a number of times equal to its duration
d: ∧

∀e∈E

(exactly d[Ye,t : t ∈ T ]) (6)

Split Events Constraints This constraint has two parts.

The first part limits the number of starting times an event may have within
certain time frames. For example, an event may have at most one starting time
during each day, preventing it from being fragmented within days.

The second part limits the duration of the event for a single subevent. For
example, if four time slot must be assigned to a Mathematics lecture, we may
limit that the minimum and maximum duration of a subevent is equal to 2, thus
ensuring that the lecture will take place as two blocks of two hours, forbidding
having the lecture performed as one block of four hours.

In the formal specification of HSTT, there are no rules on what can be defined
as a starting point. One would could regard a starting point as a time t where a
lecture takes place, but has not took place at t− 1. However, while this is true,
this cannot be the only case when a time would be regarded as a starting time,
since e.g. time t = 5 and t = 6 might be interpreted as last time slot of Monday
and first time slot of Tuesday and an event could be scheduled on both of these
times, but clearly we must regard both times as starting times, since a double
lecture does not extend over such long periods of time. Therefore, any time can
in general be regarded as a starting time. Other constraints give more control
over these kind of assignments.

For each event e, variable Se,t indicates whether event e has started taking
place at time t. For example, if event e had duration(e)=2 and its corresponding
Ye,t were assigned at time slots t and t + 1, then Se,t = true, Se,(t+1) = false.
Formalities that are tied to starting times with regard to the specification are
expressed as follows:
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Event e starts at time t if e is taking place at time t and it is not taking place
at time (t− 1): ∧

∀e∈Espec
t∈T

(Ye,t ∧ Y e,(t−1) ⇒ Se,t) (7)

If a starting time for event e has been assigned at time t, then the corre-
sponding event must also take place at that time:∧

∀e∈E
t∈T

(Se,t ⇒ Ye,t) (8)

This constraint specifies the minimum Amin and maximum Amax amount of
starting times for the specified events:

∧
∀e∈Espec

(atLeast Amin[Se,t : t ∈ T ] ∧ atMost Amax[Se,t : t ∈ T ]) (9)

In addition, this constraint also imposes the minimum dmin and maximum
dmax duration for each subevent. For each specified event e ∈ Espec and duration
d, variable Ke,t,d indicates event e has a starting time at time t of duration d.
Formally:

If time t has been set as a starting time, associate a duration with it:∧
∀e∈Espec
∀t∈T

(Se,t ⇒
∨

dmin≤d≤dmax

Ke,t,d) (10)

Remark: We could had encoded that exactly one of the right hand sides vari-
ables must be chosen, but this is handled in the later parts of this encoding.

When Ke,t,d is set, the event in question must take place during this specified
time (where set D is the set of integers from the interval [dmin, dmax] ):∧

∀e∈Espec
∀t∈T
d∈D

Ke,t,d ⇒
∧

i∈[0,d−1]

Ye,(t+i) (11)

If a duration has been specified for time t, make sure that other appropriate
Ke,t,d variables must be false:∧

∀e∈Espec
∀t∈T
d∈D

(Ke,t,d ⇒
∧

dmin≤g≤dmax

∧
i∈[0,d−1]∧(i 6=0∨g 6=d)

Ke,t+i,g) (12)

If an subevent of duration d has been assigned and immediately after the
event is still taking place, then assign that time as a starting time:

Ke,t,d ∧ Ye,t+d ⇒ Se,t+d (13)



VIII

Assign Resource Constraints Each event requires a certain amount of re-
sources in order to be scheduled. These resources can be teachers, classes, rooms,
etc. For example, in order for a math lesson to take place a math teacher, a
room and a projector are needed. It might also be the case that two teachers are
needed, e.g. one lecturer and one as an assistant. This has been implemented
into the general HSTT specification as follows:

Each event has a number of roles. To each of these roles exactly one resource
of a specific resource type must be assigned. The role names within an event must
be unique, but different events may have the same roles requiring different types
of resources. For example, a resource might require the following roles with the
appropriate resource types given in parenthesis: ’Teacher’ (teacher), ’Assistant’
(teacher), ’Class’ (class), ’Seminar room’ (room). This constraint merely requires
that a resource of a given type must be assigned. For the given role, a variable
Mrole

e,t,r is created, which indicates whether event e at time t is using resource r
to fulfill the given role. The constraint is encoded as follows:

If an event is taking place, it’s specified role must be fulfilled:∧
e∈Espec

t∈T

(Ye,t → exactly 1[Mrole
e,t,r : r ∈ Rspec resource type]) (14)

If a resource has been chosen to fulfill an event’s role as some time, mark
that resource as used by the event at that time:∧

e∈Espec
t∈T

r∈Rspec resource type

(Mrole
e,t,r → Ye,t,r) (15)

The previous two encodings hold individually for each Assign Resource Con-
straint. The next encoding is done after all constraint of type Assign Resource
Constraints and is in a sense a global constraint:

A resource may fulfill at most one role at any given time:∧
e∈Espec

t∈T
r∈R

(atMost 1[Mrole
e,t,r : role ∈ ARCroles]) (16)

Avoid Split Assignments Constraint Events are frequently broken down
into subevents, each of which has the same resource requirements. This constraint
imposes that for the specified role, only one resource should be used across all
of the subevents. For example, a lecture should always take place in the same
lecture room, regardless of which room is chosen. This constraint applies to the
specified role and to a specified resource type. We create auxiliary variables V role

e,r

which indicate whether an event e is using a resource r to fulfill its role at some
point in time: ∧

e∈Espec
Rspec resource type

t∈T

(Mrole
e,t,r → V role

e,r ) (17)
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The constraint is now encoded as:∧
e∈Espec

(atMost 0[V role
e,r : r ∈ Rspec resource type]) (18)

If this constraint is used as a soft constraint, the soft cardinality constraint
is used instead.

Special Cases In this section we look into important special cases which may
simplify the encodings significantly.

If an Assign Resource Constraint is given and all of the resources it references
behave the same, then instead of encoding assign resource and avoid clashes
constraints for those resource, we may use the following encoding:∧

t∈T
(atMost hYe,t : e ∈ Espec) (19)

Where Espec are events that require the mentioned resources and h is number
of resources of the described kind. This case arises in EnglandStPaul and Fin-
landArtificialSchool instance and without this case and another case described
further would not have been possible to encode within reasonable amounts of
memory.

If there is only one role per resource type specified in the requirements of an
event, then the encoding of the auxiliary variables in ARC may be avoided.

If the resources specified in Assign Resource Constraints are not subjected to
Limit Idle Constraints and assigning more than one resource to an event may be
legal, then a simpler encoding may be used for ARC, in which atLeast 1 is used
instead of using exactly 1. This case happens typically in instances which require
the assignment of rooms. If two rooms are assigned to an event, in the solution
we would simply pick only one. However, this cannot be applied in general e.g
with teachers.

Another problem with ARC is that certain symmetries may arise, increasing
the solution time. For example, if we have two ARCs, each with their specified
role. If these two roles both use the same resource type and no further constraints
are imposed on these resources, then we may swap their assignments of resources
and still get the same un(feasible) solution, which is undesirable. Therefore,
encoding a sorting is very useful and can be done efficiently since the unary
representation is used.

In some cases, by knowing the semantics of each constraint, simpler encoding
can be produced. This is encountered in SpainInstance in which a large amount of
Spread Events Constraints are encoded which are the state that lessons can have
at most one starting point in two consecutive days. However, this is not trivial
to specify in the general HSTT specification and will produce a large number
of clauses, which could be avoid if a special encoding for much a constraint is
encoded.
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Another interesting case is the encodings of Ke,t,d. These are created in order
to comply with the formal specification of HSTT. In some cases, it suffices to
encode Ke,t,d as (i is an integer):

Ke,t,d ↔ (
∧

i∈[0..d−1]

Ye,t+i) ∧ Y e,t+d (20)

This encoding is much more desirable when it is possible and we can use it
e.g. in the ItalyInstance1, where the general encoding took around 50 hours to
compute the optimal solution, while with the change shown above took around
10 hours. If the encoding is used, other constraints might be affected, such as
Split Events Constraint and need to be changed appropriately. However, in our
current implementation this situation needs to be done by hand.

4 Computational Results

We had conducted experimental evaluations on benchmark instances from HSTT
which can be found on the repository of the International Timetabling Compe-
tition 2011 [2]. Instances which were suggested by the competition as test beds,
as well as the ones used in the competition have been chosen (these two sets in-
tersect). All tests were performed on Intel Core i3-2120 CPU @ 3.30GHz with 4
GB RAM and each instance was given a single core. We restricted the computa-
tional time to 24 hours per instance. We made our generated maxSAT instances
available online (dbai.tuwien.ac.at/user/demir/xHSTTtoSAT instances.tar.gz).

In the instances, number of time slots range from 25 to 60, number of re-
sources from 20 to 120, number of events from 200 to 1000 with total event
duration from 300 to 1500. These numbers are approximations and vary heavily
from instance to instance. Due to space limitation, we do not provide detailed
information, but direct the interested reader to [12] [2] [14].

In the tables below, we shall note the objective function cost as (x, y), where
x is the infeasibility value and y is the objective value.

We experimented with different maxSAT solvers in order to solve encodings
obtained by our approach. We considered the following maxSAT solvers, all of
which had been used in the recent maxSAT Competition [1]: sat4j-maxsat [10],
maxsatz [11] and optimax. After preliminary experiments, which consisted of
solving three smaller instances (each instance given 4 hours), sat4j performed
the best and was chosen as the solver we would use for the longer experimental
results. In the next table we give the results (”oom” stands for ”out of memory”,
”to” stands for ”timeout” with no solution provided):

4.1 Comparisons of Results

We compare results we had obtained with our approach and GOAL (the winning
team of the competition). GOAL’s algorithm first generates an initial solution
using KHE [9] and then performs its heuristic search algorithm. The initial
solution generated can be unfeasible and in some cases the algorithm fails to
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Name sat4j-maxsat maxsatz optimax

BrazilianInstance1 (0, 39) (0, 196) ”to”

ItalyInstance1 (0, 58) ”to” (0, 1118)

SouthAfricaLewitt2009 (0, 17) ”oom” (0, 0)

Table 1. Preliminary results with maxSAT solvers on small instances.

improve this solution to a feasible one. Because of this we had investigated the
hybridization of our approach and GOAL, in which our method provides the
initial feasible solution which GOAL then optimizes. The initial solution gener-
ation is typically done very quickly in most cases, ranging from a few seconds
to a few minutes with the only exception being FinlandArtificialInstance which
took 30 minutes.

In the table below we present the computational results. To make our com-
parison fair, we ran our approach and GOAL on the same computer platform
and each solver was restricted to 24 hours and was given one core. The source
code of GOAL was provided by their authors [5]. Encoding of instances times
are negligible compared to the maxSAT solution process. Three Denmark, one
Spanish and four Netherlands instances could not be solved by our approach
and were not included in the table, but are discussed later on. Values marked
with an asterisk * are known to be optimal (further information on how the
optimality proof was obtained can be found on ITC’s web page on individual
instances [2]). The abbreviations used in the columns are as follows: OA is our
approach, GOAL is the winning team algorithm, OA+GOAL is the previously
described method in which we generate an initial solution with our approach
which is then improved further with GOAL:

There might be differences in the results obtained by GOAL in the competi-
tion and obtained by our 24 hour runs, because in the competition competitors
in the final phase were given one month to use whatever available resources to
provide the best results. We focus here on the comparison with the winner of
ITC competition, because we think that this gives an idea of how good our ap-
proach performs in a limited amount of time compared to one of best existing
approaches for this problem. For some of the instances, better upper bounds
were obtained after the competition by GOAL and other approaches without
time or resource limitations.

As we can see from Table 2, from the examples in which our encoding was
done successfully, our approach outperformed GOAL in 12 instances and in five
cases was the best method. Three of the instance had been solved to optimality,
namely BrazilianInstance1 and African instances. For the others, part to the suc-
cess on the Brazilian instances can be attributed to the fact that our approach
quickly finds a feasible solution, while GOAL in these cases does not and its
heuristics could not escape infeasibility. Even though our encoding cannot cap-
ture the square of sums cost function for soft constraints of EnglandStPaul and
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Name OA GOAL OA + GOAL

BrazilianInstance1 (0, 38)* (0, 54) (0, 48)

BrazilianInstance2 (0, 32) (1, 42) (0, 37)

BrazilianInstance4 (0, 205) (16, 95) (0, 142)

BrazilianInstance5 (0, 117) (4, 121) (0, 106)

BrazilianInstance6 (0, 230) (4, 195) (0, 171)

BrazilianInstance7 (0, 400) (11, 230) (0, 210)

AfricaLewitt2009 (0, 0)* (0, 18) (0, 470)

AfricaWoodlands (0, 0)* (2, 13) (0, 71)

FinlandCollege (0, 1523) (1, 5) (0, 14)

FinlandHighSchool (0, 289) (0, 14) (0, 15)

FinlandSecondarySchool (0, 252) (0, 83) (0, 85)

FinlandArtificialSchool (0, 47) (3, 6) (0, 12)

GreecePatras2010 (0, 331) (0, 0)* (0, 0)*

GreeceWesternUniversity4 (0, 121) (0, 5) (0, 4)

GreeceHighSchool (0, 0)* (0, 0)* (0, 0)*

KosovaInstance (0, x) (0, 5) (0, 1059)

EnglandStPaul (0, x) (3, 48) (0, 138)

ItalyInstance1 (0, 17) (0, 19) (0, 13)

ItalyInstance4 (0, 12825) (0, 57) (0, 59)

Table 2. Results obtained after 24 hours.

KosovaInstance, it does not affect our findings of feasible solutions, which gives
immediately a better solution than the unfeasible solution for EnglandStPaul of
GOAL. For these instances we did not provide the objective function obtained,
since only hard constraints had been considered and the resulting objective value
is essentially random. In 4 cases, our approach performs better than both other
approaches.

GOAL outperformed our method in six instances, in five cases manages to
exceed the results of the combination of the two approaches (OA+GOAL) and
in four instances was the best method. However, in the cases where GOAL out-
performed the combined approach (FinlandHighSchool, FinlandSeconarySchool,
ItalyInstance4), the difference in results was marginal. In the two cases were the
difference is significant (KosovaInstance and AfricaLewitt2009), an interesting
situation arises. GOAL takes an initial solution provided by our method, but
it heavily fails to escape the local optima, even though much better results are
known to exist. This leads us to the conclusion that GOAL may be heavily influ-
enced by the initial solution it gets before starting to optimize. This can help us
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by further examining these situation in order to learn what exactly leads GOAL
to fail to escape local optima and possibly improve the algorithm.

When we use the combination of our approach and GOAL, it manages to
outperform GOAL in 11 cases, 12 cases our method and outperformes both
methods in 8 cases. However, for GreeceWesternUniversity4, the improvement
over GOAL is marginal, similar to the situation before. In cases where it does
perform better than GOAL, GOAL could not find a feasible by its own and our
initial feasible solution was of benefit. For two cases, it got quickly stuck in local
optima, as explained previously.

In a previous iteration of our approach, we used a less general encoding which
was still sufficient for ItalyInstance1 (see the notes in the previous section re-
garding Se,t and Ke,t,d) and have calculated the optimal solution of the instance
(objective value 12) in around 10 hours. However, this is not automatized and
must be done by hand currently, but it is an interesting way to point out that
the more general the encoding is, the harder it is to solve, since the layers of ab-
straction add additional complexity. With the general encoding, it took around
50 hours to obtain the optimal solution in contrast to the previous 10 hours.

We note that Australian instances were not included in Table 2 because
two of them were proven to be unsatisfiable by our approach, while the third
(SAHS96) was not encoded due to implementation reasons. Because of the proof
of infeasibility, a lower bound on the infeasibility value can be derived for TES99,
as a solution with unfeasibility value 1 is known.

We now discuss the cases in which an encoding has not been generated.

KosovaInstance and EnglandStPaul contain the cost function SquareSum for
its soft constraints, which is currently not supported, as discussed in the previous
section. However, this does not affect the generation of a feasible solution, which
was done successfully in both cases.

The Spanish instance has been encoded, but the resulting maxSAT file was
around 2 GB large, which was too large for our computers with 32-bit operating
systems. After closer examination, we concluded that this was dominated by
Spread Event Constraints, because of the way the constraints and its accompa-
nying time groups had been given in the specification. A drastic reduction of
variables and clauses could had be gained if the encoding of the special case
regarding these constraints had been implemented, as discussed in the previous
section.

Instances from Netherlands and Denmark had not been solved, as the current
implementation for the maxSAT encoder runs out of memory due to inefficient
memory management (the number of resources are unexpectedly high: over 800,
while other instances typically range from 20 to 120 resources). Regardless of
this, in general AssignResourceConstraints and related constraints seem to add
more complexity than other constraints.

Overall, we conclude that our approach is competitive. Our approach can
be used to provide competitive solutions when compared to GOAL and in the
case of smaller instances optimal solution can be calculated. Larger instances
can be problematic, but combining our method with GOAL provides satisfac-
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tory results. The results obtained in the cases were encodings could have been
constructed are promising and we believe that further research in this direction
will prove to be fruitful.

5 Conclusion

High school timetabling is a wide spread and important problem and because of
this, developing algorithms to solve the problem are of great importance.

In this paper, we have shown that the general HSTT problem [14] can indeed
be modeled as a weighted partial maxSAT problem, despite the generality of the
specification. We presented a complete and detailed encoding in the general sense
as required by the specification, but also presented several alternative encodings
for special cases.

We implemented and evaluated our approach on benchmark instances sug-
gested and used by the Third International Timetabling Competition 2011 and
compared our results with GOAL, the winning team of the Third International
Timetabling Competition 2011. Our approach gives competitive results and there
is space for further improvements. Generated encodings are generally quite large
and solve practical problems and as such can be used as benchmarks for the
evaluation of maxSAT solvers.

The encodings can be optimized better to suit a particular instance. A few
special cases are handled automatically, but for some we have to do them by hand
by looking at the characteristics of the instance (such as previously discussed
for ItalyInstance1, SpainInstance and EnglandStPaul). Introducing mechanisms
that would automatize these process would be very valuable to both decrease
the size of instances and improves the solution process. Additionally, different
encodings for cardinality constraints as in [15] and sorting networks [3] might
offer improvements.

For a number of instances, significant amount of clauses are generated to
encode basic timetabling requirement, such as Avoid Clashes Constraint. We
believe that improvements might be achieved if these constraints are handled in
a special manner within the solver, rather than encoding them as clauses. SMT
solvers offer such possibilities and might be a good choice for such problems.

Furthermore, we plan on to investigate hybridization of our approach with
heuristic techniques (e.g. develop a large neighborhood search algorithm).
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Carbonell. Cardinality networks and their applications. In Theory and Applications
of Satisfiability Testing-SAT 2009, pages 167–180. Springer, 2009.

4. Olivier Bailleux and Yacine Boufkhad. Efficient cnf encoding of boolean cardinality
constraints. In Principles and Practice of Constraint Programming–CP 2003, pages
108–122. Springer, 2003.

5. Samuel S. Brito, George H. G. Fonseca, Túlio A. M. Toffolo, Haroldo G. Santos,
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11. Chu Min Li, Felip Manyà, Nouredine Mohamedou, and Jordi Planes. Exploiting

cycle structures in max-sat. In Theory and Applications of Satisfiability Testing-
SAT 2009, pages 467–480. Springer, 2009.

12. Gerhard Post, Samad Ahmadi, Sophia Daskalaki, JeffreyH. Kingston, Jari Kyngas,
Cimmo Nurmi, and David Ranson. An xml format for benchmarks in high school
timetabling. Annals of Operations Research, 194(1):385–397, 2012.

13. Gerhard Post, Luca Di Gaspero, Jeffrey H Kingston, Barry McCollum, and Andrea
Schaerf. The third international timetabling competition. Annals of Operations
Research, pages 1–7, 2012.

14. Gerhard Post, Jeffrey H Kingston, Samad Ahmadi, Sophia Daskalaki, Christos
Gogos, Jari Kyngas, Cimmo Nurmi, Nysret Musliu, Nelishia Pillay, Haroldo Santos,
et al. Xhstt: an xml archive for high school timetabling problems in different
countries. Annals of Operations Research, pages 1–7, 2011.

15. Carsten Sinz. Towards an optimal cnf encoding of boolean cardinality constraints.
In Principles and Practice of Constraint Programming-CP 2005, pages 827–831.
Springer, 2005.

16. Matias Sørensen and Florian HW Dahms. A two-stage decomposition of high
school timetabling applied to cases in Denmark. Computers & Operations Research,
43:36–49, 2014.

17. Matias Sørensen, Simon Kristiansen, and Thomas R Stidsen. International
timetabling competition 2011: An adaptive large neighborhood search algorithm.
In Proceedings of the Ninth International Conference on the Practice and Theory
of Automated Timetabling (PATAT 2012), page 489, 2012.

18. Matias Sørensen and Thomas Riis Stidsen. Comparing solution approaches for a
complete model of high school timetabling. Technical report, DTU Management
Engineering, 2013.


