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Abstract

Rotating workforce scheduling (RWS) is an impor-
tant real-life personnel rostering problem that ap-
pears in a large number of different business areas.
In this paper, we propose a new exact approach
to RWS that exploits the recent advances on Sat-
isfiability Modulo Theories (SMT). While solving
can be automated by using a number of so-called
SMT-solvers, the most challenging task is to find an
efficient formulation of the problem in first-order
logic. We propose two new modeling techniques
for RWS that encode the problem using formulas
over different background theories. The first en-
coding provides an elegant approach based on lin-
ear integer arithmetic. Furthermore, we developed
a new formulation based on bitvectors in order to
achieve a more compact representation of the con-
straints and a reduced number of variables.

These two modeling approaches were experimen-
tally evaluated on benchmark instances from liter-
ature using different state-of-the-art SMT-solvers.
Compared to other exact methods, the results of this
approach showed a notable increase in the number
of found solutions.

1 Introduction

For companies and organizations in a broad range of busi-
ness areas, it is necessary to provide availability 24 hours a
day and 7 days a week. While some companies need their
machines up and running all the time in order to fit the pro-
duction demand, other organizations like hospitals or police
stations need their staff to be working day and night to ensure
proper health-care or the citizens’ safety.

In this paper the particular problem of interest is Rotat-
ing Workforce Scheduling (RWS), which is a constraint sat-
isfaction problem (CSP). This problem addresses designing
a schedule where a certain number of shifts are assigned
to work days over a specific planning period, typically one
week. The work schedule is designed for each employee by
considering the necessary temporal requirements and other
constraints. Furthermore, in rotating workforce scheduling
all employees work the same schedule in a rotating sequence
starting at different offsets.

Over the years different approaches to this problem have
been introduced in the literature. Early methods were based
on exhaustive enumeration [Butler, 1978] and Integer Lin-
ear Programming [Laporte et al., 1980]. A network flow
model was developed in [Balakrishnan and Wong, 1990] to
solve the problem. In [Laporte, 1999] a relaxation of the
constraints was proposed that allows the creation of effi-
cient rotating schedules by hand. The use of an algebraic
computational approach has been proposed in [Falcén et
al., 2016]. Heuristic techniques were successfully used to
create rotating schedules in [Musliu, 2005; 2006]. Meth-
ods based on constraint programming techniques were ap-
plied in [Laporte and Pesant, 2004; Musliu er al., 2002;
Triska and Musliu, 2011]. Although these exact approaches
provide a solution for many instances, solving large problems
is still a challenge for them. Therefore, it is intriguing to find
other exact methods that may provide better results.

SMT-solving offers the expressive power of first-order the-
ories combined with the good performance of state-of-the-art
SAT-solvers. As a consequence, researchers have gained in-
terest in using SMT for solving constraint satisfaction prob-
lems. In [Bofill et al., 2010] it is stated that SMT-Solvers are
well suited for solving CSPs and a tool is presented for trans-
lating instances of the MiniZinc constraint modeling language
into the SMT-LIB standard. SMT-solvers have been used to
solve different constraint optimization problems [Ansétegui
et al., 2011], [Nieuwenhuis and Oliveras, 2006], [Ansétegui
et al., 2013]. In [Ansétegui et al., 2013] a SMT based ap-
proach was presented for the Nurse Rosterin Problem (NRP),
which is related to our problem. However, NRP differs from
our problem as it does not take into consideration the cyclicity
of the schedule.

In this paper we investigate how the RWS problem can be
encoded in first-order formulas over certain background the-
ories. By formulating the problem in the theory of quantifier-
free linear integer arithmetic, many instances could be solved.
However, this approach reached its limits when applied to
problems with a large number of employees. To overcome
this issue we developed a second new encoding using the
theory of fixed-size bitvectors. By means of machine arith-
metic we were able to achieve a very compact representa-
tion of the constraints and a reduced number of variables.
We experimentally evaluated the two modeling approaches
on benchmark instances from literature using various SMT-



solvers. The proposed approach outperforms other existing
exact approaches by solving more instances, which could not
been solved yet by complete methods.

2 Rotating Workforce Scheduling

Rotating Workforce Scheduling addresses the problem of
shift assignment and day-off scheduling in the specific case
of cyclic schedules. The formal definition of the problem and
its instances is based on the definition from [Musliu et al.,
2002]:

Instance:

e n: Number of employees.

e A: Set of m shifts (activities): ag, a1, ..., ¢ym_1, Where
ag represents the special “day-off” shift.

e w: Length of the schedule. Typically the value of w is
set to 7 (one week). The total length of a planning period
is n x w for one employee, because of the cyclicity of
the schedule.

e Cyclicity: The required schedule is considered to be
cyclic, that is, each employee works the schedule for the
complete planning period starting at a specific week. For
example in the second week the first employee will take
the schedule of the second employee, the second em-
ployee will take the schedule of the third employee, and
so one the last employee will take the schedule of the
first employee.

e R: Temporal requirements matrix, an (m—1) X w-matrix
(because the day-off shift ay is excluded) where each
element r; ; of matrix I defines the required number of
employees for the corresponding shift (¢) on that day of
the week (7).

o Prohibited shift sequences: Certain shift sequences must
be prevented from being assigned to the employees.

e MIN,, and M AX,: Minimal and maximal possible
length of work blocks. A work block consists of con-
secutive days on which an employee is working without
having a day-off.

e Maximum and minimum length of periods of consec-
utive shifts: Vectors M AXS,,,, MINS,,, where each
element shows the maximum respectively minimum per-
mitted length of periods of consecutive shifts.

Problem: Find a cyclic schedule (assignment of shifts to em-
ployees) that satisfies the requirement matrix, and all other
constraints.

3 Modeling the Rotating Workforce
Scheduling problem

In this paper we propose two encodings that use functions
and predicates from different background theories. The first
formulation is based on linear integer arithmetic, whereas the
second formulation expresses RWS with fixed-size bitvectors
and bit-level operations.

3.1 Linear Integer Arithmetic

For the first modeling approach the theory of linear arithmetic
over the integer numbers is used. The first step is to define a
set of variables to represent the workforce schedule. There-
fore, we define one variable for each day of the planning pe-
riod, i.e. n X w variables. Next, we have to specify the type
of these variables. In order to simplify the constraint formu-
lations we will use different integer numbers for the shifts,
hence the type of our variables will be the Integers.

Let a schedule S be defined as a n X w matrix of variables,
where n is the number of employees and w the number of
work days.
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Furthermore, we map every shift ag,aq,...,a,—1 of A
(see Section 2) to an integer number. Therefore, we define a
function: f : A — Nsit foralla, € A\ {ao} : f(a;) =
f(ai—1)*n+1and f(ap) = 0 (explained below).

Every variable z; ; of schedule S is now assigned exactly
one of our calculated integer values: Vz;; € S : x;; €
A'and A" = {f(ax) :Var € A(0<k<m-—1)}

We will now focus on formulation of the constraints using
linear integer arithmetic with equalities.

Temporal requirements The main reason why we use the
function f to map every shift character a; to a natural num-
ber is that it allows us to specify the temporal requirement
constraints by means of basic linear integer arithmetic. Thus,
we can formally define the temporal requirements 7'(j) for a
specific day j of the week as follows:

m—1
T(j) =Y rij* flas) (2)
i=1

We can now formulate the temporal requirement con-
straints as an equation that always has to hold:

in,j =T(j), where(1 < j < w) 3)
i=1

Since we defined the calculation f(a;) as the arithmetic
operation f(a;_1)*n+1, itis ensured that the required value
for T'(j) can only be obtained if the correct amount of staff is
assigned to the corresponding shifts.

Shift Block Length To address the block length issue, we
have to think of our schedule as a one dimensional sequence
of work days instead of the matrix we defined before. This
ensures that the last day of each week is adjacent to the first
day of the next week. Additionally, we must not forget that in
a cyclic schedule the last day of the last week is also adjacent
to the first day of the first week. With that in mind we define
the block length constraints by considering every variable to
be the first in a new block. The neighbors of each of these



possibly block-starting variables are then constrained: The
block-starting variable itself has a certain shift value, then all
following variables of the same block are restricted to the ac-
cording shift value. For the following definitions we address
every variable x; ; by its absolute position in the one dimen-
sional representation of the schedule. Therefore, we omit the
second index j as ¢ will range from 1 to n x w.

Minimum Shift Block Length: For every z;, if x; = q;
(where a; defines the shift to be constrained) and z;_; # a;,
then Tit1 = Qj NTjyo = a; N NZitmin—1 = a;. We note
that we have to avoid the cases when the subindex of z is out
of bounds.

Maximum Shift Block Length: For every x;, if z; = a; A
Ti—1 ;é aj /\xi+1 = aj A:Ci+2 = Gy AR AIH—max—l = aj,
then =i maa 7 a;.

Note that the formulation of the shift block constraint must
also be applied to the day-off shift a to restrict the minimum
and maximum number of consecutive days off. We can de-
scribe the constraints for the work block length very similarly
to those for the shift blocks. The only difference is that we do
not care about the shifts the block consists of, unless they are
assigned the special “day-off” shift ag. Due to this similar-
ity and space limitation the formal definition for work block
length is not given in this paper (this definition can be found
in [Erkinger, 2013]).

Illegal Shift Sequences Safety concerns and legal reasons
make it necessary to forbid certain shift sequences from being
assigned to the employees. This means that if on a day z; an
employee works in shift a;, the employee is not allowed to
work in shift aj the day after. For every z; it has to hold
that if z; = aj, then x;41 # ap (kK # j), iff a;j — ag
is forbidden. This assertion can be easily adapted to restrict
illegal sequences of three shifts.

3.2 Bitvector Theory

The formulation of the problem in bitvector theory is more
complex than the formulation using linear integer arithmetic.
By definition a bitvector in the SMT context may be of arbi-
trary length. Therefore we propose using bitvectors that are
the size of the complete schedule for the problem. Thereby
each bit of a bitvector represents one day in the schedule.
With that in mind, we use one bitvector per shift and one extra
bitvector to represent the days-off. We will call the bitvector
of a shift a shiftvector. A shift is assigned to a specific work
day iff the according bit in the shiftvector is set to 1.

A schedule S is represented by m bitvectors
shifty, shift,, ...shift,,_,, where shift, represents the
day-off shift. Each bitvector shift; (0 < ¢ < m — 1) is of
size n X w where n represents the number of employees and
w the number of work days.

The subsequent sections discuss the constraints of rotating
workforce scheduling using the bitvector encoding.

Shift Assignment The shift (including day-off) assignment
constraint ensures that exactly one shift is assigned to each
day of the schedule. This is accomplished in two steps: we

have to make sure that there can be no more than one shift
per day and employee and that there must be at least one shift
assignment per day and employee.

For the first part of the constraint we use the bitwise AND
operation. We have to apply this operation to every combina-
tion of two shiftvectors and assert that the result of the combi-
nation is a bitvector of the same length as the original vectors
containing only zero-bits (0).

(shifty)
(shifts)
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The example above shows a violation of this constraint be-
cause on two days both shift; and shift, have the according
bits set to 1 meaning the employee would be assigned both
shifts on these days.

To ensure correctness we also have to rule out that no shift
is assigned to a specific day. Recall that this also includes
the day-off shift (shift,). The second assertion addresses this
issue by using the bitwise OR operation. If the result of the
bitwise OR applied to all shiftvectors is equal to the bitvector
containing only 1-bits, then at least one shift is assigned to
each work day.

Temporal requirements Instead of only regarding the
structure of our shiftvectors as having the length of the whole
schedule (n x w), we have to think about the schedule as a
multidimensional array, consisting of n arrays with size w in
order to restrict the number of employees assigned to each
shift on a specific day. Note that a shiftvector is read from
right to left, meaning that the first week of the schedule starts
with the least significant bit.

k 2 eek 1
wee, U wee, (5)
0 1 1 1 0o 0 1 (week 1)
0o 0 0 1 1 0 1 (week2)

Because of the cyclicity of the schedule, every week also
stands for the current shift schedule of one employee. Hence,
every column of our multidimensional array represents the
shift plan for all employees on that day of the week. In the
formulated constraint the number of 1-bits in each column
must be equal to the number of employees that should be as-
signed to the corresponding shift on that day. Therefore, we
first have to create a temporary bitvector by extracting the
correlating bits of the original shiftvector and concatenating
them to a new bitvector that represents that day.

o 0 O 1 1 1 0 1 1 1 0 1
{
1 1 (Monday)
(Tuesday) ©
1 0

(Wednesday)

The SMT-LIB input language provides an extract operation
to select certain bits within a bitvector. These bits can be
concatenated with the help of the concat operator.



In the next step we count all bits in the bitvector that are set
to 1. To accomplish that, we calculate the Hamming Weight of
our vector. In the following a short definition of the Hamming
Weight is given:

“The Hamming distance d(u, v) between two words u and
v, of the same length, is equal to the number of symbol
places in which the words differ from one another. If v and
v are of finite length n then their Hamming distance is fi-
nite since d(u,v) < n.”’[Daintith ez al., 2004]. Introduced by
Richard Hamming in [Hamming, 1950], the Hamming dis-
tance is used in telecommunication for error detection and
error correction. The Hamming Weight is simply defined as
the Hamming distance of a word u and the zero-word. Hence,
it represents the number of symbols which are different from
the zero-symbol.

The original algorithm to calculate the Hamming Weight
has a runtime that depends on the length of the input word,
because it checks if every single symbol of the word differs
from the zero-symbol. This approach is not ideal for our use,
as it cannot be formulated in a declarative way and therefore
is not suitable for us in the constraint formulation.

A better way to calculate the Hamming Weight is provided
by the algorithm developed by Peter Wegner in 1960 [Weg-
ner, 19601, which is based on the fact that if the bitwise AND
operation is applied to a binary number N and N —1, then the
resulting number has one 1-bit less than the original number
N. In other words, the least significant 1-bit is eliminated.

input : A bitvector v
output: The Hamming weight of bitvector v

while v # 0 do
weight = weight + 1;
v=v & (v-1);
end
return weight
Algorithm 1: Wegner’s Method for Hamming Weight

L7 N T S

Wegner’s method offers the advantage that it can be for-
mulated declaratively using recursion, because the number of
iterations (recursive calls) is equal to the number of set bits in
the input vector. Formally the number of selected bits n in a
bitvector v can be calculated by the recursive application of
v=v& (v—1)untilv = 0.

To use this method in our encoding we define a helper func-
tion (bitcount) that takes a bitvector v as input and returns the
result of the operation v = v & (v — 1).

To make sure that a certain bitvector has exactly n bits that
are set to 1, we define one assertion which guarantees that
after n — 1 applications of the bitcount function the bitvector
is not equal to 0 and another assertion that ensures the vector
is equal to O after n calls of the bitcount function. These
assertions are defined for the previously created bitvectors of
each work day.

Maximum Shift Block Length  Shift blocks are a sequence
of 1-bits in a shiftvector. The length of this sequence needs
to be constrained to prevent an employee from working an
illegal number of consecutive work days of the same shift. To

accomplish that, we need to count the consecutive 1-bits of a
shiftvector.

We can find two consecutive bits in a bit vector v, by shift-
ing the vector one bit to the right v >> 1 and combine it with
the original vector using the AND operation v & (v >> 1).
Then the bit v; is set to 1 iff v; 4 is set to 1 in the original
vector. Hence, with every application of this operation the
left most bit of a block is replaced by a 0.

To find n consecutive bits we can expand our equation to
this generalized one:

O=v&@w>N&W>2)&...&(w>>n) ()

e L1 1 0 0 0 1 1 0 1 1 1 (v

0 1 1 1 0 0 0 1 1 0 1 1 (v>>1)
e 0 1 1.0 0 0 0 1T 0 0 1T T (V)

0 0 1 1 1 0 0 0 1 1 0 1 (v>>2)
g 0 0 1T 0 0 0 0 0 0 0 0 I ()

0 0 0 I 1 1 0 0 0 I 1 0 (v>>3)

0 0 0 0 0 0 0 0 0 0 0 0 (v)

®)

Thus, we can use this kind of algorithm to restrict the max-
imum length (max) of a shift block, since the vector has to be
equal to 0 after at most maz iterations of v’ = v’ & (v >> 1)
with 1 < ¢ < maz, v being the original shiftvector and v’ be-
ing the resulting modified shiftvector v (see Example 8 for a
maximum of 3).

Another problem we have yet to deal with is that of cyclic-
ity. As we are designing a rotating schedule, the least and the
most significant bit (Isb/msb) of each shiftvector are adjacent,
which is important for the shift block constraints. To incorpo-
rate that, we simply concatenate every shiftvector with itself
so that the Isb and the msb become adjacent in the middle
of the new vector. Afterwards, we apply the consecutive bit-
count method to this double-size bitvector.

©)

Minimum Shift Block Length The next step is to ensure
the minimum length of a shift block. This constraint is more
difficult to formulate declaratively than the maximum shift
block constraint. If we tried the same approach as for the
maximum shift block length by applying the consecutive bit-
count algorithm min times in order to assert that the vector
equals to 0, this would clearly be wrong. As min only rep-
resents the minimum block length, longer sequences of con-
secutive bits are still allowed to exist. Hence, the resulting
shiftvector not necessarily equals to 0.

The method we propose to ensure the minimum shift block
length consists of three steps:

1. Delete illegal blocks: Apply min — 1 iterations of the
consecutive bit count method to the shiftvector, where
man is the minimum block length. After min — 1 ap-
plications at least one 1-bit of each legal block is still
present, while all blocks of illegal size have been re-
placed by 0-bits.



2. Restore blocks: By iteratively shifting the vector from
(1) to the left men — 1 times and applying the OR oper-
ation to the shifted vector and the one from the previous
iteration, the length of all blocks is restored (except the
already deleted illegal blocks).

3. Verify: In the last step we have to compare the bitvector
from (2) with the original shiftvector. These two vec-
tors are equal iff the original vector did not contain any
illegal blocks in the first place, because otherwise they
would have been deleted in step (1).

input : A bitvector v

input : The minimum block length min

output: A Boolean indicating that the min block length holds
for v or not

1 va =0
2 fori=1tomin — 1do
3 ‘ 1)2:1)2&(1}2>>1)
4 end

s fori =1tomin — 1do
6 | va=w2](v2<<1)
7 end

8§ return v == vz

Algorithm 2: Minimum Shift Block Length

For better illustration of how the algorithm works, consider
the following example. Take a shiftvector shift; and check if
the minimal block length min = 3 holds for all shift blocks
of this vector.

0 1 1 1 0 1 o0 1 1 1 0 (10)

We will start by applying the consecutive bitcount method
min — 1 times:
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The example above shows that with every iteration of the
consecutive bitcount method, the left most bit of every 1-
block is replaced by a zero. Hence, after min — 1 = 2 it-
erations at least one set bit of each legal block has not been
replaced, whereas the illegal blocks — blocks with a length
less than min — have vanished completely.

As a next step we will restore the original shiftvector by
shifting the vector back to the left min — 1 times and applying
the bitwise OR operation to every iteration (see 12). This will
ensure that every 1-bit of a legal block that has been replaced
by the consecutive bitcount method is being restored, while
the blocks with illegal length are not.
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The resulting vector is now compared to the original shift
vector. The constraint is successfully fulfilled iff the two vec-
tors are equal.

1 1 1 0
1 1 1 0 (13)
false

So far we have left out the fact that our algorithm does not
consider the cyclicity of the schedule, meaning that the first
and the last bit of a shiftvector are adjacent. To overcome this
issue, we have to refine our algorithm in a way that incorpo-
rates rotating schedules. Suppose we have the following shift
vector:

1 0 0 1 1 1 0 1 1 (14)

If we constrain the minimal block length to 3, the shiftvec-
tor will be legal, because we have two blocks of length 3, one
being in the middle of the vector and one that consists of the
first and the last two bits of the vector. Before we can make
use of our algorithm, we therefore have to concatenate this
split block, since otherwise the algorithm would falsely clas-
sify two blocks as illegal, one each at the beginning and the
end of the vector. Thus, by moving the illegal block at the
end in front of the most significant bit, we merge these blocks
together and solve this issue.

We start out by creating a vector that only contains the last
1-block of the original shiftvector.
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(15)
Example 15 shows how the vector can be modified, so that
only the least significant 1-block is present. We could now
concatenate this vector with the original shift vector in order
to merge the split block. However, there is still a problem.
Although we have concatenated the two vectors and thus con-
sidered the split block as a legal block, we still have two bits
at the end of the vector, that form an illegal block. Therefore,
before concatenating the two vectors, we apply the XOR op-
eration to them and then concatenate the vector from 15 with
the resulting vector of that operation.

1 1 1

1 0 0 1 1 1 0o 0 0

o o0 o0 o0 0 0 O 1 1 10 0 1 1 1 0
(16)

The obtained vector represents the correct non-cyclic
shiftvector. The minimum shift block length algorithm (Al-
gorithm 2) applied to this vector will indicate whether the
shiftvector contains only legal blocks or not.

Work Block Length: The work block constraints are very
similar to the shift block constraints. The only difference is
that a work block is a sequence of consecutive days where
an employee has to work regardless of what shift he/she is
assigned to.



We could get a vector encompassing all the work blocks by
simply applying the bitwise OR on all shiftvectors, except the
special “day-off” vector. Another way to obtain that vector is
to negate the “day-off” vector, i.e. replace every 0 by 1 and
every 1 by 0. The 1-bits in the resulting vector then represent
all work-days, whereas the Os stand for the days off. The
easiest way to negate a bitvector is to use the NOT operation

- 1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0

(shifto)
=(shifto)
We now use the same constraint formulations as for the
shift block length on this new vector to restrict the length of
consecutive work days.

an

Illegal shift constellations Certain shift constellations are
considered illegal, because every employee needs a fixed
amount of resting time between two workdays. Therefore, it
is not allowed for example, to work the day-shift after work-
ing the night-shift.

o 1 0 0 0 0 1 1
1 0 1 1 1 o 0 0

Ny

These constellations can be forbidden with the help of bit
rotation of a shiftvector. Considering the example above, to
prevent the shift constellation Night — Day we have to rotate
the shiftvector of the night shift NV by 1 to the right. We
can now AND this vector with the shiftvector of the day shift
D and check if they have no bits in common that are set to
1. Subsequently, for any position ¢, D; # N; has to hold.
Hence, the resulting bitvector must be 0.

o 1 0 o0 0 1 1  (Nightshift)
1 1 1 1 0 0 0 (Dayshift)
i

o 0 1 0 0 0 0 1 1 (Night shift)
& 1 0 1 0 0 0 0 1 (rotated Night shift) (19)

1 0 1 1 1 0 0 0 (Day shift)
_ 1 0 1 0 O 0 0 O
-0 0 0 0O 0O 0 0 O

false

The example also illustrates why it is important to use bit
rotation instead of a logical shift right operation. If we had
shifted the night shift vector to the right, we would have
missed the fact that the least and most significant bit of each
vector are adjacent.

The problem definition also allows illegal shift sequences
of length 3 to be specified. The algorithm for detecting such
illegal sequences is still very similar, except that we have to
take three shiftvectors into consideration. A more detailed
explanation can be found in [Erkinger, 2013].

4 Experimental Results

In this section we investigate the performance of our two
modeling approaches on 20 benchmark instances described
in [Musliu, 2005; 2006].! The first three problems have been
used in most rotating workforce scheduling papers given in
the introduction and other 17 instances were derived from real

! http://www.dbai.tuwien.ac.at/staff/musliu/benchmarks/workforceScheduling.zip

life problems of different business areas. The collection con-
tains small, middle-size and very large instances. The number
of employees (or groups) for the largest instance is 163. As
the number of shifts for this problem is 4 (including day-off),
the search space for this problem is 4163*7

We applied five state-of-the-art SMT-solvers (Z3 version
4.3.1 [de Moura and Bjgrner, 2008], MathSAT5 version 5.2.5
(gmp 5.0.5, clang/LLVM 3.1, 64-bit) [Cimatti er al., 2013],
CVC4 version 1.0 (compiled with GCC version 4.2.1) [Bar-
rett et al., 2011], Yices version 2.1.0 [Dutertre and de Moura,
2006] and Boolector version 1.5.115 [Brummayer and Biere,
2009]). The solving process was performed on an Apple
MacBook Pro with the following hardware details: 2.0 GHz
quad-core Intel Core i7 (Sandy-Bridge) and 8 GB DDR3
RAM. The timeout for each solver and instance was set to
1000 seconds.

A comparison of the different solvers with respect to the
number of found solutions for the the linear arithmetic (LIA)
encoding shows that Z3 is able to solve the most bench-
mark instances (Z3 finds a solution for 15 instances). All
five solvers achieve a higher solution rate with the bitvector
approach than with the linear arithmetic method. MathSAT
and Boolector were even able to solve 18 instances, which
is three instances more than the best solver (Z3) of the LIA
approach. A detailed evaluation including the exact runtimes
can be found in [Erkinger, 2013].

Next, we compare the fastest performing SMT-solvers of
each modeling approach to each other in order to evaluate
whether one encoding is superior for solving the rotating
workforce scheduling problem (Figure 1). The best perform-
ing solver of the linear arithmetic approach was Z3, whereas
MathSAT provides the best results for the bitvector encoding.
We can conclude from Figure 1 that the bitvector approach
outperforms the linear arithmetic method on all instances and
achieves significantly faster solving times. This seems to con-
firm the initial assumption that modeling the problem with
bitvectors has a positive impact on the solvers’ runtime.

Linear Arithmetic vs. Bitvector approach
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Figure 1: Comparison of the fastest solver of each approach



5 Comparison to other Approaches

In order to evaluate whether the approach of solving the ro-
tating workforce scheduling problem with SMT-solvers is
competitive, we have to compare the results to other solving
techniques from literature. First, we compare the results of
MathSAT to two other approaches ([Balakrishnan and Wong,
1990] and [Laporte and Pesant, 2004]) that have been tested
on three existing instances from literature. Table 1 provides
the solving times for both of these approaches and MathSAT.
Although the results cannot be compared directly due to dif-
ferent hardware specifications, it can be observed that Math-
SAT solves these three instances in a short span of time and
thus is competitive with the two approaches.

| Instance | MathSAT 5 | BW90 | LP04 |
1 [Butler, 1978] 0,13 73,54 3,78
2 [Laporte erf al., 1980] 0,13 310,84 | 0,03
3 [Heller et al., 1973] 0,27 457,98 | 10,26

Table 1: Comparison of solving times to previous methods

We now compare the number of solutions and the run-
times to those of the First Class Scheduler (FCS) proposed
by [Musliu et al., 2002], the min-conflicts heuristic with tabu-
search algorithm (MC-T) of [Musliu, 2006] and the exact
method developed by [Triska and Musliu, 2011] that uses
constraint programming. MC-T solves all 20 instances, how-
ever, it is a heuristic technique and should therefore not be
directly compared to the exact methods. It is more suitable to
compare the SMT-technique to FCS [Musliu er al., 2002] and
the constraint programming approach CP-Rota [Triska and
Musliu, 2011], as these two are also exact methods.

In comparison to the First Class Scheduler, the SMT ap-
proach solves 5 instances more than FCS. While MathSAT
can find a solution to the instances 9,12,13,17,19 and 20, FCS
did not finish within 1000s on these instances. On the other
hand, FCS is able to solve instance 7 which is not the case for
any of the tested SMT-solvers in this paper.

Comparing the constraint programming approach CP-Rota
to the results of MathSAT shows that CP-Rota solves 13 out
of 20 instances, meaning five less than the SMT-solver. Al-
though MathSAT is able to find a model for the instances 10,
11, 12, 18, 19 and 20, CP-Rota finds a solution for instance 7
in return. It is indeed surprising that the other exact methods
were not only able to solve instance 7, but to do so in a short
time. We could not find an explanation why SMT-solvers fail
to find a solution for this instance, especially as they share
many similarities with constraint programming techniques.
Nevertheless, MathSAT has the highest solution rate of all
exact methods considered in this paper.

Although these results indicate the superiority of SMT-
solving over other exact methods, this conclusion should be
taken with caution since the runtimes of these techniques
were not measured on the same hardware and are therefore
not directly comparable. We now have a look at the detailed
solving times given in Table 2.

The runtimes show that the two approaches from literature
achieve good results on a number of instances. This indi-

[Tnstance | MathSAT 5 | MC-T | FCS | CP-Rota |
1 0,13 007 | 09 0,02
2 0,13 007 | 04 0,02
3 027 0,42 1,9 0,24
4 0,16 0,11 17 0,03
5 0,14 0,43 35 0,98
6 0,1 0,08 2 0,02
7 >10007 | 52,79 | 161 0,07
8 03 0,74 | 124 964
9 1,01 1596 | >10002 | 19
10 0,56 0,60 | 95 [ >1000?
11 337 13,15 | 367 | >1000?
2 1,56 1,17 | >10007 | >1000?
13 0,46 0,87 [ >1000? | 114
14 0,24 0,76 | 0,54 940
15 >10002 | 159,04 | >1000? | >10007
16 0,76 054 | 244 216
17 0,85 2,16 | >10007 | 18
18 6,23 6,83 | 2,57 | >1000?
19 48932 | 75,83 | >10007 | >1000?
20 35521 | 71,38 | >1000? | >1000?

Table 2: Comparison of solving times with FCS and CP-Rota

cates that FCS and CP-Rota might achieve better results on
a faster hardware and thus even outperform the MathSAT
solver. However, the SMT approach is particularly fast on
most instances (9, 10, 11, 12, 17, 18) that could not be solved
by FCS or CP-Rota.

In conclusion, the encoding in SMT is an efficient approach
to rotating workforce scheduling, which provides promising
results when compared to other exact methods.

6 Conclusion

In this paper we proposed a new approach for solving the
rotating workforce scheduling problem. By formulating ro-
tating workforce scheduling as an SMT problem, we were
able to use state-of-the-art solving tools (SMT-solvers) for
the generation of cyclic workforce schedules. With the help
of different background theories we developed two modeling
approaches for the problem. Although encoding the prob-
lem with bitvectors and bit-level operations was a challeng-
ing task due to the complexity of the constraints, the assump-
tion of the approach’s superiority was indeed confirmed by
the comparison of the experimental runtime results of the
two modeling techniques. The competitiveness of solving
the problem with SMT-solvers was verified by the compar-
ison to other exact methods from literature. The results show
that SMT-solving is a well performing alternative to these ap-
proaches, because it outperformed the other exact approaches
on many instances and is able to provide a solution in a rea-
sonable time frame for some instances where the other meth-
ods fail to do so.
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