
Solving the General Employee Scheduling ProblemI

Lucas Kletzandera,∗, Nysret Musliua

aTU Wien, Karlsplatz 13, 1040 Vienna, Austria

Abstract

In many professions the demand for work requires employees to work in different
shifts to cover varying requirements including areas like health care, protection
services, transportation, manufacturing or call centers. However, there are many
constraints that need to be satisfied in order to create feasible schedules. The
demands can be specified in various ways, different legal requirements need to
be respected and employee satisfaction has to be taken into account. Therefore,
automated solutions are mandatory to stay competitive. However, even then
it is often hard to provide good solutions in reasonable time as many of the
problems are NP-hard.

While not each problem will require the whole set of available restrictions, it
is cumbersome to develop a new specification format and corresponding solver
for each problem. Often these can not be well applied to similar problems
differing in some requirements. On the other hand it is a challenging task
to provide a general formulation and solution methods that can solve large
integrated problems, as even several sub-problems on their own are known to
be NP-hard.

Therefore a new framework is proposed for the general employee scheduling
problem that allows the implementation of various heuristic algorithms and
their application to a wide range of problems. This is realized by proposing a
unified handling of constraints and the possibility to implement various moves
that can be reused across different algorithms. Further, a new search method
is developed and implemented in the framework.

In order to show the applicability to a wide range of problems, we take
different problems from literature that cover different types of demand and
constraints, translate their instances to our formulation and apply our solver to
those instances as well as our own instances with good results.

Keywords: Rostering, Task Scheduling, Metaheuristics

IThis work was supported by the Austrian Science Fund (FWF): P24814-N23. The fi-
nancial support by the Austrian Federal Ministry for Digital and Economic Affairs and the
National Foundation for Research, Technology and Development is gratefully acknowledged.

∗Corresponding author
Email addresses: lkletzan@dbai.tuwien.ac.at (Lucas Kletzander),

musliu@dbai.tuwien.ac.at (Nysret Musliu)

Preprint submitted to Computers & Operations Research May 14, 2018

1. Introduction

In many professions the demand for work requires employees to work in
different shifts to cover varying requirements including areas like health care,
protection services, transportation, manufacturing or call centers. However,
this problem can come in many shapes [1, 2]. The demand might be to assign
employees to certain shifts that are already fixed like in nurse rostering. It
might also be necessary to design shifts in a way that there is always a certain
number of employees present. Sometimes tasks are given and the shifts have to
be designed to cover these tasks.

On the other hand shifts can not be assigned freely. Legal requirements can
be very strict in demanding times between shifts, certain patterns or sequences
of shifts or days off that are required or forbidden and much more. Employees
might have different contracts that might specify very differing requirements for
each employee. On some occasions it might also be necessary to schedule breaks
as well in order to guarantee that still enough employees are available for duty.

Further, the employees themselves often specify their own requests like days
they would like to have on or off, shifts they want to avoid or other employees
they want to work with or avoid. There might also be measurements of fairness
between employees that need to be considered. In order to increase employee
satisfaction it is important to include such wishes as well.

To reduce cost and maximize effectiveness, companies want to find schedules
that cover all the demands in an effective way. Ineffective scheduling might
require the hiring of temporary employees that increase the cost, while schedules
that do not respect all the legal constraints can lead to penalties and employee
dissatisfaction. Not only is it increasingly difficult to generate schedules by
hand for more employees and more requirements, it is also very time consuming.
Therefore, automated solutions are mandatory to stay competitive. However,
even then it is often hard to provide good solutions in reasonable time as many
of the problems are NP-hard.

While not each problem will require the whole set of available restrictions,
it is cumbersome to develop a new specification and corresponding solver for
each version. Often these can not be well applied to similar problems differing
in some requirements. Therefore, it would be highly beneficial to have a frame-
work suitable for application on various problems without the need to design a
new formulation from scratch. On the other hand it is a challenging task to pro-
vide a general formulation and solution methods that can solve large integrated
problems, as even several sub-problems on their own are known to be NP-hard.

The main contribution of this paper is a new framework allowing the imple-
mentation of various heuristic solvers for different kinds of problems specified in
our formulation while increasing reusability and easy adaptation to new problem
variants.

A new approach based on Simulated Annealing is implemented in this frame-
work and applied to various benchmark instances from literature for comparison
as well as to instances from a new instance generator. The instances from lit-
erature cover nurse rostering [3] as well as different problems involving tasks

2

from [4] and [5].
The remainder of this thesis is organized as follows. In section 2 an overview

of related work in employee scheduling is presented. In section 3 the problem
definition is presented. Section 4 explains the structure of the framework and
its components. In section 5 the evaluation of the framework on the generated
instances and the instances from literature is presented. Section 6 provides a
summary and an outlook for possible future work.

2. Related Work

Many different versions of employee scheduling problems have been described
in the past. Already in [6] an informal description of the General Employee
Scheduling (GES) Problem was provided, giving rise to the identification of
several common notions in all problems of this kind.

Several reviews of different problem versions are available. In the review on
staff scheduling and rostering in [2] several modules in the rostering process are
identified.

The combined scheduling of days off and assigning shift sequences to employ-
ees is known as the Tour Scheduling Problem (TSP). For a review presenting
several different approaches to solve the TSP see [7].

In the more recent review [1] hundreds of papers are classified according to
different characteristics that are described. Some important characteristics are
summarized in the following.

Frequent contractual constraints can refer to full time, part time or casual
employments, they also frequently include skills. Scheduling often involves indi-
vidual assignment, but can also rely on crew scheduling. Decisions often involve
task scheduling, group scheduling, shift sequences or scheduling of time periods.
Shifts can be placed differently across the day, either with fixed start and end
times or with the requirement for shift design. Coverage constraints are often
included as hard constraints, but can also be soft constraints. Overstaffing and
understaffing might be allowed and treated in different ways.

Several different ways of including cost, e.g., per employee, per day or per
task can be distinguished. A balanced workload as well as employee preferences
are frequently used. Lots of different time-releated constraints regarding the
number and sequence of assignments, the workload, the time between assign-
ments and much more are identified.

Presented solution methods include several types of mathematical program-
ming, constructive heuristics, improvement heuristics, simulation, constraint
programming and others. Some problem variants also incorporate uncertainty,
however, this case is not further incorporated in this paper.

The recent review [8] focuses on work including skills. This review distin-
guishes different skill classes, the hierarchical and categorical class and deals
with different ways to incorporate skill substitution. It investigates in detail
how different papers deal with the definition and assignment of skills.

Methods in nurse rostering are reviewed in [9]. The nurse rostering problem
originates in hospital staff scheduling for nurses. It typically involves several

3

different, predefined shift types with various staffing requirements and several
constraints restricting the way nurses can be assigned to these shifts. It might
also contain skills that are required for the assignment. The review again cate-
gorizes different methods to approach such problems. There are also variations
that consider cyclic or rotating schedules like in [10], where heuristic methods
for such problems are presented.

In order to evaluate the performance on nurse rostering for our approach we
focus on the instances from [3]. A model of the problem is presented by [11].
They provide a range of generated instances from small to large including some
very challenging large instances where no optimal solutions are known. Various
real life instances are provided as well, [12] presents methods that are success-
fully applied to these instances.

Shift design is described in [13]. In these types of problems the shifts types
are not fixed, but shifts have to be defined by the algorithm. The assignment
of breaks is included in [14].

One of the problems using task demands is the Personnel Task Scheduling
Problem (PTSP) in [15] and its optimization variant, the Shift Minimisation
Personnel Task Scheduling Problem (SMPTSP) in [16] and [17]. In this case
tasks need to be assigned to shifts that are already predefined. The SMPTSP
further considers minimization of the required number of employees.

This problem also relates to the interval scheduling problem, for a survey
see [18]. However, better results can be achieved when scheduling shifts and
tasks at the same time as stated by [2].

A combination of shift and task assignments called the Task Scheduling and
Personnel Rostering (TSPR) problem is described in [4] and taken as one of
the problems for evaluation of our framework. It uses constructive heuristics
based on column generation and other decompositions as well as very large
neighborhood search and integer programming to obtain good results.

This paper also contains an overview of various papers that deal with task
assignments and what kinds of tasks they consider. A related class of Employee
Timetabling Problems (ETPs) is also defined and modelled in [19].

A challenging problem is described in [5] and [20]. The Shift Design and
Personnel Task Scheduling Problem with Equity objective (SDPTSP-E) not
only considers shift design at minute granularity together with task assignments,
but also a special equity objective and the scheduling of breaks.

In [5] a constraint-based approach is used to solve the problem, while in [20]
a two-phase method is presented where the assignment of shifts and the assign-
ment of tasks are treated in alternating phases.

A heuristic approach to a similar problem also dealing with shift design and
the assignment of tasks is already presented in [21] in the context of the fast
food industry.

Further there are papers providing general modelling and complexity analysis
like [22] including some results that even some special cases in certain problems
can already lead to NP-hardness.

There is also much work on different heuristic optimization techniques in
general, e.g., [23] gives a good overview of several techniques including simulated

4

annealing. The application of various metaheuristics to employee scheduling
problems is covered by many of the surveys stated above.

3. Problem Definition and Specification Format

In General Employee Scheduling a wide range of different constraints needs
to be considered to allow the specification of different requirements without the
need to introduce a new problem formulation for each variant of the problem.

Based on the analysis of various employee scheduling problems in literature,
a new specification format was developed [24] that supports a wide range of
problems using different demand specifications and different types of definitions,
restrictions or preference specifications. This section presents the main ideas
and the structure of our new formulation as well as an overview of the different
specification options that are available.

In order to specify this formulation in a way that is both human-readable
and machine-readable, XML1 is a useful format that allows to structure the
large amount of specification options. Further XML formats can be extended
easily without breaking the structure of already existing instances. Therefore
the GES formulation is specified as an XSD2 file.

Some XML problem formats already exist, e.g., the AutoRoster3 and Shift-
Solver4 modelling formats. However, our formulation combines the possibilities
of these formats, extends them with more options and provides a homogeneous
and structured formulation allowing new combinations of constraints and de-
mands not yet investigated in literature.

3.1. Problem structure

The problem deals with the scheduling of shifts as well as optionally tasks
and breaks for a set of employees over a certain period of days. The period
length is denoted as p and is fixed for each instance. The set of employees E
considered for a solution might be fixed or variable.

A schedule assigns either a day off or precisely one shift on each day 0 ≤ i < p
to each employee e ∈ E. Each shift s has a type types, a start time starts and
an end time ends. Shifts might overlap to the next day, but they must not
overlap each other. The available types of shifts as well as their placement can
be guided by a large number of constraints.

The whole schedule including possible task and break assignments is called
the schedule, when just talking about the shift assignments, we speak of the
roster. The schedule for an individual employee is called an employee schedule,
the schedule for a specific day a daily schedule.

1http://www.w3pdf.com/W3cSpec/XML/2/REC-xml11-20060816.pdf
2https://www.w3schools.com/xml/schema_intro.asp
3http://www.staffrostersolutions.com/support/autoroster-problem-data.php
4http://www.staffrostersolutions.com/support/shiftsolver-problem-data.php

5

http://www.w3pdf.com/W3cSpec/XML/2/REC-xml11-20060816.pdf
https://www.w3schools.com/xml/schema_intro.asp
http://www.staffrostersolutions.com/support/autoroster-problem-data.php
http://www.staffrostersolutions.com/support/shiftsolver-problem-data.php

If the scheduling of tasks or breaks is required, each shift s in the schedule
can contain a list of task parts Ts where each part t ∈ Ts has defined start
and end times start t and end t and the ID of the corresponding task demand
demand t. Note that we speak of task parts as tasks might be preemptive.

Further a list of breaks Bs, where each break b ∈ Bs has start time startb
and end time endb as well as a break type typeb can be defined. Tasks and
breaks in a valid schedule have to lie within their enclosing shift and must not
overlap each other. Again a large number of constraints guides the placement
of these elements.

Time spans, while allowing different formulations in the format, are always
considered to be in minutes in this specification and refer to differences between
time points. A time point can be relative to a specific day (e.g. a shift on day
5 starts at 20:00 and ends at 4:00 on the next morning) or absolute, calculated
from 0:00 on day 0.

Constraints can either be hard constraints in which case they do not define a
weight or they can be soft constraints inducing a penalty for each violation. In
this case two attributes define the penalties. A numerical value weight defines
the weight of the violation. Further a function can be specified. The penalty is
then calculated from the violation violation as follows.

• Constant: if violation > 0 then weight else 0

• Linear (default function): weight · violation

• Quadratic: weight · violation2

If necessary, both the format and the solver framework can easily be extended
to include further penalty functions.

Each instance can have an optional ID. For each instance several main parts
are considered.

• General defines global properties of the instance including start and end of
the scheduling period, the definition of weekends, the time granularity by
timeSlotLength as well as some flags indicating specific types of problems.

• Tasks defines the available task types.

• Shifts defines the available shift types and the constraints regarding their
shapes and occurrences.

• Breaks defines the available break types and the constraints guiding their
placements. It contains both a definition of different break types with
the constraints regarding their shape and placement and a definition of
break configurations determining different break requirements for different
shifts.

• Employees defines the available employees which can either be specific
named employees or variable employees defining a homogeneous pool.

6

Further their possible skills are specified. Contracts can contain a large
number of constraints regarding contractual limitations that restrict the
assignments of shifts to employees. Different types of employee preferences
can be given as well.

• Demands defines the demands that need to be fulfilled. Shift demands give
the required number of employees working a shift type for each type of shift
and each day and are used in problems like nurse rostering. Time demands
specify the number of required employees for each period of time, often
requiring shift design and might also incorporate breaks. Task demands
specify tasks that need to be scheduled within a certain time window and
shifts have to be build around these tasks.

As the formulation is designed to support the majority of constraints used
in different employee scheduling problems and therefore includes a vast number
of constraints, they can not all be described in detail. More information on
individual constraints is given in the technical report [24], the master thesis [25]
and the project homepage.5

4. Solver Framework

As the domain of employee scheduling can include a large range of constraints
and combine various different aspects of scheduling, it would be highly beneficial
to have a general framework that can be applied to a wide range of different
employee scheduling problems.

Therefore, the main goal is to provide a framework for the implementation
of solvers that can be used to solve different problems specified in the GES
format. This section describes the main components and structure of the newly
developed framework for the implementation of heuristic solvers. A download
is available.6

As the format can specify various problems that differ in both the used
demands and constraints, the focus in the optimization problem will depend on
the instance. Therefore, most likely it will be too hard to provide an algorithm
that can deal with all problems very well, instead the focus is to provide a
possibility to implement different algorithms within the same framework to allow
adaptation to various problems as well as increased reusability and reduced
additional effort for applying the same algorithm to different problems.

This is possible by providing a unified constraint handling process for easy
and independent implementation of new constraints, a common move structure
that allows to implement various moves and reuse them in different algorithms
and the possibility to design and reuse various algorithms.

The main components of the framework are as follows.

5http://www.dbai.tuwien.ac.at/proj/arte/ges_format
6http://www.dbai.tuwien.ac.at/proj/arte/ges_solver

7

http://www.dbai.tuwien.ac.at/proj/arte/ges_format
http://www.dbai.tuwien.ac.at/proj/arte/ges_solver

• Instance and solution representation.

• A conversion mechanism to transform instances or solutions from the spec-
ification format into the internal representation and solutions from the
internal format to the specification format.

• A constraint mechanism that allows to handle constraints independently
from each other.

• A specification of moves that allows the implementation of different kinds
of moves that are reusable across algorithms.

• A specification of algorithms that do the actual work utilizing the previ-
ously defined concepts.

The implementation was done in Java 8. This section, however, will mainly
concentrate on the concepts underlying this implementation and only point to
implementation details when relevant.

4.1. Instance and solution representation

The representation of the problem instance is heavily based on the GES
formulation. Mainly these parts of the framework just provide the instance
data and store potential solutions without much functionality.

The handling of tasks, however, is not only done like in the solution format,
where a list of tasks is provided for each shift just as for the breaks. This is still
an available option, but it is not flexible enough.

The reason for this is that an algorithm might not desire such a close cou-
pling between tasks and shifts where tasks can only be assigned within shifts.
Instead, it might be beneficial to separately deal with the assignment of tasks to
employees, even if the corresponding employee currently has no shift scheduled
at that time. The shift might then be scheduled based on the need given by the
assigned tasks.

In order to allow flexible handling of tasks, first the concept of a task instance
is defined. A task instance ti is defined for each task demand d ∈ Dtask and
keeps track of the current assignment of this task. As task demands might allow
preemptive scheduling, a list of task parts Pti is defined where each part p ∈ P
has defined start and end times startp and endp. Note that tasks not allowing
preemption simply consist of one part. Further in many problems task start and
end times are fixed leading to precisely one part with predetermined start and
end times. The task instance also keeps a set of employee IDs Eti corresponding
to the employees the task is assigned to. The start time of the task instance is
defined as first ti = startPti [0].

For access to the set of tasks assigned to an employee, an ordered index of
task instances is kept for each employee schedule. This index associates the start
times of the task instances first ti with the corresponding demand IDs demand ti .

Further, both tasks and shifts can be marked as fixed, meaning that algo-
rithms are not allowed to change these assignments. These flags are used for

8

preassigned shifts and tasks, but could also be utilized in cases like when an
algorithm is expected to just work on a subproblem.

A intrinsic property of the problem is that an employee can only work one
shift at a time and that in a feasible solution tasks and breaks can only appear
within shifts and may not overlap. These properties are also tracked for each
employee schedule by a special constraint, the overlap constraint. It is explained
in more detail later.

4.2. Conversion Mechanism

In this work all problems that are provided to the solver framework are spec-
ified in the GES format. Also the internal formulation of instances, solutions
and constraints is closely related to the format. However, the framework has a
designated converter layer decoupling the format from the internal representa-
tion.

This allows changes in both the format and the solver framework to be
carried out independently, with only the converter layer needing to be adapted
to those changes. It also allows to build converters for custom specification
formats, therefore using the solver framework without being bound to the GES
format.

4.3. Constraints

The main concept behind the handling of constraints in the framework is
to have all constraints obey the same structure of usage by using a common
abstract class Constraint and a hierarchy of derived classes for specific types
of constraints. Then each constraint is treated independently without direct
interaction with other constraints, but in a common process that is the same
for all constraints. Therefore for each move the relevant constraints can be
collected, processed and evaluated in a common way while individual constraints
can easily be added, removed or replaced.

Each constraint c has access to the instance, an optional label for display
and its current value valuec. In heuristic solvers typically there is the need
to evaluate the changes a move would cause in the solution quality and then,
depending on the result, either choose to execute or abort the move. Therefore,
each constraint stores an additional value newValuec that represents the value
of this constraint including uncommitted changes while valuec represents the
committed state.

The process of applying changes to a constraint is as follows.

• Incorporate changes: Depending on the type of the constraint, there are
different ways to notify the constraint of changes. The constraint now
incorporates these changes and updates newValuec, but is able to revert
the changes if necessary.

• evaluate: As the evaluation process is to only reevaluate constraints
where it is necessary, this function returns the difference newValuec −
valuec.

9

• execute: If the move is accepted, constraints are told to execute the
changes, meaning that valuec is set to newValuec and the record of changes
can be discarded.

• abort: If the move is not accepted, the constraints are told to revert the
changes, also setting newValuec back to valuec.

Further constraints typically have one or more weighting strategies that are
used to obtain the constraint value from the actual value of the property the con-
straint restricts. Note that it would be possible to use only one weight strategy
per constraint, however, e.g., when there is a minimum and maximum bound-
ary for the same property, or when there are multiple boundaries with different
weighting strategies like a hard and a soft boundary for the same property, it is
beneficial to only incorporate the changes once and apply all boundaries within
the same constraint. Therefore, technically multiple constraints in the problem
specification can be mapped to the same constraint within the framework.

In many heuristic approaches it is beneficial to allow infeasible solutions,
but to penalize violations in the evaluation function. For this purpose a hard
constraint weight provider is given. Per default hard constraint violations are
not allowed. However, the provider can individually per constraint class specify
different strategies and switch to penalties with arbitrary penalty functions for
some or all of the hard constraints.

4.3.1. Constraint Hierarchy

There are several different types of constraints that are explained as follows.
The difference in the categories is the type of changes these constraints are
interested in.

• ShiftConstraint: This type of constraint contains two methods to add
or remove a shift from the schedule together with the information which
employee the shift is assigned to. This type represents constraints dealing
with individual shifts. This includes, e.g., shift start and end times or
shift requirements in case the demand is given as shift demands.

• ShiftArrangementConstraint: This type of constraint is used when not
only single shifts, but their arrangement matters for the value of the con-
straint. For this purpose, changes are presented to these constraints by
giving all changes in an employee schedule at once passing the employee,
the array of previous shifts and a map of shift changes. Presenting all
changes in an affected row at once potentially allows these constraints to
handle calculations more efficiently than presenting them one by one. Also
for this type of constraint the surrounding shifts are important for each
calculation making it necessary to pass the whole row of shifts.

Additionally the abstract class provides methods to find the previous or
next shift matching some shift filter, either before or after the changes of
shifts. The filter can be any evaluation on shifts, typically filters match
certain shift types, e.g., find the next day off in the employee schedule.

10

Further constraints of this type have to deal with sequences that get cut
off at the beginning or the end of the planning period. Therefore the
abstract class provides a method to check for any time sequence whether
it should be cut off (and therefore not considered for evaluation) or seen as
a sequence that ends with the limit of the planning period. This selection
refers to the flags allowSequenceCutoff in the instance definition.

A typical example for this type of constraint is a required sequence of
shifts, e.g., to have at least three working days in a row.

• TaskConstraint: This type of constraint contains two methods to add or
remove a task instance. It is used for constraints that deal with the shape
or placement of tasks. An example would be a constraint for the number
of employees assigned to a task as used when task demands are specified.

• BreakConstraint: This type of constraint contains two methods to add
or remove a break. It deals with restrictions for individual breaks like
their start or end times.

• BreakArrangementConstraint: This type of constraint is used when not
only single breaks, but the arrangement of breaks relative to each other
or relative to the shift is relevant for the evaluation. For this purpose,
all changes within a shift are presented to this constraint by giving the
original shift and a map of break changes. Once again this allows to
process all changes at once in a more effective way if necessary for the
constraint. Examples include restrictions on the working time between
breaks.

• EmployeeConstraint: This type of constraint is used in combination with
variable employees and contains two methods for adding and removing
employees.

Further the abstract base class provides a range of applies methods with
different arguments to implement restrictions for the application of constraints.

• Type restrictions: Several constraints restrict the set of shift types they
are applied to, but are still not specific to just one shift type. E.g., global
shift constraints like the average shift length can be restricted to arbitrary
sets of shift types.

• Day restriction: Some constraints are only applied on a specified collection
of days in the planning period, e.g., each Sunday. The corresponding
method checks whether a day lies within the specified collection.

• Range restrictions: For some constraints the day restrictions are specified
as a range of days, e.g., for weekly workload constraints having optional
start and end days. Therefore the range restriction checks for a range of
days whether they overlap with the range set for the constraint.

11

4.3.2. Constraint Handling

For each move it is important to evaluate the effects that the execution of
this move has on the various constraints. On the other hand, there are often
large amounts of various constraints of different types present in the current
problem. Reevaluating all these constraints on each change might result in high
runtimes as for example the change of a task assignment for one employee does
not result in any changes in constraints regarding the shift start and end times
or the sequence of days off. Therefore, it is highly beneficial to restrict the set
of constraints that is reevaluted for each move.

On the other hand, constraints occur across the whole instance definition
in different shapes and contexts. Requiring each move to seek and find all
constraints that are required to reevaluate on their own would be a large imple-
mentation effort and discourage the implementation of new moves.

Therefore the Instance is the main anchor point in providing access to
the relevant constraints. It provides a method for each type of constraint as
described above requiring some search criteria for the affected constraints like
the employee and day where the change occurs. In turn these methods return
all constraints that could be affected by the move by further delegating the
search to the relevant parts of the instance definition. E.g., requests for break
constraints are delegated to the break definition, requests for shift constraints
are delegated both to the shift definition and to the shift demands in case
demands are specified this way.

This way of handling constraints allows to significantly reduce the number
of constraint reevaluations while providing simple access to the constraints for
the moves.

4.3.3. Overlap Constraint

A special constraint that is not covered by the types explained previously is
the overlap constraint. As shifts and tasks are scheduled by an algorithm, several
undesired states might occur. As shifts can reach into the next day, several shifts
might overlap (e.g., when an algorithm decides to schedule a morning shift
immediately after a night shift). Further tasks assigned to an employee might
overlap with each other or with scheduled breaks or tasks might be assigned to
an employee not having a shift at that time.

In order to capture all these violations, the overlap constraint is used. For
each employee e one such constraint exists. For each time slot i, it counts the
availability of the employee availabilitye[i] stating the number of shifts that are
assigned to this employee at time slot i. Therefore, a value of 0 means that the
employee is absent, a value of 1 means that the employee is working and a value
> 1 means that the employee is assigned multiple shifts at once.

Further the occupation of the employee occupatione[i] is defined as the num-
ber of tasks and breaks assigned to the employee at time slot i. Therefore, if
the occupation is higher than the availability, the assignment is not feasible as
this would either mean that a task is assigned at a time without a shift or too
many tasks or breaks are assigned at once.

Now a violation is calculated for each time slot i as described in (1).

12

violatione[i] = max{availabilitye[i]−1, 0}+max{occupatione[i]−availabilitye[i], 0}
(1)

The sum of these violations across the whole time horizon is considered the
value of the constraint and can be penalized as any other hard constraint via
the hard constraint weight provider.

The methods provided by this constraint to notify it of changes allow to add
or remove a shift, therefore changing the availability, and to add or remove an
occupied period of time specified by day, start and end time, therefore changing
the occupation. The constraint for each employee is directly associated with the
corresponding employee schedule for easy access.

Note that this constraint needs evaluation for almost every possible move.
Further the execution time of the methods provided by this constraint are in
a linear dependency to the number of time slots that are affected. This typ-
ically results in the main influence of time granularity on the runtime across
the whole framework. While several constraints store uncommited changes in
maps or similar data structures, the overlap constraint was optimized to only
use primitive data structures, in particular arrays of fixed size and pointers to
elements in these arrays, as the frequent use makes other structures too slow to
use.

More precisely, the array availabilityChangee stores where changes occurred,
the array availabilityOlde stores the previous values and the pointer availabilityCounte
counts the number of changes. Increasing the availability at time slot i now re-
sults in the execution of algorithm 1.

Algorithm 1: Efficient change history.

1 availabilityChange[availabilityCount] = i;
2 availabilityOld [availabilityCount++] = availability [i]++;

Now if the changes are executed, the index availabilityCount is reset to 0,
otherwise the changes are restored in reversed order until the index reaches 0.
These arrays exist for the occupation values as well.

4.4. Moves

Moves are the most important building blocks of any algorithm implemented
in this framework. They allow to prepare arbitrary changes to the current solu-
tion candidate, to evaluate the impact of those changes by using the constraint
mechanisms described before and finally execute or discard the proposed changes
depending on the decision from the algorithm.

The abstract class Move is the base class for each move. It gets access to the
instance and offers the following methods.

• prepare: This method prepares the execution of the move. Moves have
to offer the common prepare method and select the parameters like the

13

employee or day that should be changed on their own. All moves currently
implemented allow the specification of a selection strategy that can either
perform randomized selection or follow more specific selection strategies
in this process. Further moves will typically offer a prepare method re-
questing the required parameters for direct application of the move, e.g.,
to parameters that are selected by the algorithm.

The preparation includes checking whether the move can be applied at
all. E.g., if a shift change shall be applied on a day without a shift,
the preparation will return false to indicate it cannot be applied. If the
preparation is successful, true will be returned.

Preparation will fix the parameters for the move if not already given.
Further the execution of the move will be prepared, but not yet commit-
ted similar to the constraints. All relevant constraints are presented the
changes via the functions specified by the corresponding constraint type.
All constraints that are affected are cached for further processing.

• evaluate: This function triggers the corresponding evaluation function
in all cached constraints and collects the results.

• execute: This function triggers the corresponding execution of the changes
in all cached constraints and clears the cache. Further moves will commit
the changes to the current solution candidate in this step.

• abort: This function triggers the corresponding abort of changes in all
cached constraints and clears the cache. Further moves will discard all
changes to the current candidate solution.

In order to simplify handling the constraints, the base class offers a method
for each type of constraint that fetches the relevant corresponding constraints
from the instance via the instance methods, propagates the changes to these
constraints and adds them to the constraint cache.

4.4.1. Move Development

In order to reach good results, moves should be able to cover the whole
search space of the problem. In the most basic version, this actually does not
need a lot of different moves. It is required to add and remove shifts, to add and
remove breaks (if the problem contains breaks at all) and to add and remove
tasks (if the problem contains tasks at all).

However, just sticking to the basic moves will not result in good performance.
This can easily be seen looking at a roster where employee e1 is assigned shift
s1 at day i, while employee e2 is assigned shift s2 on that day. Now assume due
to constraints the opposite assignment of s2 to e1 and s1 to e2 would be better.
Clearly we can achieve this by removing both shifts and adding them back in
the opposite assignment. However, it is quite possible that removing any of the
shifts results in a large penalty that prevents an algorithm from going this way.
Clearly, a move that immediately switches those two shifts would be beneficial.

14

On the other hand, adding a single shift to an employee obviously takes less
time than adding a whole sequence of shifts to an employee. Therefore, when
designing more complex moves, the runtime has to be considered, as in the
same time more of the primitive moves can be considered, while fewer of the
potentially more useful moves can be investigated.

In the following, we propose several moves that we implemented so far and
describe them along with the motivation to include them.

4.4.2. Shift Moves

The first set of moves deals with shift assignments.

• AddOrRemoveShift: This move implements the primitive shift move. The
parameters are an employee and a day. If there is already a shift on this
day, it is removed, otherwise a new shift is generated and assigned.

• ChangeShift: This move again takes an employee and a day as parame-
ters. It is only applicable if a shift is assigned on the selected spot. Now
the start or end time of the shift is changed within the boundaries of the
shift type definition. This move is only useful if shift design is required
and can handle the requirement for slight adaptation of shift times much
more efficiently than removing an already well, but not ideally placed shift
completely and replacing it with a new shift.

• ChangeShiftType: This move again takes an employee and a day and is
only applicable if the selection contains a shift. This time, however, the
type of the shift is changed. Removing and adding a shift would create
a day off in the process that might not be desired which is prevented by
this move.

• CreateSequence: This move takes an employee, a starting day and a
length for the sequence. Then it overwrites all shifts within this sequence
either with a sequence of days off, with a sequence of identical shifts or
with a sequence of shifts of any type. This move is more useful, the
more sequence constraints matter for this instance. Instead of hoping
that randomly created shifts form a sequence, this move explicitly creates
such sequences.

Note that for random parameter selection the maximum was set to 7. Typ-
ically required sequences are not longer than this value and the runtime
grows with the length while the acceptance rate gets reduced.

• SwapShiftsBetweenEmployees: This move takes a day and two employees
and switches the shift assignments of these two employees on the selected
day. The reason is to preserve the overall daily roster, i.e., the number of
assignments of each shift type on this day, while moving shifts between
employees.

15

• SwapShiftsWithinEmployee: This move takes two different days and one
employee and switches the employee’s assigned shifts on the two selected
days. This preserves the overall assignments of this employee, e.g., the
total workload while allowing changes for the daily rosters.

• SwapPeriodBetweenEmployees: This move takes a start and end day as
well as a pair of employees and switches the schedules between these em-
ployees within the given interval. This can be beneficial when sequences of
shifts are constrained as whole sequences can be moved at once. Again for
random selection the maximum interval length is set to 7 days to prevent
too runtime-intensive moves.

• SwapPeriodWithinEmployee: This move follows the same reason as the
previous one, but changes the sequences within the same employee. Pa-
rameters are the employee, two start days and the length of the sequence
to exchange. Again for random selection the maximum interval length is
set to 7.

• ReduceShiftLength: This move accepts an employee, a day, whether to
reduce start or end of the shift and the amount of reduction. The changes
it performs are actually a subset of the ChangeShift move specifically
used to reduce the length of shifts. This is used in specific occasions as
described in the next section.

Note that it depends on the way shifts are created whether the given moves
can reach the whole search space. While in principle every move could decide
how to create or change shifts on their own, in the current implementation a
common shift generator is used. This generator can create shifts in any shape
within the outer hard bounds specified by the problem definition, therefore
allowing to cover the whole search space regarding shifts.

4.4.3. Task Moves

Next a range of moves to deal with task assignments is presented.

• AddOrRemoveTaskAssignment: This move models the primitive adding
and removing of task assignments. It takes a task instance and an em-
ployee as parameters. If the task instance is already assigned to this
employee, it is removed, otherwise it is assigned to this employee.

Note that several problems require each task to be assigned to exactly one
employee. However, as the format and the framework allow tasks that
need to be assigned to multiple employees, this possibility is also reflected
in these moves.

• ChangeTaskAssignment: This move takes a task instance ti and a pair of
employees e1 and e2 as input. It is applicable if the task is assigned to
employee e1, but not to e2 and proceeds by moving the task assignment
from e1 to e2. This skips the need to temporarily unassign the task or

16

assign it to both employees at the same time as it would be necessary
using only the primitive moves.

Note that this move does not care whether assignments are already present
for e2 during the execution time of the task.

• SwapTaskAssignments: This move takes the same parameters as the pre-
vious one and also performs the same change for the assignment of the
specified task. However, this time all task assignments of e2, where the be-
gin time lies within the execution time of ti , are moved to e1. This allows
to swap assignments without temporarily causing too many overlapping
assignments that might prevent the move.

Once more the coverage of the search space depends on the way new task
assignments are generated. In this paper only problems with non-preemptive
tasks that are fixed in time are considered in the evaluation. Therefore, new
task assignments are generated according to that. In order to cover the search
space possible by the specification format, the generation would need to be
extended to split tasks into several parts and choose a time within the given
time windows.

4.4.4. Mixed Moves

So far all moves where dedicated to either only shifts or only tasks. However,
it might also be beneficial to have combined moves. E.g., it is possible that a
shift is already matched well to contain a list of tasks, but it would be better
to have another employee work this whole shift including the task assignments.

This is what SwapShiftAndTasksBetweenEmployees does. The move takes
two employees and one day as arguments just like SwapShiftsBetweenEmployees
and swaps the assigned shifts. However, this time for each shift all tasks starting
within the shift are moved to the other employee as well.

4.4.5. Break Moves

Note that breaks, unlike tasks, are directly associated with shifts and there-
fore immediately moved with them. This, however, does not mean that breaks
and their constraints can be neglected when moving shifts. The corresponding
break configuration might change depending on the shift assignment.

The problems that are evaluated in this paper do not use breaks in the
full potential the formulation allows. A shift might only have one break of a
specified length. Therefore, the moves currently implemented do not cover the
whole range of possibilities regarding break scheduling.

The move FixedBreakScheduler takes an employee and a day as input. The
move is applicable if there is a shift at the selected spot. It removes all breaks
that are currently scheduled and tries to find a spot where the break of fixed
length should be scheduled taking into account the tasks that are scheduled for
this shift.

17

4.4.6. Initialization

Further there is one special move which is the Initialization. This move
is necessary for all constraints to properly initialize themselves. It does not
change the given solution candidate, but it propagates the whole solution to the
respective constraints.

This move is used at the beginning of an algorithm. It might be applied
to an empty solution or to any given solution. In particular it can be used to
evaluate a given solution and therefore check whether it is feasible as well as
retrieve the solution value.

4.5. Algorithm

The framework allows the implementation of algorithms in a general way.
The interface Algorithm contains just one method apply(instance, solution).
The arguments are the problem instance giving access to all the definitions and
constraints and a potential solution. This might be an empty schedule or a
partial or feasible solution the algorithm is given as a starting point.

An algorithm therefore does not need to do all the work on its own. It might
rely on other algorithms itself that solve parts of the problem or it might just
focus on certain aspects of the problem.

An algorithm can use an arbitrary selection of moves. As these moves are
independent from the algorithm, they can also be reused in different algorithms.
The way algorithms handle their moves and choose which one to evaluate and
execute is completely up to the algorithm.

4.5.1. Solution Checker

One simple algorithm of particular importance is the solution checker. This
algorithm simply performs the initialization move on the instance and solution it
receives and returns the result of the evaluation. As no specific hard constraint
weight provider is used, it returns NaN for infeasible solutions and the solution
value caused by the soft constraint violations for feasible solutions.

4.5.2. Helper Algorithms

The algorithm framework can be used to design algorithms only dealing with
particular aspects of the problem that might be called from another algorithm
internally. Two such algorithms proved to be useful in the evaluation of the
problems described in the next section.

The algorithm MinimizeShifts systematically goes through all shifts in the
schedule and tries to reduce the shift length by either moving the start or end
time of the shift. This is repeated as long as the solution does not get any worse.
This is useful in task-based problems where periodically unused shift time can
be removed in order to reduce problems with the maximum working load.

The algorithm RemoveUnnecessaryShifts does a similar task, but actually
tries to remove whole shifts as long as this does not result in penalties for the
solution. This can be useful in task assignment scenarios where shifts without
matching tasks might be created.

18

4.5.3. Simulated Annealing

As a proof of concept a new algorithm based on simulated annealing is
implemented in the framework and applied to several problems from literature
as well as the instances from our instance generator.

The basic algorithm is described as algorithm 2.

Algorithm 2: Simulated annealing implementation.

Data: The instance and a starting solution
Result: The updated solution solution

1 initialize(instance, solution);
2 t← tstart ;
3 changeCount ← 0;
4 while changeCount < maxCount do
5 for j ← 0 to innerIterations do
6 move ← chooseMove();
7 if move.prepare(solution) = false then
8 continue;
9 end

10 change ← move.evaluate();
11 if acceptMove(change) = true then
12 move.execute(solution);
13 solution.value ← solution.value + change;
14 if change < 0 then
15 changeCount ← max{changeCount + change, 0};
16 end

17 else
18 move.abort();
19 end
20 optionalProcessing(solution);

21 end
22 changeCount ← changeCount + 1;
23 t← t · coolingRate;

24 end
25 postProcessing(solution);

The structure of the algorithm is the same for all the problems that are
evaluated in this thesis. This highlights the reusability aspect of the framework
as the same algorithm can easily be adapted to different problems. Some of the
parameters, however, are changed depending on the problem in order to take
care of the specific focus of each problem. These choices are further explained
in the next section.

The initialization in line 1 creates the moves the algorithm wants to use.
Further the initialization move is executed. The temperature t is set to its
starting value.

19

The overall structure of the algorithm consists of two main loops. The inner
loop is executed a set amount of times at each temperature level. The outer loop
is set to be executed as long as relevant improvements can be achieved. This
is guided by changeCount . This parameter is increased each outer iteration,
but decreased every time the current solution is improved. When this counter
reaches a set value, the algorithm is stopped. The current implementation of
maxCount = 100 ensures that a solid state has been reached once the algorithm
stops.

The temperature decrease is guided by a factor coolingRate that is applied
to the temperature each outer iteration.

Moves are chosen and evaluated within the inner loop of the algorithm.
The function chooseMove selects a move to be evaluated for each iteration.
This selection is done randomly with different probabilities for each move. The
current implementation uses a NavigableMap for the moves with the cumulative
probabilities as the key. A move can then be selected by choosing a random
number in [0; 1] and taking the next move in the map where the key is greater
or equal to the selected number.

The chosen move is then prepared by letting the move itself choose where
to apply. All currently implemented moves delegate this decision to a given
selection strategy. If application is not possible, the next iteration is started.

The effect of the move on the solution value is evaluated and stored in
change. The acceptance criterion for any move is calculated by (2).

change ≤ 0 or getRandom(0, 1) < e−
change

t (2)

If the move is accepted, its execute method is called and the solution value
is updated. Further, for solution improvements changeCount is updated. Oth-
erwise, the move is aborted.

At the end of the iteration, further processing of the solution might be
included. E.g., periodical executions of helper algorithms like MinimizeShifts

are possible.
After the execution of the whole algorithm, post-processing procedures might

be included. Again, this might be used to reduce shift lengths or get rid of useless
shifts.

5. Evaluation

For the evaluation of the framework several different problems from literature
as well as some instances from the instance generator are used. While it would
be possible to develop specific algorithms for each problem that are specialized
to the demands and constraints of the particular problem, the approach in this
evaluation is to use the same algorithm as explained in the previous chapter and
apply it to different problems. This highlights the adaptability of the framework
to different problems.

20

Specific adaptations that were needed for the individual problems are pointed
out in each section. General considerations regarding the parameter design and
their evaluation are discussed before the specific problems.

All instances were evaluated on an Intel i7-6700K CPU with 4.0 GHz each
using one thread. For the evaluation the algorithm was executed three times
on each instance as results vary slightly from run to run, the best results are
presented. All reported runtimes are in seconds.

5.1. General Aspects of Parameter Tuning

In the approach used in this paper all hard constraint violations are penalized
by using a specific hard constraint weight provider per problem. As the problems
differ in their selection of constraints and the importance of the constraints, the
individual weights need to be chosen separately for each problem.

However, there is a common strategy that leads to good results regarding
hard constraints. The weight should be high enough that results reliably do not
include violations, but not much higher than that. The reason is that otherwise
the algorithm gets more restricted in executing moves as moves violating hard
constraints induce higher penalties.

Further the starting temperature is directly related to the higher values of
penalty weights that are used either by soft constraints or for penalizing hard
constraints. The starting temperature should usually be set somewhere in the
region above the largest penalty.

Values much higher lead to lots of penalized moves being executed that are
undone later, just increasing runtime. Starting at temperatures too low on the
other hand makes moves violating those constraints very unlikely and potentially
results in a bad coverage of the search space as bounds set by constraints with
high penalties cannot be overcome by the algorithm.

The selection of the number of inner iterations and the cooling rate are
typically representing the tradeoff between runtime and solution quality. The
more time on each temperature level the algorithm spends, either by using slow
cooling or many inner iterations, the better the exploration of the search space
typically gets, but on the other hand this process takes more time.

In this evaluation the number of inner iterations will depend on the size of
the instance to scale the runtime of the algorithm depending on the instance
size. The standard value is calculated as follows, where outer is the number of
outer iterations.

p · |E| · outer (3)

Therefore, the number depends on the size of the roster, further more time
is spent on lower temperatures. As the number of possible moves is very large
and towards the end of the algorithm only few moves can lead to an improved
solution, the algorithm spends more time there trying to still find improvements
by more thorough exploration of possible moves.

The same can be true for different moves, where simple moves are very fast
to execute and change only small parts of the solution, but more complicated,

21

yet slower moves might allow to overcome barriers in the search space where
simple moves struggle. Therefore, simple moves (those that only change a single
shift or task) are executed 100 times more often, unless stated otherwise for a
problem, to keep runtimes reasonable while still allowing complicated moves
in the process. Note that while not all problems use all available moves, the
implementation of the moves is the same for all evaluated problems.

The selection strategy for deciding where to apply a move is random selec-
tion, as different attempts biased towards areas with more constraint violations
either did not result in significant improvements or took too long to decide.

5.2. Nurse Rostering

While the focus of the other problems evaluated in this thesis are task de-
mands where the combination of rostering and task scheduling makes up the
main challenge, an evaluation on a set of nurse rostering benchmark instances
was performed to evaluate the performance regarding these kinds of problems.

5.2.1. Problem Selection

For the evaluation the Nottingham instances provided by [3] where evalu-
ated. These provide a set of 24 generated instances ranging from 2 to 52 weeks,
8 to 150 employees and up to 32 shift types.

Shifts are fixed in time, therefore, no shift design is necessary. The instances
provide the following constraints.

• Forbidden shift sequences (length 2)

• Maximal number of assignments per shift type for each employee

• Minimal and maximal total workload

• Minimal and maximal number of consecutive shifts

• Minimal number of days off

• Maximal number of working weekends

• Fixed days without shifts

• Shift requests for particular shifts with different weights [1; 3]

• Shift off requests for particular shifts with different weights [1; 3]

The demands are given as shift cover with penalties of 100 for lower levels
and penalties of 1 for higher levels.

All the constraints can directly be modelled in the GES format.

22

5.2.2. Parameter Tuning

This evaluation uses all shift moves described in section 4.4.2 except ChangeShift
and ReduceShiftLength as shift times are predefined. The fast and simple
moves AddOrRemoveShift and ChangeShiftType are used 10 times as often as
the others as they are faster, but result in less change in the potential solution.

Following the strategy of repeated increases in hard constraint penalties until
feasible solutions are reached, the following weights were chosen as penalties.
All weighting strategies are linear.

• WorkloadConstraint: 100 (per minute of violation)

• ShiftSequenceConstraint: 1000

• ShiftCountConstraint: 1000

• ForbiddenSequenceConstraint: 1000

• WeekendCountConstraint: 1000

• NoShiftConstraint: 1000

The number of inner iterations is kept lower and with an additional upper
bound leading to

max

{
p · |E| · outer

100
, 100000

}
(4)

as some of the larger instances lead to exorbitant runtimes otherwise.
The starting temperature was set to 100000 as lower temperatures still lead

to early local optima in several cases. In order to still keep the runtime in
reasonable bounds, the cooling rate was set to 0.99. Lower values freeze the
roster faster, potentially resulting in worse results, higher values increase the
runtime further.

5.2.3. Results

Table 1 shows the results of the evaluation in comparison with the best
known results. Results in bold are proven optimal results.

The results show that for most instances except the very large ones (20 to
24) the algorithm can find good results in comparably fast runtime, while in the
average they are only 28% worse than the best known solutions.

This builds a promising base for more specialized developments of rostering
algorithms in the framework or an extended evaluation given that several of
the best known solutions were computed in hundreds of hours according to the
changelog on [3].

23

Instance Result Time Feasible Best known % difference

Instance1 613 7 yes 607 1.0
Instance2 929 12 yes 828 12.2
Instance3 1024 18 yes 1001 2.3
Instance4 1736 19 yes 1716 1.2
Instance5 1450 34 yes 1143 26.9
Instance6 2367 39 yes 1950 21.4
Instance7 1102 43 yes 1056 4.4
Instance8 1716 76 yes 1300 32.0
Instance9 538 80 yes 439 22.6
Instance10 4992 141 yes 4631 7.8
Instance11 3705 183 yes 3443 7.6
Instance12 4564 481 yes 4040 13.0
Instance13 2828 2999 yes 1348 109.8
Instance14 1780 164 yes 1278 39.3
Instance15 5445 316 yes 3834 42.0
Instance16 4271 137 yes 3225 32.4
Instance17 7858 217 yes 5746 36.8
Instance18 7038 294 yes 4459 57.8
Instance19 5110 543 yes 3149 62.3
Instance20 12316 2204 no 4943
Instance21 25565 5359 no 21159
Instance22 - 33155
Instance23 - 17428
Instance24 - 48777

Table 1: Results on the Nottingham instances.

24

5.3. Generated Instances

In this section a test set of instances created by the new instance generator
described in [25] is evaluated. In contrast to the other instances evaluated in
this chapter they all allow a feasible solution with no soft constraint violations,
therefore an optimum value of 0.

While the generator allows a wider range of possible configurations, for the
evaluation a set of instances with task demands for non-preemptive tasks was
created. Break scheduling is not considered. However, the instances include
shift design within set boundaries for different shift types. Each shift type
allows shift design within certain bounds. Further, sequence constraints are
present for both shifts and days off.

A set of three skills is defined with different distributions of skills among
employees. Each task requires one of these skills. Most tasks require one em-
ployee, in contrast to later problems some require multiple employees at once.
Tasks are up to 8 hours long. There are full time and part time employees with
different constraints as follows.

• Minimal and maximal number of consecutive working days

• Minimal and maximal number of consecutive days off

• Maximal workload over the planning period

• Forbidden sequences of length 2

Instances differ in the period length, the time slot length, the number of
shift types, the distribution of skills and the presence of history data.

5.3.1. Parameter Tuning

For this problem all moves except for the generation of breaks are used.
Hard constraints are penalized as follows by the usual procedure.

• ShiftStartConstraint, ShiftEndConstraint: 10

• ShiftSequenceConstraint: 100

• ForbiddenSequenceConstraint: 100

• TaskRequirementConstraint: 100

• OverlapContraint: 2 (per minute of violation)

• WorkloadConstraint: 0.5 (per minute of violation)

The algorithm uses a starting temperature of 1000, a cooling rate of 0.995
and the usual amount of inner iterations.

25

Days timeSlotLength |S| Skilling History Optimal Penalty Time

7 60 2 Common No 5 - 78.4
7 10 2 Common No 4 100 141.0
7 60 5 Common No 4 100 258.6
7 60 2 Diverse No 5 - 61.2
7 60 2 Common Yes 5 - 75.6
28 60 2 Common No 4 300 596.4
28 10 2 Common No 4 180 771.8
28 60 5 Common No 2 167 2415.8
28 60 2 Diverse No 5 - 708.6
28 60 2 Common Yes 5 - 522.2

Table 2: Results on the generated instances.

5.3.2. Results

For each configuration 5 instances were created, leading to 50 instances in
total. Table 2 presents the results per category. Penalty values are calculated
as the average over non-optimal results only.

The algorithm can find optimal results for 43 out of 50 instances. As ex-
pected, the larger instances with four weeks both take longer and are harder to
solve optimally compared to the smaller instances.

As per category only one property is changed compared to the first cate-
gory for each period length, the effects of individual settings can be evaluated.
Increasing the time granularity in combination with more, but shorter tasks
(timeSlotLength = 10) significantly increases runtime and reduces the number
of optimal solutions that are found.

Increasing the number of shift types along with the number of employees
(|S| = 5) shows the largest effect both on runtime and the probability to stop
before the optimal result.

Both making skill distribution more diverse and providing a history, on the
other hand, did not make the solutions any worse, nor did they result in signif-
icant increases of the runtime.

5.4. Integrated Task Scheduling and Personnel Rostering Problem

This section evaluates the framework on the TSPR as defined in [4]. In this
problem the demands are specified as task demands which are fixed in time and
not preemptive. Possible shift types are also given and fixed in time. Further,
a set of employees is specified and for each employee the set of possible tasks is
defined.

The period length is either 7 or 28 days, the number of employees ranges
from 10 to 40 and there are 4 different shift types. The following constraints
are defined as soft constraints with a weight of 1.

• Minimal and maximal number of worked days per employee

26

• Minimal and maximal number of assignments to each shift type per em-
ployee

• Maximal number of consecutive working days

• Minimal and maximal number of consecutive days off

• Complete weekends, i.e., either shifts on both Saturday and Sunday or
both days free

• Forbidden shift sequences (length 2)

The task demands are considered hard constraints. Further the instances are
generated with different parameters of skilling, which defines how many tasks
each employee can perform, as well as the tightness of the instance.

5.4.1. Modelling the Problem in the GES Format

Most of the demands and constraints can directly be transformed into the
GES format. The specification of the set of tasks each employee can perform
was transformed into a set of skills. Each task requires a unique skill and for
each employee a set of mastered skills corresponding to those specified tasks is
given.

5.4.2. Parameter Tuning

For this problem all defined moves regarding shifts and tasks are used except
ChangeShift and ReduceShiftLength which only apply to problems with shift
design.

As the weights for soft constraint violations are low, for the hard constraints
a weight of 10 for the task requirements and a weight of 2 for the overlap
constraint (per minute of violation) was sufficient to get feasible results for
most instances.

Corresponding to low weights for constraint violations, a starting tempera-
ture of 100 was used together with the standard amount of inner iterations. The
cooling rate was set to 0.99 in order to restrict the runtime to the values used in
the compared paper. Here, the runtime was restricted to 1 hour per instance.
With the current parameter setting this is also respected in this evaluation.

5.4.3. Results

For the evaluation a set of 360 instances is available. Table 3 shows the
results of the algorithm in comparison with the results presented in [4]. For
each category 10 instances were evaluated, the average results are presented.
Results in bold indicate proven optimal solutions. Results in italics indicate
that they were only computed over feasible solutions.

The results show that for 327 out of 360 instances a feasible solution can be
found. The compared work finds feasible solutions for all instances. The results
show that almost all problems occur on high skilling levels, especially for large
instances. This indicates where further improvements should focus.

27

Our results Their results
Days |E| Tightness Skilling Result Time % feasible Result Time

7 10 0.6 0.3 25.4 94.6 100 21.3 0.8
7 10 0.6 0.6 10.2 87.3 100 6.6 915.0
7 10 0.6 1.0 4.9 87.9 100 3.1 446.6
7 10 0.9 0.3 33.3 89.5 100 30.5 0.1
7 10 0.9 0.6 36 .8 96.3 80 19.9 1316.2
7 10 0.9 1.0 24.7 98.2 100 8.3 1712.3
7 20 0.6 0.3 20.2 250.3 100 9.4 3600
7 20 0.6 0.6 11.9 239.5 100 1.5 1374.3
7 20 0.6 1.0 12.1 200.5 100 1.9 2622.1
7 20 0.9 0.3 66 .3 197.6 80 45.4 3600
7 20 0.9 0.6 75.4 195.1 100 34.5 3600
7 20 0.9 1.0 63.4 201.1 100 24.0 3600
7 40 0.6 0.3 29.6 450.5 100 11.6 3591.4
7 40 0.6 0.6 23.7 448.2 100 0.7 3600
7 40 0.6 1.0 20.5 443.5 100 0.0 3600
7 40 0.9 0.3 188 .3 424.0 80 135.0 3600
7 40 0.9 0.6 163.8 430.4 100 113.5 3600
7 40 0.9 1.0 157.4 437.1 100 50.0 3600
28 10 0.6 0.3 100 .9 385.9 90 76.5 11.1
28 10 0.6 0.6 52.6 397.4 100 23.4 3600
28 10 0.6 1.0 36.8 419.1 100 12.5 3600
28 10 0.9 0.3 155.4 397.9 100 129.5 1.1
28 10 0.9 0.6 157 .0 442.0 10 111.4 3600
28 10 0.9 1.0 168 .6 399.8 90 89.0 3600
28 20 0.6 0.3 108.6 872.9 100 68.0 3600
28 20 0.6 0.6 65.8 903.9 100 20.8 3600
28 20 0.6 1.0 62.8 916.4 100 26.7 3600
28 20 0.9 0.3 398 .0 907.0 10 324.0 3600
28 20 0.9 0.6 457 .0 947.3 60 321.2 3600
28 20 0.9 1.0 461.5 994.1 100 268.7 3600
28 40 0.6 0.3 145.6 2143.4 100 108.9 3600
28 40 0.6 0.6 127.7 2161.6 100 68.5 3600
28 40 0.6 1.0 113.1 2146.3 100 16.7 3600
28 40 0.9 0.3 1053 .7 2674.4 70 1211.0 3600
28 40 0.9 0.6 1032.3 2875.0 100 857.3 3600
28 40 0.9 1.0 993.3 2623.8 100 541.6 3600

Table 3: Results on the TSPR instances.

28

As the execution time is connected to the size of the instance, for all but
four categories our approach produces results significantly faster in comparison.
However, the results regarding soft constraint violations are not yet competitive
in most cases. For several small instances the results get very close to the
best known solutions, for others there is still a gap to cross. Note that for the
category with the highest result of 1211 in their approach, our average is better,
however, only calculated over the feasible instances. This might indicate that
their algorithm ran into the runtime boundary too fast potentially allowing our
algorithm to provide better results given the feasibility issues can be resolved.

In total the results show that our approach can easily be applied to this prob-
lem and provides reasonable results for a general purpose algorithm. Therefore
we see potential in applying our framework to this problem with more special-
ized algorithms to get competitive results.

5.5. Shift Design Personnel Task Scheduling Problem

The SDPTSP-E is defined in [5]. This problem is based on a company
performing drug evaluation and pharmacology research, therefore following the
need for strict testing protocols that need to be followed to the minute in order
to comply to the regulations. It contains task demands, requires shift design
and even break scheduling. It also defines a special fairness constraint.

The problem is given with a period length of one week and the number of
tasks ranging from 100 to 400. Non-preemptive tasks are given with fixed start
and end times. The tightness, referring to the task workload per worker, is
varied among instances. A set of skills is defined, either with only common
skills or 5% rare skills that are only mastered by 20% of the workers.

Tasks are distributed according to the industrial background with 50% of
them occurring in the morning with a peak around 8 am, 40% in the evening
and 10% at night. Tasks have a probability of 10 % to occur on the weekend
and are distributed across different lengths from 5 minutes to 5 hours with the
peak around one hour.

A working day in this definition starts and ends at 6 am. Tasks starting in
different days according to this definition belong to different daily schedules.

The following hard constraints are provided.

• Maximal daily duration of 11 h

• Maximal daily working time of 10 h

• Maximal weekly working time of 48 h

• Minimal daily rest time of 11 h

• Minimal weekly rest time of 35 h

• Maximal number of consecutive working days of 6

29

Further there are constraints regarding breaks depending on the shift. For
each employee a history regarding work assignments in the previous week is pro-
vided, as well as a list of mastered skills and time intervals where the employee
must not be assigned.

Each employee might also have compulsory tasks that do not count as clinical
work, but that are predefined and have to be assigned.

The primary goal is to assign all tasks, the secondary goal is defined as a
measure of fairness between employees. In times when no clinical tasks are
performed, the employees are expected to perform administrative duties that
do not follow a strict schedule. As the levels of administrative work for each
employee differ, a targeted clinical workload is assigned to each employee. The
employee should do clinical tasks in order to get as close as possible to this
targeted workload, leaving the rest of their time for administrative work. This
is called the equity constraint. Its value is defined by (5), where we is the
clinical workload assigned to employee e and ce is the targeted clinical workload
for employee e.

violatione = max
e∈E

(we − ce)−min
e∈E

(we − ce) (5)

The secondary goal is now defined as the minimization of violatione.

5.5.1. Modelling the Problem in the GES Format

Unlike the previous problems, this one needs some more preparations to
transform it into the GES format. Most of the given hard constraints, however,
are easy to transform. Both the daily duration and daily working time are trans-
ferred into ShiftLengths constraints within a contract using different settings
for the unit. Minimum daily and weekly rest time can directly be transferred as
well as the shift sequence constraint. Note that the data description7 indicates
a rolling horizon for the minimum weekly rest time as currently implemented
in the solver framework, while constraint (6) in [5] indicates the minimum rest
time can occur anywhere within each calendar week.

First problems arise when trying to model the history. The GES format
provides a simple way to specify the history by directly giving the previous
schedule as preassignments in the instance. The SDPTSP-E format gives the
history as the number of days worked since the last day off, the number of
minutes since the last weekly break, and the number of minutes since the start
respectively end of the last shift of the previous week. However, using this
specification it is possible to give conflicting values and this seems to be the
case for several of the instances. The other option would be an error in the
interpretation of the given data on our side. Either case promotes the use of
the GES format where the XML format allows easier reading of the instances
for humans as well as a history specification that reduces the possibility of
inconsistent formulations. In case the conversion ran into conflicts, the last

7https://sites.google.com/site/ptsplib/

30

https://sites.google.com/site/ptsplib/

shift of the previous week is included as specified, the given number of days
since the last day off is then added backwards starting from this last shift.

Next the assignment of tasks needs to be considered. The problem specifica-
tion contains studies. Each task is assigned to one study and employees might
not be allowed to work on all studies. This is simply translated to a further set
of skills. Now each task requires an employee having both the correct skill and
the correct study-skill.

A bigger problem is the assignment of tasks only to shifts of the same daily
schedule. The purpose of this constraint is to prevent shifts starting in the
middle of the night and continuing along the following day. The result is that
tasks starting at 6 am or later must not be assigned to night shifts reaching out
from the previous day. On the other hand night shifts might extend far beyond
6 am when, e.g., a task goes from 5 to 9 am.

Therefore, the TaskToShiftConstraint is implemented in the algorithm. It
contains methods to add or remove a shift as well as to add or remove a task
and counts the number of tasks starting at 6 am or later assigned to night shifts
on the previous day.

The next step to consider is break scheduling. The original problem formu-
lation contains different breaks for different shifts. However, the authors chose
to only focus on lunch breaks as the employees are very flexible regarding their
breaks. The considered requirement is that shifts starting before 12:00 and end-
ing after 14:30 with a length of more than 5 hours should have a lunch break
of one hour. These requirements can be transformed into a break configuration
immediately. The placement of the break, however, is not considered directly in
the compared work. Instead, as long as the task assignments of the shifts spare
one hour of shift time for the break, the requirement is considered as fulfilled.
The break time does not need to be in one block.

In this evaluation we chose to model the break as one block of one hour that
can be placed anywhere in a matching shift. Note that the formulation in the
compared work would have been possible as well by allowing breaks of arbitrary
length with a sum of precisely one hour, however, this would have been more
difficult to schedule in the given framework than one hour as a block.

Further note that in the GES format and our framework, even the original
more complex break definitions could be modelled without any further adjust-
ments except development of corresponding new moves that can handle more
sophisticated break scheduling. However, in the evaluation we wanted to stay
close to the original formulation for comparison.

Finally the original instances also contain some further information like shift
preferences without information on how to weight them or notions of flexibility
of tasks, simple tasks or preaffected workers. As these are not mentioned in the
corresponding papers, we did not include them in our evaluation.

The EquityConstraint also needed to be implemented in the framework. It
contains methods to assign a task to an employee or remove such an assignment.
It keeps track of the currently assigned amount of clinical workload and the
targeted workload for each employee and therefore can compute violatione.

Note that both new constraints do not immediately fit into the constraint

31

Our results Their results
|Dtask | Tightn. Compl. Ineq. % ass. Time Compl. Ineq. % ass. Time

100 600 50 33 98.9 54 53 / 54 28 97.6 145
100 800 20 29 98.6 41 42 / 47 35 97.8 155
100 1000 0 - 96.5 29 11 / 21 72 96.7 167
200 600 58 34 99.2 125 59 / 60 34 99.0 166
200 800 32 27 99.2 94 50 / 55 35 98.6 138
200 1000 1 19 98.0 73 22 / 35 42 97.7 156
300 600 52 37 99.2 238 58 / 58 40 99.7 191
300 800 35 38 99.4 164 53 / 58 38 99.2 186
300 1000 4 16 99.0 135 42 / 56 46 98.8 173
400 600 51 55 98.7 393 59 / 59 47 99.8 236
400 800 42 42 99.5 260 55 / 59 44 99.7 202
400 1000 5 54 99.1 203 40 / 56 51 99.0 196

Table 4: Results on the SDPTSP-E instances.

hierarchy where TaskConstraint deals with tasks without caring about their
specific assignment to shifts or employees. Therefore, the new constraints each
form their own type. This results in the moves having to propagate changes to
these constraints separately. However, this just amounts to one line of code per
constraint and move.

5.5.2. Parameter Tuning

This problem uses all available moves except those that change sequences of
shifts at once. The reason is that at minute time granularity these are rather
slow while in this problem shift sequences play only a minor roll, as there only
needs to be one free day per week in order to fulfil those sequences.

The number of breaks per shift is penalized by 10, overlap violations by 10
per minute of overlap and workload violations by 0.5 per minute of violation.
All other hard constraints have a weight of 100.

The starting temperature is also set to 100 in combination with slow cooling
of 0.995. The number of inner instances is as defined in (3), however, divided
by 10 in order to stay close to the computation time of 5 minutes per instance
as in the compared work.

5.5.3. Results

Table 4 shows the results of the evaluation. In total there are 720 instances,
for each category as listed in the table there are 30 instances with only common
skills and 30 instances including rare skills.

The second number in the compared complete results represents the maxi-
mum possible number of complete solutions in this category, for the others it
is proven that no complete solution exists. Inequity values are only calculated
across complete results, the percentage of assigned tasks only over non-complete
results.

32

As a disclaimer, the comparison might not be fully accurate due to some
uncertainties mentioned in the conversion process as well as the slightly different
handling of breaks. Nevertheless, the results offer a good indication of the
performance of the algorithm.

The evaluation shows good results on the given instances. While the number
of complete instances is lower, especially in instances with high tightness, the
evaluation of both the inequity on complete instances as well as the percentage
of assigned tasks on incomplete instances shows competitive results in compar-
ison. Therefore, some further improvements targeted towards resolving those
few tasks that cannot be assigned might very well lead to competitive overall
results.

The runtime is lower in 8 out of 12 categories, with only one of our categories
exceeding the targeted runtime of 5 minutes. However, in many of the smaller
instances we can reach a comparable level of results in significantly shorter
runtime.

6. Conclusion

This paper proposed a new framework that allows independent handling
of various constraints in a unified way, promoting easy addition or change of
constraints. A common way of implementing and handling moves was provided
that allows easy integration of new moves as well as their reusability across
different algorithms. A new general purpose simulated annealing algorithm and
a set of moves were implemented in the framework.

To evaluate the framework, the algorithm was applied to several different
problems. Well-known benchmark instances from literature were transformed
into the GES formulation, where the formulation proved to be applicable to a
wide range of different specifications.

Finally the algorithm was successfully applied to both the problems from
literature and several newly generated instances with low adaptation effort. The
algorithm provided solid results for all problems and could even incorporate new
constraints like the equity constraint with good results.

This offers a range of possibilities for future research in this area. This
includes translation of further problems and applying the solver framework.
Regarding the solver framework itself, new algorithms should be implemented
either specialized to particular problems to push for new, better results to bench-
mark instances, or to improve the widespread applicability of a general purpose
solver. New, more sophisticated moves might be implemented in order to im-
prove results across various algorithms.

References

[1] J. Van den Bergh, J. Belin, P. De Bruecker, E. Demeulemeester,
L. De Boeck, Personnel scheduling: A literature review, European Journal
of Operational Research 226 (3) (2013) 367–385. doi:10.1016/j.ejor.

2012.11.029.

33

http://dx.doi.org/10.1016/j.ejor.2012.11.029
http://dx.doi.org/10.1016/j.ejor.2012.11.029

[2] A. Ernst, H. Jiang, M. Krishnamoorthy, D. Sier, Staff scheduling and ros-
tering: A review of applications, methods and models, European Journal of
Operational Research 153 (1) (2004) 3–27. doi:10.1016/S0377-2217(03)
00095-X.

[3] T. Curtois, Employee shift scheduling benchmark data sets, http://www.
schedulingbenchmarks.org/, accessed: 2018-01-22 (2017).

[4] P. Smet, A. T. Ernst, G. Vanden Berghe, Heuristic decomposition ap-
proaches for an integrated task scheduling and personnel rostering prob-
lem, Computers & Operations Research 76 (2016) 60–72. doi:10.1016/j.
cor.2016.05.016.

[5] T. Lapgue, O. Bellenguez-Morineau, D. Prot, A constraint-based ap-
proach for the shift design personnel task scheduling problem with eq-
uity, Computers & Operations Research 40 (10) (2013) 2450–2465. doi:

10.1016/j.cor.2013.04.005.

[6] F. Glover, C. McMillan, The general employee scheduling problem. An
integration of MS and AI, Computers & Operations Research 13 (5) (1986)
563–573. doi:10.1016/0305-0548(86)90050-X.

[7] H. K. Alfares, Survey, Categorization, and Comparison of Recent Tour
Scheduling Literature, Annals of Operations Research 127 (1-4) (2004) 145–
175. doi:10.1023/B:ANOR.0000019088.98647.e2.

[8] P. De Bruecker, J. Van den Bergh, J. Belin, E. Demeulemeester, Workforce
planning incorporating skills: State of the art, European Journal of Opera-
tional Research 243 (1) (2015) 1–16. doi:10.1016/j.ejor.2014.10.038.

[9] E. K. Burke, P. De Causmaecker, G. V. Berghe, H. Van Landeghem, The
State of the Art of Nurse Rostering, Journal of Scheduling 7 (6) (2004)
441–499. doi:10.1023/B:JOSH.0000046076.75950.0b.

[10] N. Musliu, Heuristic methods for automatic rotating workforce scheduling,
International Journal of Computational Intelligence Research 2 (4) (2006)
309–326.

[11] T. Curtois, R. Qu, Computational results on new staff scheduling bench-
mark instances, Tech. rep., ASAP Research Group, School of Computer Sci-
ence, University of Nottingham, NG8 1BB, Nottingham, UK (Oct. 2014).

[12] E. K. Burke, T. Curtois, New approaches to nurse rostering benchmark
instances, European Journal of Operational Research 237 (1) (2014) 71–
81. doi:10.1016/j.ejor.2014.01.039.

[13] N. Musliu, A. Schaerf, W. Slany, Local search for shift design, European
Journal of Operational Research 153 (1) (2004) 51–64. doi:10.1016/

S0377-2217(03)00098-5.

34

http://dx.doi.org/10.1016/S0377-2217(03)00095-X
http://dx.doi.org/10.1016/S0377-2217(03)00095-X
http://www.schedulingbenchmarks.org/
http://www.schedulingbenchmarks.org/
http://dx.doi.org/10.1016/j.cor.2016.05.016
http://dx.doi.org/10.1016/j.cor.2016.05.016
http://dx.doi.org/10.1016/j.cor.2013.04.005
http://dx.doi.org/10.1016/j.cor.2013.04.005
http://dx.doi.org/10.1016/0305-0548(86)90050-X
http://dx.doi.org/10.1023/B:ANOR.0000019088.98647.e2
http://dx.doi.org/10.1016/j.ejor.2014.10.038
http://dx.doi.org/10.1023/B:JOSH.0000046076.75950.0b
http://dx.doi.org/10.1016/j.ejor.2014.01.039
http://dx.doi.org/10.1016/S0377-2217(03)00098-5
http://dx.doi.org/10.1016/S0377-2217(03)00098-5

[14] A. Beer, J. Gartner, N. Musliu, W. Schafhauser, W. Slany, An AI-Based
Break-Scheduling System for Supervisory Personnel, IEEE Intelligent Sys-
tems 25 (2) (2010) 60–73. doi:10.1109/MIS.2010.40.

[15] M. Krishnamoorthy, A. T. Ernst, The Personnel Task Scheduling Problem,
in: P. M. Pardalos, D. Hearn, X. Yang, K. L. Teo, L. Caccetta (Eds.),
Optimization Methods and Applications, Vol. 52, Springer US, Boston,
MA, 2001, pp. 343–368, dOI: 10.1007/978-1-4757-3333-4 20.

[16] P. Smet, T. Wauters, M. Mihaylov, G. Vanden Berghe, The shift min-
imisation personnel task scheduling problem: A new hybrid approach and
computational insights, Omega 46 (2014) 64–73. doi:10.1016/j.omega.

2014.02.003.

[17] M. Krishnamoorthy, A. Ernst, D. Baatar, Algorithms for large scale Shift
Minimisation Personnel Task Scheduling Problems, European Journal of
Operational Research 219 (1) (2012) 34–48. doi:10.1016/j.ejor.2011.

11.034.

[18] A. W. Kolen, J. K. Lenstra, C. H. Papadimitriou, F. C. Spieksma, Interval
scheduling: A survey, Naval Research Logistics 54 (5) (2007) 530–543. doi:
10.1002/nav.20231.

[19] A. Meisels, A. Schaerf, Modelling and Solving Employee Timetabling Prob-
lems, Annals of Mathematics and Artificial Intelligence 39 (1) (2003) 41–59.
doi:10.1023/A:1024460714760.

[20] D. Prot, T. Lapgue, O. Bellenguez-Morineau, A two-phase method for the
shift design and personnel task scheduling problem with equity objective,
International Journal of Production Research 53 (24) (2015) 7286–7298.
doi:10.1080/00207543.2015.1037023.

[21] J. S. Loucks, F. R. Jacobs, Tour Scheduling and Task Assignment of a
Heterogeneous Work Force: A Heuristic Approach, Decision Sciences 22 (4)
(1991) 719–738. doi:10.1111/j.1540-5915.1991.tb00361.x.

[22] P. Brucker, R. Qu, E. Burke, Personnel scheduling: Models and complexity,
European Journal of Operational Research 210 (3) (2011) 467–473. doi:

10.1016/j.ejor.2010.11.017.

[23] F. Glover, G. A. Kochenberger, Handbook of Metaheuristics, Springer US,
Boston, MA, 2003, oCLC: 903188846.

[24] L. Kletzander, F. Mischek, N. Musliu, G. Post, F. Winter, A General
Modeling Format for Employee Scheduling, Tech. rep., Database and Ar-
tificial Intelligence Group, Institut für Informationssysteme, TU Wien,
http://www.dbai.tuwien.ac.at/proj/arte/ (Mar. 2017).

35

http://dx.doi.org/10.1109/MIS.2010.40
http://dx.doi.org/10.1016/j.omega.2014.02.003
http://dx.doi.org/10.1016/j.omega.2014.02.003
http://dx.doi.org/10.1016/j.ejor.2011.11.034
http://dx.doi.org/10.1016/j.ejor.2011.11.034
http://dx.doi.org/10.1002/nav.20231
http://dx.doi.org/10.1002/nav.20231
http://dx.doi.org/10.1023/A:1024460714760
http://dx.doi.org/10.1080/00207543.2015.1037023
http://dx.doi.org/10.1111/j.1540-5915.1991.tb00361.x
http://dx.doi.org/10.1016/j.ejor.2010.11.017
http://dx.doi.org/10.1016/j.ejor.2010.11.017
http://www.dbai.tuwien.ac.at/proj/arte/

[25] L. Kletzander, A Heuristic Solver Framework for the General Employee
Scheduling Problem, Master’s thesis, Database and Artificial Intelligence
Group, Institute of Logic and Computation, TU Wien, http://www.dbai.
tuwien.ac.at/proj/arte/ (2018).

36

http://www.dbai.tuwien.ac.at/proj/arte/
http://www.dbai.tuwien.ac.at/proj/arte/

	Introduction
	Related Work
	Problem Definition and Specification Format
	Problem structure

	Solver Framework
	Instance and solution representation
	Conversion Mechanism
	Constraints
	Constraint Hierarchy
	Constraint Handling
	Overlap Constraint

	Moves
	Move Development
	Shift Moves
	Task Moves
	Mixed Moves
	Break Moves
	Initialization

	Algorithm
	Solution Checker
	Helper Algorithms
	Simulated Annealing

	Evaluation
	General Aspects of Parameter Tuning
	Nurse Rostering
	Problem Selection
	Parameter Tuning
	Results

	Generated Instances
	Parameter Tuning
	Results

	Integrated Task Scheduling and Personnel Rostering Problem
	Modelling the Problem in the GES Format
	Parameter Tuning
	Results

	Shift Design Personnel Task Scheduling Problem
	Modelling the Problem in the GES Format
	Parameter Tuning
	Results

	Conclusion

