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Abstract.In this report we describe a collection of hypergraphs useevaluate our im-
plementations of hypertree decomposition algorithms. étiype decomposition was intro-
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1 Introduction

An instance of a constraint satisfaction problem (CSP) Bl@onsists of a set of variables that
range over a domain of values together with a set of conssrétiat allow certain combinations

of values for certain sets of variables. The question is hdrebne can instantiate the variables
in such a way that all constraints are simultaneously sadisfSince the CSP is NP-complete in
general, several approaches have been developed in ttaduiteto identify tractable subclasses.
One such direction is based on structural decompositiohoadst

By the structure of a CSP instance we understand the deperddmetween the variables
caused by the constraints. These dependencies can bellgatpeesented by a hypergraph, that
is a generalization of a graph such that the (hyper)edgesecbran arbitrary subset of vertices.
Each variable of a CSP instance represents a vertex in thexdmgph and each constraint repre-
sents a hyperedge connecting the vertices corresponditig teariables in the constraint. The
domain values and allowed variable instantiations arerigghavhen considering only the struc-
ture of a CSP instance. The intuitive idea of structural dgmosition methods is to decompose
a constraint hypergraph into strongly connected companehich can be organized as a tree.
Examples of such decomposition approachedbaennected componer], tree clustering4],
cycle cutsef2], hinge decompositiof8], etc.

Gottlob et al. [6] recently introduced a new structural deposition method calletlypertree
decompositionThey have shown that hypertree decomposition is more appte for decompos-
ing constraint hypergraphs than other decomposition nasth®he associatdaypertree-widths
a measure for the cyclicity of the underlying hypergraphpdnticular, this means that the less the
width of a hypertree decomposition the more efficiently togesponding CSP can be solved. A
competitive task is therefore to construct a hypertree gosition of a given constraint hyper-
graph with width as small as possible. The minimal width caéhypertree decompositions is
called thehypertree-widttof the hypergraph.

In the scope of a research project [1], we have developedmapl@mented several algorithms
for constructing hypertree decompositions of small widEar evaluating these algorithms, we
collected a hypergraph library based on industrial CSPsedlsas self-constructed hypergraphs.
In this report, we present our hypergraph library; each fyageh in the library is described in a
text file in the following format:

Hyperedge 1l (Vertex_ 1.1, Vertex.12, ..., Vertex.1l.mny),
Hyperedge 2 (Vertex2.1, Vertex22, ..., Vertex2m,),
Hyper edge.m (Vertex_m.l, Vertex.m2, ..., Vertex_.m.n,).

Due to this simple structure, we do not formally define theayof our format. Just note that
the names of hyperedges and vertices may consist of any natidn of lower- and uppercase
letters, numbers, underscore, colon, etc. Comments startd and continue until the end of the
line. Some files may also contain definitions within angleckeds in the header.
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Figure 1: The basic cell of an adder circuit

2 TheHypergraph Library

2.1 DaimlerChrydler

In this section, we describe four classes of hypergraplesmdd from DaimlerChrysler during their
cooperation with the Database and Al Group at Vienna Unityecd Technology. In particular,
these classes aeglder circuits bridge circuits theNewSysterolass, and thATV partial system

2.1.1 Adder Circuits

This kind of parameterized examples consists of a certamhbau of bit adders connected in a
line. The basic cell of such an adder circuit is shown in Feglir The problem is to find the valid

input-output values of such a circuit. For example, an adtteuit consisting of two basic cells

connected in a line can be represented by a hypergraph ioltbe/iing way:

init (Q0),

andl (11, 12, TenpHal),

xorl (11, 12, TenpGl),

andAl (CO, TenmpGl, TenpHbl),
orl (TenpHbl, TenpHal, Cl),

xor Al (TenpGl, CO, S1),

and2 (13, 14, TenpHa2),

xor2 (13, 14, Tenp@®2),

andA2 (Cl, Tenmp®&, TenpHb2),
or2 (TenpHb2, TenpHa2, C2),

xor A2 (Tenp&X, Cl, S2).

Our hypergraph library contains 99 hypergraphs of this lgtadting atadder _1 (6 hyper-
edges and vertices) extracted from a single basic cell upatbder 99 (496 hyperedges and
694 vertices) extracted from a circuit consistingd$f basic cells connected in a line. It is easy to
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Figure 2: Adder decomposition by hand
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Figure 3: The basic cell of a bridge circuit

construct a hypertree decomposition of widtfor these simple examples since each of the cells
can be easily decomposed of widtland the interconnections of the cells are via two hyperedges
See Figure 2 for such a decomposition by hand. The hypertidt-of all these hypergraphsis

2.1.2 Bridge Circuits

This kind of parameterized examples consists of a certambeun of bridge cells connected in a
line. The basic cell of such a bridge circuit is shown in Feg8r The problem is again to find the
valid input-output values of such a circuit. For exampleridde circuit consisting of two basic
cells connected in a line can be represented by a hypergnapk following way:

Init (Ugvl),
Mlvl (I Rlvl, | R2vl, |R3vl),
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Figure 4: Bridge decomposition by hand

Mevl (1 R4vl, | R5v1, |R3v1),

MBvl (Ugvl, |IRlvl, |R4v1, Unvl),
Nivl (lqgvl, IRlvl, IR2vl),

N2v1l (1 Rlvl, 1R3vl, |R4vl),

N3vl (1 R2vl, 1 R3vl, |IR5vl),

Nvl (1 R4vl, 1 R5v1, Invl),
UCONNv1 (Umvl, Ugv2),

| CONN1 (I nvl, 1qv2),

MLv2 (1 Rlv2, |IR2v2, |R3v2),

M2v2 (1 R4v2, |1 R5v2, |R3v2),

MBv2 (Ugv2, IRlv2, |R4v2, Umw?2),
Niv2 (lqgv2, IRlv2, I R2v2),

N2v2 (1 Rlv2, I R3v2, |R4v2),

N3v2 (1 R2v2, 1 R3v2, |IR5v2),

Ndv2 (1 R4v2, I R5v2, 1mv2),
UCONNv2 (Unv2, Ugv3l),

| CONN2 (I nv2, 1qv3),

Term (Uqv3).

Our hypergraph library contains 99 hypergraphs of this lstadting ator i dge_1 (11 hyper-
edges and 1 vertices) extracted from a single basic cell ugotd dge_99 (893 hyperedges and
893 vertices) extracted from a circuit consistingdf basic cells connected in a line. It is easy to
construct a hypertree decomposition of widtfor these examples since each of the cells can be
easily decomposed of widthand the interconnections of the cells are via two hypered§eg
Figure 4 for such a decomposition by hand. In fact, some ofatgwrithms were able to con-
struct hypertree decompositions of widtfor all these examples. The hypertree-width of all these
hypergraphs ig.
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2.1.3 NewSystem

Another kind of hypergraphs in our hypergraph library cetssof four instances of increasing size
called “NewSystem”. In particulaflewSyst enmil consists of84 hyperedges and42 vertices,
NewSyst en® consists 0200 hyperedges and45 vertices,NewSyst enB3 consists of278 hy-
peredges and74 vertices, andNewSyst en¥ consists o#418 hyperedges andl8 vertices. The
hypertree-width oMNewSyst eml and NewSyst en? is 3. In the case oNewSyst en8 and
NewSyst emd we could only find hypertree decompositions of widtbo far, i.e., their hypertree-
width is at mostt.

2.1.4 ATV Partial System

The hypergraptat v_parti al .syst emfrom DaimlerChrysler is a model of a jet propulsion
system. It consists &8 hyperedges antR5 vertices. Its hypertree-width i

2.2 NASA

One of the most challenging examples in our hypergraphrifissfrom NASA. In its original for-
mulation it consists 0680 hyperedges andl79 vertices. However, the corresponding hypergraph
is not connected; it contairts hyperedges that do not have vertices in common with any other
hyperedge. Removing these isolated hyperedges resultyipeagraph consisting @72 hyper-
edges and69 vertices. Of course, the hypertree-width of both variantsinbe the same; some
algorithms, however, require that the input hypergraplomected.

Several attempts in the past to construct a hypertree dexsitigm of acceptable width for the
NASA example failed. The first successful approach was dictdahan [9], who achieved a de-
composition of width23. We could improve this result to widthi by reimplementing McMahan’s
algorithm and adding some randomization steps.

2.3 ISCAS

The well-known benchmark library of the IEEE Internatio®Imposium on Circuits and Sys-
tems (ISCAS) is often used in the literature for testing teefgrmance of algorithms. There are
three large ISCAS benchmark suites: ISCAS85, ISCAS89, 8AAE99. The examples in these
benchmarks model several kinds of circuits like ALUs, colirs, multipliers, etc. In order to
make them accessible for our purposes, we transformedrépgsentation into our file format.

In this way, we obtained the following2 hypergraphs from the ISCAS85 benchmark suite:
c432 models &7-channel interrupt controller and consistsléf) hyperedges antlo6 vertices,
c499 models a32-bit SEC circuit and consists @b2 hyperedges an2ii3 vertices,c880 models
a 8-bit ALU and consists oB83 hyperedges andi43 vertices,c 1355 models a32-bit SEC cir-
cuit and consists 0346 hyperedges an@87 vertices,c 1908 models al6-bit SEC/DED circuit
and consists 0880 hyperedges an@13 vertices,c2670 models al2-bit ALU with controller
and consists ofl 193 hyperedges and350 vertices,c3540 models a8-bit ALU and consists
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Figure 5:8 x 8 Grid Figure 6:3 x 3 x 3 Cube

of 1669 hyperedges anti719 vertices,c5315 models a-bit ALU and consists 02307 hyper-
edges an®485 vertices,c6288 models al6 x 16 multiplier and consists 02416 hyperedges
and2448 vertices, anat 7552 models a32-bit adder/comparator and consists36i 2 hyperedges
and3718 vertices. From the ISCAS89 and ISCAS99 benchmark suitextracted30 and24
hypergraphs respectively starting from a sizel®fthyperedges and7 vertices up to a size of
39531 hyperedges and9568 vertices. For examples298 models a traffic light controller and
consists 0ofl33 hyperedges and39 vertices ands349 models a4 x 4 add-shift multiplier and
consists ofl 76 hyperedges anti5 vertices.

The widths of hypertree decompositions of the ISCAS hyagaigs vary significantly; in fact,
we do not know their hypertree-width. However, they seemetedry useful for comparing vari-
ous hypertree decomposition algorithms since our expettisnigave shown that it is very hard to
construct hypertree decompositions of small width (if te&ist) of these hypergraphs.

2.4 Grids

The grid hypergraphs in our hypergraph library are extchétem pebbling problems of the fol-
lowing form: Given am x n chessboard (see Figure 5) where pebbles are arbitrariteglan the
white squares. The question is whether it is possible to gbbjes on the black squares such that
for each of the pebbled white squares some of its adjaceck Blguares are pebbled and for each
non-pebbled white square some of its adjacent black sqaaeasot pebbled. This pebbling prob-
lem translates naturally into a Boolean CSP: For each blgokre we choose a variable and for
each white square we choose an appropriate constraint adjésent black squares. For example,
encoding at x 4 grid in this way results in:

C0:1 (X0:0, X1:1, XO:2),

C0: 3 (X0:2, Xi1:3),

Cl:0 (X0:0, X2:0, X1:1),

Cl:2 (X0:2, X1:1, X2:2, X1:3),
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C2:1 (X1:1, X2:0, X3:1, X2:2),
C2:3 (X1:3, X2:2, X3:3),

C3:0 (X2:0, X3:1),

C3:2 (X2:2, X3:1, X3:3).

Our hypergraph library contains 98 hypergraphs of this lstatting atgri d2d_2 (2 hy-
peredges and vertices) extracted from & x 2 grid up togri d2d_99 (4900 hyperedges and
4901 vertices) extracted from 80 x 99 grid. A special feature of these hypergraphs is that they
are highly cyclic, i.e., the hypertree-width of an< n grid is at least . This can be easily verified
by the game-theoretic characterization of hypertreetwficlk In particular,[ 3 | + 1 marshals have
a winning strategy to capture the robber omar n grid by advancing row by row through the
grid and monotonically forcing the robber into one of thermss to eventually capture him. It
is easy to see that the robber cannot be captured by a smattdyan of marshals. Hence, the
hypertree-width of a hypergraph encodingran n grid is [ % | + 1.

We have also generalized the above idea of extracting hygqang from 2-dimensional grids
in such a way that we consider 3-dimensional cubes and 4- atich&nsional hypercubes. For
example, encoding & x 3 x 3 cube (see Figure 6) in the above way results in:

CO0:0:1 (X0:0:0, X1:0:1, XO0:1:1, XO0:0:2),
C0:1:0 (X0:0:0, X1:1:0, X0:2:0, X0:1:1),
CO0:1:2 (X0:0:2, X0:1:1, XI1:1:2, XO0:2:2),
CO0:2:1 (X0:1:1, X0:2:0, X1:2:1, XO:2:2),
C1:0:0 (X0:0:0, X2:0:0, X1:1:0, X1:0:1),
Cl:0:2 (X0:0:2, X1:0:1, X2:0:2, X1:1:2),
Cl:1:1 (X0:1:1, X1:0:1, X1:1:0, X2:1:1, X1:2:1, X1:1:2),
Cl:2:0 (X0:2:0, X1:1:0, X2:2:0, X1:2:1),
Cl:2:2 (X0:2:2, X1:1:2, X1:2:1, X2:2:2),
C2:0:1 (X1:0:1, X2:0:0, X2:1:1, X2:0:2),
C2:1:0 (X1:1:0, X2:0:0, X2:2:0, X2:1:1),
C2:1:2 (X1:1:2, X2:0:2, X2:1:1, X2:2:2),
C2:2:1 (X1:2:1, X2:1:1, X2:2:0, X2:2:2).

Our hypergraph library contains 28 hypergraphs extraataah f3-dimensional cubes starting

atgri d3d_2 (4 hyperedges and vertices) extracted from 2 x 2 x 2 cube up togri d3d_29
(12194 hyperedges an@l2195 vertices) extracted from 29 x 29 x 29 cube. Moreover, our li-
brary contains 8 hypergraphs extracted from 4-dimensibgpercubes and 6 hypergraphs ex-
tracted from 5-dimensional hypercubes. Unfortunatelycontrast to 2-dimensional grids, it is
very hard to determine the hypertree-width of these hypgtgs. In the case of 3-dimensional
cubes, however, we were able to identify an interval in whieh hypertree-width must lie. The
idea is to generalize the above strategy in the Robber & Méssiiame in such a way that the
marshals move in shape of two adjacent 2-dimensional plaAesareful analysis reveals that
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Hypergraph Dual graph

Figure 7: Hypergraph and its dual graph of tHel que 4 example

M (n) + 1 marshals have a winning strategy in this way, where

i =n=z e [5]s[5 {7 ™

Moreover, note thaﬁ%ﬂ marshals are necessary to cover a single plane inxam x n cube,
which yields a trivial lower bound OF%QW +1 marshals to capture the robber. Hence, the hypertree-

width of a hypergraph encoding anx n x n cube lies in the interva{l{”{} +1,M(n) +1].

2.5 Cligues

The clique hypergraphs in our hypergraph library are a patanzed class of examples, each
consisting ofn hyperedges such that each hyperedge has a vertex in comrnioeagh other hy-
peredge and each vertex occurs in exactly two hyperedgeshie dual graph of the hypergraph is
a cligue such that each edge in the dual graph correspongadtyeone vertex in the hypergraph.
For examplecl i que_4 consisting of4 hyperedges an@ vertices has the form:

Cl (X1, X2, X3),
C2 (X1, X4, X5),
C3 (X2, X4, X6),
C4 (X3, X5, X6).

The hypergraph and its dual graph of tbei que_4 example is shown in Figure 7. Our
library contains 98 hypergraphs whose dual graphs are edi@s described above starting at
cl i que_2 consisting of2 hyperedges and vertex up tocl i que_99 consisting 0of99 hyper-
edges and&51 vertices. It is easy to see that such clique hypergraphswihiiperedges have
hypertree-width[ 7 ]. This follows immediately from the fact that each hyperedgeonnected
with each other hyperedge via a unique vertex. The corre@pgrhypertree consists of only
two nodes such that one node is labeled With hyperedges and the other node is labeled with
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| 5] hyperedges. Since every hypergraph can be decomposedsiwalyi (the conditions of a
hypertree decomposition are trivially satisfied), the wiggxamples represent the worst case con-
cerning hypertree-width. Although there exists only aisdi\nypertree decomposition of these
hypergraphs, some of our algorithms spent a huge amoumheffor finding this decomposition.

3 Conclusion

In this report, we presented our CSP hypergraph libraryisting of several classes of hyper-
graphs. Our library contains industrial examples from Damdhrysler, NASA, and the ISCAS
circuits as well as self-constructed hypergraphs like &add Cliqgues. The latter ones have the
advantage that their hypertree-width is known in advance.

Our experiments have shown that the evaluation results thioeedepend on the order of the
hyperedges and vertices in the input file. Therefore, wegsepo order hyperedges and vertices
randomly when reading them from the file. This guaranteesstiteaobtained results only depend
on the hypergraph and not on a particular representatidmedfypergraph.
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