
Solver Independent Rotating Workforce
Scheduling

Nysret Musliu1, Andreas Schutt2,3, and Peter J. Stuckey2,3

1 TU Wien, Vienna, Austria
2 Data61, CSIRO, Australia

3 University of Melbourne, Victoria, Australia

Abstract The rotating workforce scheduling problem aims to schedule
workers satisfying shift sequence constraints and ensuring enough shifts
are covered on each day, where every worker completes the same sched-
ule, just starting at different days in the schedule. We give two solver
independent models for the rotating workforce scheduling problem and
compare them using different solving technology, both constraint pro-
gramming and mixed integer programming. We show that the best of
these models outperforms the state-of-the-art for the rotating workforce
scheduling problem, and that solver independent modeling allows us to
use different solvers to achieve different aims: e.g., speed to solution or
robustness of solving (particular for unsatisfiable problems). We give the
first complete method able to solve all of the standard benchmarks for
this problem.

1 Introduction

Rotating workforce scheduling is a specific personnel scheduling problem arising
in many spheres of life such as, e.g., industrial plants, hospitals, public institu-
tions, and airline companies. Table 1 shows a workforce schedule for 7 employees
during one week, in which a row represents the weekly schedule of one employee.
There are three shifts: day shift (D), afternoon shift (A), and night shift (A).
The first employee works from Monday till Thursday in the afternoon shift and
has days-off in the remaining week. The second employee has a day-off on Thurs-
day and Friday and works in the day shift in the other days. The last employee

Table 1. A typical week schedule for 7 employees.

Employee Mon Tue Wed Thu Fri Sat Sun

1 A A A A - - -
2 D D D - - D D
3 D - - N N N N
4 - - - - A A A
5 D D D D D - -
6 N N N N N - -
7 N N N - - D D

starts the week with 3 night shifts, then rests for two days, and ends the week
with 2 day shifts. A schedule must meet many constraints such as workforce
requirements for shifts and days, minimal and maximal length of shifts, and
shift transition constraints, which are described in detail in the next section.
For rotating workforce scheduling, the schedule is rotating (or cyclic), i.e., the
ith employee has the schedule of the ((k mod n) + 1)th employee after the kth

week, where n is the number of employees. Due to that, no personal preferences
of employees can be considered. The aim is to find a schedule satisfying all the
constraints. Rotating workforce scheduling problems are NP-complete [7]. Ac-
cording to [1,26], the problem studied can be characterized as a single-activity
tour scheduling problem with non-overlapping shifts and rotation constraints.

Many practical real-life rotating workforce scheduling problems have been
solved by complete techniques [2,22,19,28,12] and heuristic algorithms [20,21],
but solving large problems is still a challenging task. Balakrishnan and Wong [2]
formulate the problem as a network flow problem. Laporte [18] proposes a Inte-
ger Linear Programming approach. Methods based on Constraint Programming
(CP) techniques are studied in [19,22,28]. Recently, Erkinger and Musliu [12]
propose a Satisfiability Modulo Theory (SMT) approach, which—to our best
knowledge—defines the state of the art complete method. All methods have
been evaluated on the benchmark set with 20 instances [20,21], which are based
on real life problems from different business areas, or on a sub-set of them. The
state of the art complete method [12] was able to solve 18 of them, whereas the
state-of-the-art heuristic approach [20,21] based on min-conflicts heuristic and
tabu search (MC-T) found a solution for all of them. Other research studies focus
at the creation of efficient rotation schedules by hand [17], and the design and
the analysis of rotating schedules with an algebraic computational approach [13].

There are various variants of personnel scheduling (see, e.g., the surveys [5,4]),
one group of them is the (multi-activity) shift scheduling problem, which is gen-
erally concerned about a finer schedule of the shifts over a planning horizon of
one day considering, e.g., meal breaks and more workforce regulations. Because
of the finer nature, there has been a great deal of work in formalizing languages
and their automata or network flows for capturing most of the regulations (see,
e.g., [25,11,9,27,16]). Beside the technologies mentioned in the previous para-
graph, researchers has been investigating in Column Generation based methods
(see, e.g., [26,15]) to tackle large personnel scheduling problems.

We define two solver-independent models for rotating workforce scheduling,
and compare them using a CP and a Mixed-Integer Programming (MIP) solver.
The first model is rather direct, where each constraint is separately stated. The
second model attempts to model as much as possible of the regulations using a
single regular constraint [24], which models the regulations as a deterministic
finite automaton. We consider redundant constraints, and symmetry breaking
constraints that can be added to the model to possibly improve them. We com-
pare the variations of the models experimentally using the two solvers, and
explore good search strategies to be used with the CP solver. Moreover, we gen-
erated 1980 additional instances and show that our two best methods outperform

the state of the art approaches [12,20,21], on both the standard 20 benchmark
instances and the extended 2000 instances.

2 The Rotating Workforce Scheduling Problem

We focus on a specific variant of a general workforce scheduling problem, which
we formally define in this section. The following definition is from Musliu et
al. [22] and proved to be able to satisfactorily handle a broad range of real-
life scheduling instances in commercial settings. A rotating workforce scheduling
problem as discussed in this paper consists of:

– n: Number of employees.
– A: Set of m shifts (activities). There is also a “day-off” activity denoted O.

We let A+ = A ∪ {O}.
– w: Length of the schedule. A typical value is w = 7, to assign one shift type

for each day of the week to each employee. The total length of a planning
period is n× w due to the schedule’s cyclicity as discussed below.

– R: Temporal requirements matrix, an m×w-matrix where each element Ri,j

shows the required number of employees that need to be assigned shift type
i ∈ A during day j. The number oj of day-off “shifts” for a specific day j is
implicit in the requirements and can be computed as oj = n−

∑m
i=1 Ri,j . In

an abuse of notation we let RO,j = oj .
– Sequences of shifts not permitted to be assigned to employees. We consider

two kinds of forbidden sequences: length 2 sequences, e.g., ND (Night Day):
after working in the night shift, it is not allowed to work the next day in the
day shift; and length 3 sequences, e.g., DON (Day Off Night): after working
a day shift and then having a day off, it is not allowed to work the next day
in the night shift. In length 3 sequences the middle shift is always O (Off).
A typical rotating workforce instance forbids several shift sequences, often
due to legal reasons and safety concerns. These two kinds are sufficient for
all the cases we have met in practice. We represent the forbidden sequence
as two sets of pairs (sh1, sh2) ∈ F2 if it is forbidden to take shift sh2 directly
after sh1; and (sh1, sh2) ∈ F3 if it is forbidden to take shift sh2 directly after
a single O shift after sh1.

– ls and us: Each element of these vectors shows, respectively, the required
minimal and permitted maximal length of periods of consecutive shifts s ∈
A+ of the same type.

– lw and uw: Minimal and maximal length of blocks of consecutive work shifts.
This constraint limits the number of consecutive days on which the employees
can work without having a day off.

The task in rotating workforce scheduling is to construct a cyclic schedule,
which we represent as an n × w matrix Si,j ∈ A+, 1 ≤ i ≤ n, 1 ≤ j ≤ w. Each
element Si,j denotes the shift that employee i is assigned during day j in the
first period of the cycle, or whether the employee has time off on that day. In a

cyclic schedule, the schedule for one employee consists of a sequence of all rows
of the matrix S.

The task is called rotating or cyclic scheduling because the last element of
each row is adjacent to the first element of the next row, and the last element of
the matrix is adjacent to its first element. Intuitively, this means that employee
i (i < n) assumes the place (and thus the schedule) of employee i + 1 after each
week, and employee n assumes the place of employee 1. This cyclicity must be
taken into account for the last three constraints above.

In the present paper, we consider the satisfaction problem satisfying all con-
straints given in the problem definition, which is usually sufficient in practice.
This means the generation of one schedule is sufficient. The commercial software
FCS [22,14] uses the same constraints for generating rotating workforce sched-
ules. This system has been used since 2000 in practice by many companies in
Europe and the scheduling variant we discuss in this paper proved to be sufficient
for a broad range of uses.

3 Direct Model

The direct model of the problem asserts each of the constraints individually. To
make it easy to handle the cyclic nature of the schedule we define a new view on
the schedule Tk = Sk÷w+1,k mod w+1, 0 ≤ k ≤ n×w− 1 which simply maps the
days of the schedule to a list of length n×w indexed from TT = {0, . . . , n×w−1}.
Let t(x) = x mod (n × w) be a map from days to indexes of the list. We can
then assert the constraints individually∑uw

k∈0
(Tt(j+k) = O) > 0, j ∈ TT (1)∑lw

k∈1
(Tt(j+k) = O) = 0, j ∈ TT, Tj = O ∧ Tt(j+1) 6= O (2)∑uO

k∈0
(Tt(j+k) 6= O) > 0, j ∈ TT (3)∑lO

k∈1
(Tt(j+k) 6= O) = 0, j ∈ TT, Tj 6= O ∧ Tt(j+1) = O (4)∑ush

k∈0
(Tt(j+k) 6= sh) > 0, j ∈ TT, sh ∈ A (5)∑lsh

k∈1
(Tt(j+k) 6= sh) = 0, j ∈ TT, sh ∈ A, Tj 6= sh ∧ Tt(j+1) = sh (6)

Tj = sh1 → Tt(j+1) 6= sh2, j ∈ TT, (sh1, sh2) ∈ F2 (7)

Tj = sh1 ∧ Tt(j+1) = O → Tt(j+2) 6= sh2, j ∈ TT, (sh1, sh2) ∈ F3 (8)

Constraint (1) enforces there are no sequences of length uw + 1 with no O shift,
i.e., the maximum length of a work block. Constraint (2) enforces there are no
sequences of length less than lw of work shifts, i.e., the minimum length of a work
block. Constraint (3) enforces there are no sequences of length uO + 1 of just O
shifts, i.e., the maximum length of an off block. Constraint (4) enforces there
are no sequences of length less than lO of off shifts, i.e., the minimum length of

an off block. Constraint (5) enforces there are no sequences of length ush + 1 of
just sh shifts, i.e., the maximum length of an sh block. Constraint (6) enforces
there are no sequences of length less than lsh of sh shifts, i.e., the minimum
length of an sh block. Constraint (7) enforces no forbidden sequences of length
2. Constraint (8) enforces no forbidden sequences of length 3.

To complete the model, we enforce that each day has the correct number of
each type of shift.∑

i∈1..n
(Si,j = sh) = Rsh,j , j ∈ 1..w, sh ∈ A (9)

We can do the same for the off shifts as follows. Note that it is a redundant
constraint. ∑

i∈1..n
(Si,j = O) = oj , j ∈ 1..w (10)

Note that this model appears to consist entirely of linear constraints (at
least once we use 01 variables to model the decisions Si,j = sh, sh ∈ A+).
This is misleading, since equations (2), (4) and (6) are all contingent on variable
conditions. The entire model can be easily expressed with linear constraints, and
(half-)reified linear constraints.

4 Alternative model choices

The direct model (1–10) described in the previous section simply uses linear-
styled constraints. However, there are alternative ways to model the shift tran-
sitions and the temporal requirements using global constraints. In addition, we
can add more redundant constraints and symmetry breaking constraints to the
model. In this section, we look at these choices except for the shift transition,
for which we devote a separate section after this one.

4.1 Temporal requirements

Instead of using the linear constraints in (9) and (10), we can respectively use
these global cardinality constraints for each week day j ∈ 1..w.

gcc low up([Si,j |i ∈ 1..n],A, [Rsh,j |sh ∈ A], [Rsh,j |sh ∈ A]) (11)

gcc low up([Si,j |i ∈ 1..n],A+, [Rsh,j |sh ∈ A+], [Rsh,j |sh ∈ A+]) (12)

They state that the number of shifts of each type in sh ∈ A (or sh ∈ A+)
occurring in each day j must exactly equal the requirement Rsh,j .

4.2 Redundant constraints

In a cyclic schedule, we know that there are equal numbers of work blocks and
off blocks. We exploit this knowledge to create redundant constraints for each
week by ensuring the lower bounds and upper bounds of these blocks do not
cross.

Let twl =
∑

sh∈A
∑n

j=1 Rsh,j be the total workload over the planning period.
Then we can define the number of days-off owi at the end of the week i from
the beginning of the schedule as

owi =


0 i = 0
owi−1 +

∑
j∈1..w(Si,j = O) i ∈ 1..n− 1

n× w − twl i = n

Define roi to be the number of days-off remaining after the end of week i, and
similarly rwi to be the number of work days remaining after the end of week i

roi = n× w − twl − owi, rwi = twl − w × i + roi.

We can determine a lower bound loi for the number of remaining off blocks start-
ing from week i, and similarly an upper bound uoi for the number of remaining
off blocks as:

loi = droi/uOe − (S1,1 6= O ∧ Si+1,1 = O)

uoi = broi/lOc+ (S1,1 = O ∧ Si,w = O)

Note that the potential additional minus and plus one from the evaluation of
the conjunction accounts for the fact that the number of work and off blocks can
differ by one in the remaining schedule. For the lower bound, when the schedule
starts with a work day and the week after the week i with a day-off then there
might be one off block more in the remaining schedule than the number of
remaining work blocks. For the upper bound, if the schedule starts with an off
day and the week i ends with a day-off then there might be one off block less in
the remaining schedule than the number of remaining work blocks.

Similarly, we can compute a lower bound lwi for the number of the remaining
work blocks after the end of week i, and similarly an upper bound uwi for the
number of remaining work blocks as:

lwi = drwi/uwe − (S1,1 = O ∧ Si+1,1 6= O)

uwi = brwi/lwc+ (S1,1 6= O ∧ Si,w 6= O)

Finally, we constrain these bounds to agree.

loi ≤ uwi ∧ lwi ≤ uoi, i ∈ 1..n (13)

4.3 Symmetry breaking constraints

Given a schedule S a symmetric solution can easily be obtained by shifting the
schedule by any number of weeks. If there must be at least one off day at the
end of the week then we impose that the last day in the schedule is an off day.
Note that it happens for all instances used.

ow > 0→ Sn,w = O (14)

Note that we could have chosen any day and possible shift for breaking this
symmetry, but we choose this one because it aligns with our other model choice
for the shift transitions described in the next section.

Another symmetry occurs when all temporal requirements are the same for
each day and each shift. In this case, a symmetric schedule can be obtained by
shifting the schedule by any number of days. Thus, we can enforce that the work
block starts at the first day in the schedule. The same constraint can be enforced
if the number of working days in the first day is greater than in the last day of
the week, because there must be at least one work block starting at the first day.(
∀sh ∈ A,∀j ∈ 1..w − 1 : Rsh,j = Rsh,j+1 ∨

∑
sh∈A

Rsh,1 >
∑

sh∈A
Rsh,w

)
→ S1,1 6= O ∧ Sn,w = O (15)

In comparison to (14), (15) also enforces an off day on the last day and thus it
is stronger symmetry breaking constraint, but less often applicable. Note that
there might be further symmetries, especially instance specific ones, but here we
focus on more common symmetries.

5 Automata Based Model

The automata-based model attempts to capture as much of the problem as
possible in a single regular [24] constraint.

In order to enforce the forbidden sequences constraints we need to keep track
of the last shift taken, and if the last shift was an O shift then the previous shift
before that. In order to track the lower and upper bounds for each shift type, we
need to track the number of consecutive shifts of a single type (including O). In
order to track the lower and upper bounds for consecutive work shifts, we need
to track the number of consecutive work shifts.

We define an automata M with Q = m + uo +
∑

sh∈A(uw × ush) states.
We bracket state names to avoid ambiguity with shift types. They represent in
sequence: an artificial start state [start]; states for the first O shift in a sequence,
recording the type of the previous work shift [sO]; states for 2 or more O shifts in
sequence (2 ≤ i ≤ uo) [Oi], states encoding that the last 1 ≤ j ≤ us consecutive
shifts are type s ∈ A directly after a sequence of 0 ≤ j < uw consecutive work
shifts (not O) [wisj]. Note each state effectively records a sequence of previous
shifts. Note that some of the states may be useless, since, e.g., a state encoding
3 consecutive D shifts after a sequence of 4 other works shifts with ow = 6 is not
possible (it represents 7 consecutive work shifts).

The transition function d for the states is defined as follows (missing transi-
tions go to an error state):

– [start]: on sh ∈ A goto [sh], on O goto [OO]. Note that transitions assume
that the previous shift was O.

– [sO]: on O goto [OO] (assuming uO ≥ 2), on sh ∈ A goto [sh] unless s O sh
is forbidden ((s, sh) ∈ F3) or lO > 1.

– [Oi], 2 ≤ i ≤ uO: on O goto [Oi+1] unless i = uO, on sh ∈ A goto [sh] unless
i < lO.

– [wisj], 0 ≤ i ≤ uw − 1, 1 ≤ j ≤ us: on O goto [sO] unless j < ls, on s goto
[wisj+1] unless j = us or i + j ≥ uw, on sh ∈ A− {s} goto [wi+jsh] unless
s sh is forbidden ((s, sh) ∈ F2) or i + j ≥ uw or j < ls.

Each state is accepting in this automata.

An example automata with two shifts D (Day) and N (Night) with forbidden
sequences ND and DON and limits lD = 2, uD = 3, lN = 1, uN = 2, lO = 1,
uO = 3 and lw = 2, uw = 4 is shown in Figure 1. Unreachable states are shown
dotted, and edges from them are usually omitted, except horizontal edges which
do not break the total work limit. Edges for D shifts are full, N are dashed and
O are dotted.

// start

��

��

++

DO

��

%%

NO //

��

��

OO //

vv

��

OOO

rr

��

D // DD

		

aa

D
// DDD

ii

��

wD // wDD // wDDD

wwD // wwDD wwDDD

wwwD wwwDD wwwDDD

N //

;;

NN

WW

wN // wNN

wwN //

<<

wwNN

TT

wwwN

;;

wwwNN

Figure 1. The automaton capturing correct shift sequences for a problem with work
shifts D and N , and forbidden sequences ND and DON . D shifts are indicated by full
arrows, N shifts by dashed arrows, and O shifts by dotted arrows.

[start] D [D] D [DD] N [wwN] O [NO] O [OO] N [NO] N
[NN] O [NO] D [D] D [DD] D [DDD] O [DO] O [OO] D

[D] D [DD] D [DDD] N [wwwN] O [NO] O [OO] N [NO] N

Figure 2. A two week sequence DDNOONNODDDOOD with the first week repeated
illustrating how the regular constraint can be in different states in the two copies of
the first week.

In order to define a cyclic schedule the regular constraint is applied on a
sequence that duplicates the first w shifts at the end. This is safe assuming that
uw < w, which occurs in all our examples.

The remaining constraints simply enforce the correct number of each shift
type on each day. In summary the total model consists of either Equation (11)
or Equation (12) together with

regular([S1,1, . . . , Sn,w, S1,1, . . . , S1,w], Q,m + 1, d, [start], 1..Q) (16)

that is a regular constraint over the n + 1 week extended shift list, using an
automata defined by Q states, m + 1 shift possibilities, transition function d,
start state [start] will all states being final states.

Note that the states in the first week, and the copy need not be the same. For
example, given the automaton of Figure 1, Figure 2 shows a two week schedule,
with the first week repeated, giving the state of the automata across the schedule.
The two bold subsequences show where the states are different for the two copies
of the first week. The sequence is accepted.

A simpler model would be possible if we had a regular constraint that
included start and end states as variable arguments. We could then simply con-
strain the original array of shifts (with no duplication of the first week) and
constrain the start and end states to be identical. Current solvers do not sup-
port such a regular constraint.

Note that while the start state ambiguity means that we make assumptions
about the previous state when evaluating the automata on the states until we
reach a first O shift, because the constraints are applied twice on the first week of
shifts the proper constraints are satisfied. Note also that the regular constraint
may actually remove solutions, since the first shift is assumed to be the first
after an off, for the problems we tackle this simply removes symmetric solutions.
This can be incorrect for corner cases, e.g., when

∑
s∈A Rs,w = n (so there can

be no O shift in the last day of the week). In these cases we can rotate the shift
requirements for the days (effectively starting the cycle on a different day) to
overcome the problem (it does not occur in any of the benchmarks).

We tried an alternate automata M ′ which ignores constraints until it can
be sure of which state it is in, i.e., a work shift followed by an O shift, or
two consecutive O shifts. This proved to be terrible since it allowed erroneous
schedules in the first week which then only detected as unsatisfiable when we
finish labeling the last week.

6 Search Strategies

Beside the solver’s default search strategy, we tested several others for the CP
solver used, which are briefly described in this section.

The strategies studied consist of a variable and value selection part, which
can be combined freely.

6.1 Variable selection

Variable selection is critical for reducing the search space for any combinatorial
problem. We need to balance the criteria of driving quickly towards failure, with
getting the most possible inference from the solver. The key decisions of the
model are the schedule variables Si,j . We define our variable selection over these
variables unless stated otherwise. Ties are broken by input order.

default: Solver’s default selection.
random: Randomly select a variable.
worker: Select the variables in the chronological order over the planning hori-

zon, i.e., S1,1, . . . , S1,w, S2,1, . . . , S2,w, . . . , Sn,1, . . . , Sn,w.
day: Select the variables in the following order the first day of the week from

the first to the last week in the planning horizon and then the next day and
so on, i.e., S1,1, . . . , Sn,1, S1,2, . . . , Sn,2, . . . , S1,w, . . . , Sn,w.

wd: Select the variables of the first day in the weeks in the chronological order,
i.e., S1,1, . . . , Sn,1, and then use the variable selection worker.

ff: Select the variable with the smallest domain (first fail).
first: Create new Boolean variables bk ↔ Tt(k−1) 6= Tt(k), k ∈ TT . These rep-

resent where a change of shift type occurs. Select the Boolean variables in
chronological order and assign the value true at first. Then use the variable
selection worker.

s1: Create new Boolean variables bk ↔ (Tk = O), k ∈ TT . These represent
where an off shift occurs. Select the Boolean variables in chronological order
and assign the value true at first. Then use the variable selection worker.

6.2 Value selection

All instances in the benchmark set have these shift types (D) day, (A) afternoon,
and (N) night, as well as the day-off (O) shift. Hence we could consider any of
the 24 different static value ordering amongst these four. We consider 4 static
orderings: DANO, default ordering of the model indomain min; ODAN , off shifts
first; ONAD, reversed default ordering indomain max; NADO, reversed ordering
of shifts.

We also consider static orderings that are computed from features of the
instance to be solved. Let maxb be the maximal number of work or off blocks,
calculated as

maxb = max(d(
∑

sh∈A,j∈1..n
Rsh,j)/lwe, d(

∑
j∈1..n

RO,j)/lOe).

We consider two variants of ordering shift types in terms of the tightness of
the number of shifts required compared to the minimum number required to be
scheduled. Both variants are in ascending order.

slack1: For each shift in A+, we compute the slack between maximal available
space, i.e., number of shift blocks times the maximal shift length, and the
required workload or “days-off-load”, i.e., sl1O = uO ×maxb−

∑w
j=1 oj , and

sl1sh = min(maxb,
∑w

j=1 Rsh,j/lsh)× ush −
∑w

j=1 Rsh,j , sh ∈ A.

slack2: This variant refines slack1 for the work shifts. In addition, it considers
when the maximal space is restricted by the high block requirement of the
other work shifts, i.e., sl2O = sl1O, and sl2sh = min(sl1sh, tish), sh ∈ A where
tish = uw × (maxb−

∑
z∈A\{sh}d

∑w
j=1 Rz,j/uze)−

∑w
j=1 Rsh,j .

7 Experiments

To evaluate our methods, we took all 20 instances from a standard benchmark
set1 and further 30 hard instances from 1980 additional generated instances, for
which the heuristic MC-T [20,21] either did not find a solution or required a
long time for it. The instances generated consist of 9 to 51 employees, 2 to 3
shift types, 3 to 4 minimal and 5 to 7 maximal length of work blocks, 1 to 2
minimal and 2 to 4 maximal length of days-off blocks, and minimal and maximal
length of periods of consecutive shifts (D: 2 to 3 and 5 to 7, A: 2 to 3 and 4 to
6, N : 2 to 3 and 4 to 5). The same forbidden sequences as for real-life examples
are used. Initially the temporal requirements for shifts are distributed randomly
between shifts based on the total number of working days and days-off (the
number of days-off is set to bn×w×0.2857c). With probability 0.3 the temporal
requirements during weekend are changed (half of these duties are distributed
to the temporal requirements of the weekdays).

Experiments were run on Dell PowerEdge M630 machines having Intel Xeon
E5-2660 V3 processors running at 2.6 GHz with 25 MB cache, unless otherwise
stated. We imposed a runtime limit of one hour and a memory limit of 16 GB,
unless otherwise stated. We tested Gurobi as a MIP solver and Chuffed [6] as a
CP solver.2 The development version of MiniZinc was used for modeling.

Table 2 compares the impact of the different model combinations for the
temporal requirement and shift transition constraints for Gurobi and Chuffed
using the solvers’ default search strategy. The columns show in this order the
solver, the constraints used (model), the total number of solved instances (#tot),
the average number of nodes (avg. nd), the average runtime (avg. rt) (includ-
ing time-outs for unsolved instances), the number of instances for which the
solver found a solution (#sat), the average runtime of feasible instances (avg.
rt), the number of instances for which the solver proved infeasibility (#uns),
and the average runtime of infeasible instances (avg. rt). The results for Gurobi

1 Available at http://www.dbai.tuwien.ac.at/staff/musliu/benchmarks/.
2 We also tried Gecode as a constraint programming solver, but it was not competitive.

Table 2. Results on different constraint choices.

solver model #tot avg. nd avg. rt #sat avg. rt #uns avg. rt

Gurobi (1–8), (9) 46 3.2k 780.6s 40 587.5s 6 1794.2s
Gurobi (1–8), (9,10) 44 2.4k 789.2s 39 533.5s 5 2131.6s
Gurobi (1–8), (11) 42 3.3k 891.8s 38 629.7s 4 2268.0s
Gurobi (1–8), (12) 43 3.5k 841.0s 38 639.7s 5 1897.7s
Gurobi (16), (9) 50 177 50.1s 42 53.6s 8 32.0s
Gurobi (16), (9,10) 50 471 92.7s 42 105.9s 8 23.2s
Gurobi (16), (11) 50 177 49.5s 42 52.8s 8 32.1s
Gurobi (16), (12) 50 113 45.0s 42 48.6s 8 26.3s

Chuffed (1–8), (9) 33 9.1m 1323.8s 33 890.1s 0 3600.6s
Chuffed (1–8), (9,10) 44 2.8m 505.3s 39 342.5s 5 1360.3s
Chuffed (1–8), (11) 37 9.9m 1070.6s 36 644.2s 1 3308.9s
Chuffed (1–8), (12) 44 4.9m 482.8s 39 315.5s 5 1361.2s
Chuffed (16), (9) 30 5.7m 1539.2s 30 1146.5s 0 3600.8s
Chuffed (16), (9,10) 44 1.6m 521.1s 39 303.2s 5 1665.6s
Chuffed (16), (11) 34 4.3m 1304.5s 34 867.2s 0 3600.4s
Chuffed (16), (12) 42 1.8m 615.5s 37 469.2s 5 1383.7s

are clear. The shift transition constraints are the key constraints for its perfor-
mance. Using the regular constraint (16), it solves all 50 instances regardless
of the constraints for the temporal requirements. Its superiority over the direct
representation results because MiniZinc transforms the regular constraint into
a network flow for mixed-integer solvers [10,3] and hence almost the entire model
is totally unimodular. The overall best combination is achieved with the global
cardinality constraint (12).

By contrast, Chuffed is not able to solve all instances in any combination
and there are two important model choices. As opposed to Gurobi, Chuffed
performs better when using the direct constraints (1–8) for the shift transition
constraints, even though weaker propagation is achieved. The average number of
nodes indicate that a stronger propagation of the regular does not convert into
runtime savings. This probably results from the fact that the direct constraints
introduce intermediate variables which are valuable for learning, whereas the
regular constraint introduces no intermediate variables. For Chuffed, it is also
important to choose temporal constraints covering the days-off. The overall best
combination are the direct constraints (1–8) for the shift transition constraints
and the global cardinality constraint (12).

Table 3 shows the impact on the performance of Gurobi and Chuffed when
adding the redundant and symmetry breaking constraints to the best model com-
bination. Gurobi’s performance drastically deteriorate when using the redundant
constraints. This is unsurprising since these are mainly linear combinations of
constraints the solver already has. Its performance significantly improves when
using the symmetry breaking constraints, but only for infeasible instances, which
is expected because it makes the search space smaller. For feasible instances, it
does not have any impact. For Chuffed, both set of constraints are important

Table 3. Results with redundant (13) and symmetry breaking (14,15) constraints.

solver model (13) (14,15) #tot avg. nd avg. rt #sat avg. rt #uns avg. rt

Gurobi (16), (12) 50 113 45.0s 42 48.6s 8 26.3s
Gurobi (16), (12) × 50 84 41.4s 42 48.4s 8 4.5s
Gurobi (16), (12) × 50 271 93.5s 42 108.2s 8 16.0s
Gurobi (16), (12) × × 49 374 107.6s 41 127.3s 8 4.5s

Chuffed (1–8), (12) 44 4.9m 482.8s 39 315.5s 5 1361.2s
Chuffed (1–8), (12) × 44 5.1m 489.1s 39 323.9s 5 1356.2s
Chuffed (1–8), (12) × 48 1.6m 190.1s 42 51.9s 6 915.4s
Chuffed (1–8), (12) × × 48 1.8m 172.5s 42 32.2s 6 909.2s

Table 4. Results on best value and variable selections for the search strategies.

solver search #tot avg. nd avg. rt #sat avg. rt #uns avg. rt

Chuffed default+DANO 48 1.8m 172.5s 42 32.2s 6 909.2s
Chuffed worker+NADO 48 1.4m 169.7s 42 28.4s 6 911.1s
Chuffed ff+NADO 48 1.4m 166.7s 42 25.1s 6 909.8s
Chuffed s1+DANO 47 1.3m 236.4s 41 109.0s 6 905.2s

to increase its performance. Still it cannot solve all instances in the given run-
time limit, but could find a solution for all feasible instances. Interestingly, the
average runtime over all feasible instances is lower than Gurobi’s best time.

Table 4 shows the best pairing of value and variable selections for the search
strategies for Chuffed.3 Chuffed alternates between the given search strategy and
its default one on each restart. This is important since it allows the powerful
default activity based search to be utilized.

Using a search strategy was beneficial for the performance, but either for
feasible or infeasible instances, and not both together. For feasible instances,
the variable selections ff and worker were the best two in combination with
a value ordering NADO, because first fail makes the search space small and
worker explores it in chronological order of the schedule allowing removal of
impossible values for the next decision. The value ordering NADO works best,
because of the structure of the instances. The night shift is the most restricted
one for the shift transitions and then the afternoon. In addition, the temporal
requirements tends to be the least for the night shift and then the afternoon
shift. For infeasible instances, deciding work and days-off at first and then which
work shift is performed using the value ordering DANO performed best.

Because the instances all have very similar relations between the different
types of shifts, we took the 50 instances and reversed the order of the forbidden
sequences to check that the value ordering NADO is not necessarily the best one.
We set a runtime limit to 300s for this experiment. Table 5 clearly shows that
the dynamic criteria slack2 performs the best, which looks at the tightness of
the temporal requirements for each shift including the days-off. In comparison

3 We ran preliminary experiments on all possible combinations with a five minutes
runtime limit.

Table 5. Results on instances with reversed forbidden sequences (runtime limit 300s).

solver search #tot avg. nd avg. rt #sat avg. rt #uns avg. rt

Chuffed ff+ODAN 45 304k 49.2s 34 33.7s 11 85.4s
Chuffed ff+DANO 45 303k 40.5s 34 21.0s 11 86.1s
Chuffed ff+ONAD 44 277k 45.1s 33 27.5s 11 86.1s
Chuffed ff+NADO 45 260k 40.1s 34 20.6s 11 85.6s
Chuffed ff+slack1 45 244k 40.1s 34 20.4s 11 85.8s
Chuffed ff+slack2 45 235k 37.9s 34 17.0s 11 86.9s

�����

����

��

���

����

�����

����� ���� �� ��� ���� �����

�
�
�
��
�
�

������

���
�����

Figure 3. Runtime comparison between Chuffed (y-axis) and Gurobi (x-axis).

Table 6. Comparison to the state of the art methods on all 2000 instances (runtime
limit 200s).

solver #fastest #tot avg. rt #sat avg. rt #uns avg. rt

Gurobi 31 1988 10.3s 1320 13.0s 668 4.9s
Chuffed 513 1845 19.4s 1322 5.0s 523 47.8s

MathSAT - BV 3 1470 63.8s 1198 32.1s 272 126.7s
MC-T 781 1212 82.7s 1212 23.3s 0 200s

to slack2, Chuffed is about 20% slower when using NADO, which confirms
our previous observation that this order is well-suited for the instances in the
benchmark library, due to the fact that the night shifts and then the afternoon
shifts are normally the most-restrictive ones.

Figure 3 shows the runtime comparison between Chuffed and Gurobi on the
50 instances. Runtimes are given in seconds and the axis use a logarithmic scale.
Points below the diagonal line express that Chuffed solved the instance quicker
than Gurobi, and vice-versa for points above the line. Except for 5 feasible and
3 infeasible instances, Chuffed solved the instances in a similar speed or faster,
even by order of a magnitude for many instances. However, Gurobi is more
robust, especially for infeasible instances, which were solved within 10 seconds.

Table 6 compares the best Chuffed and Gurobi outcome on all 2000 instances
to the state-of-the-art heuristic approach based on min-conflicts heuristic and
tabu search (MC-T) [20,21] and the state-of-the-art complete SMT approach [12]
using bit vectors for modeling and the SMT solver MathSAT 5.5.1[8] for solving.
Note that the results of MC-T reported in this paper were obtained on a Lenovo
T440s machine having Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz 2.30 GHz
with 8 GB RAM. To be conservative, we consider that these machines are twice
as slow as the machines on which Gurobi, Chuffed and MathSAT were executed.
For this comparison we set the runtime limit to 200s and recorded the number of
instances (#fastest), for that each method was the fastest, we halved the runtime
of MC-T for computing #fastest. Chuffed and Gurobi significantly outperform
the state-of-the-art complete methods in all aspects. The heuristic solver per-
forms better than the SMT method on feasible instances, even though it runs on
a slower machine. It is the fastest solver on almost 59% of the feasible instances
followed by Chuffed with 39%. However, it cannot compete with Chuffed and
Gurobi in term of the number of solved feasible instances. Chuffed and Gurobi
were respectively able to solve more feasible instances within 10s and 30s than
MC-T within 200s. On top of that, our methods are able to detect infeasibility.
Thus, both our methods are more robust than MC-T, whereas Gurobi is the
most robust one. Together, both our methods could solve all instances within
200s, except two instances.

8 Conclusion

We investigated different solver-independent models for solving the rotating
workforce scheduling problem using MiniZinc [23]. Surprisingly the best model
combination resulted when using regular constraints with Gurobi, even though
the regular constraint is native to constraint programming. This shows the
advantages of solver-independent modeling, where we do not commit to a sin-
gle solver. While regular and network-flow models have been used previously
for this problem, they made use of multiple regular constraints instead of one
large regular. The advantage of using a high level modeling language was that
we could generate a complex automata fully automatically that encoded almost
all of the problem. Indeed a simple first version of the automata based model
was constructed in under an hour. We tested our approaches on the standard
benchmark set and created more challenging instances for our evaluation. Inter-
estingly, Gurobi and Chuffed excelled on different model combinations. On the
majority of instances Chuffed is the quickest solver, but Gurobi the most robust
one, because of its superiority in proving infeasibility.

Acknowledgments This work was partially supported by the Asian Office of
Aerospace Research and Development grant 15-4016 and by the Austrian Science
Fund (FWF): P24814-N23.

References

1. Baker, K.R.: Workforce allocation in cyclical scheduling problems: A survey. Jour-
nal of the Operational Research Society 27(1), 155–167 (1976)

2. Balakrishnan, N., Wong, R.T.: A network model for the rotating workforce schedul-
ing problem. Networks 20(1), 25–42 (1990)

3. Belov, G., Stuckey, P.J., Tack, G., Wallace, M.G.: Improved linearization of con-
straint programming models. In: Rueher, M. (ed.) Principles and Practice of Con-
straint Programming – CP 2016. pp. 49–65. Springer International Publishing,
Cham (2016)

4. Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., De Boeck,
L.: Personnel scheduling: A literature review. European Journal of Operational
Research 226(3), 367–385 (2013)

5. Burke, E.K., De Causmaecker, P., Berghe, G.V., Van Landeghem, H.: The state of
the art of nurse rostering. Journal of scheduling 7(6), 441–499 (2004)

6. Chu, G.: Improving Combinatorial Optimization. Ph.D. thesis, The University of
Melbourne (2011), http://hdl.handle.net/11343/36679

7. Chuin Lau, H.: On the complexity of manpower shift scheduling. Computers &
operations research 23(1), 93–102 (1996)

8. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A modular approach
to maxsat modulo theories. In: Theory and Applications of Satisfiability Testing
- SAT 2013 - 16th International Conference, Helsinki, Finland, July 8-12, 2013.
Proceedings. pp. 150–165 (2013)

9. Côté, M.C., Gendron, B., Quimper, C.G., Rousseau, L.M.: Formal languages for
integer programming modeling of shift scheduling problems. Constraints 16(1),
54–76 (2011)

10. Côté, M.C., Gendron, B., Rousseau, L.M.: Modeling the regular constraint with
integer programming. In: Van Hentenryck, P., Wolsey, L. (eds.) International Con-
ference on Integration of Artificial Intelligence (AI) and Operations Research (OR)
Techniques in Constraint Programming – CPAIOR 2007. pp. 29–43. Springer Berlin
Heidelberg (2007)

11. Côté, M.C., Gendron, B., Rousseau, L.M.: Grammar-based integer programming
models for multiactivity shift scheduling. Management Science 57(1), 151–163
(2011)

12. Erkinger, C., Musliu, N.: Personnel scheduling as satisfiability modulo theories. In:
International Joint Conference on Artificial Intelligence – IJCAI 2017, Melbourne,
Australia, August 19-25, 2017. pp. 614–621 (2017)

13. Falcón, R., Barrena, E., Canca, D., Laporte, G.: Counting and enumerating feasible
rotating schedules by means of Gröbner bases. Mathematics and Computers in
Simulation 125, 139–151 (2016)

14. Gärtner, J., Musliu, N., Slany, W.: Rota: a research project on algorithms for
workforce scheduling and shift design optimization. AI Communications 14(2),
83–92 (2001)

15. Hashemi Doulabi, S.H., Rousseau, L.M., Pesant, G.: A constraint-programming-
based branch-and-price-and-cut approach for operating room planning and
scheduling. INFORMS Journal on Computing 28(3), 432–448 (2016)

16. Kadioglu, S., Sellmann, M.: Efficient context-free grammar constraints. In: AAAI.
pp. 310–316 (2008)

17. Laporte, G.: The art and science of designing rotating schedules. Journal of the
Operational Research Society 50, 1011–1017 (9 1999)

18. Laporte, G., Nobert, Y., Biron, J.: Rotating schedules. European Journal of Op-
erational Research 4(1), 24–30 (1980)

19. Laporte, G., Pesant, G.: A general multi-shift scheduling system. Journal of the
Operational Research Society 55(11), 1208–1217 (2004)

20. Musliu, N.: Combination of local search strategies for rotating workforce schedul-
ing problem. In: International Joint Conference on Artificial Intelligence – IJCAI
2005, Edinburgh, Scotland, UK, July 30 - August 5, 2005. pp. 1529–1530 (2005),
http://ijcai.org/Proceedings/05/Papers/post-0448.pdf

21. Musliu, N.: Heuristic methods for automatic rotating workforce scheduling. Inter-
national Journal of Computational Intelligence Research 2(4), 309–326 (2006)

22. Musliu, N., Gärtner, J., Slany, W.: Efficient generation of rotating workforce sched-
ules. Discrete Applied Mathematics 118(1-2), 85–98 (2002)

23. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZ-
inc: Towards a standard CP modelling language. In: Bessière, C. (ed.) Principles
and Practice of Constraint Programming – CP 2007. Lecture Notes in Computer
Science, vol. 4741, pp. 529–543. Springer Berlin Heidelberg (2007)

24. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M.G. (ed.) Principles and Practice of Constraint Programming
– CP 2004. pp. 482–495. No. 3258 in LNCS, Springer, Berlin, Heidelberg (2004)

25. Quimper, C.G., Rousseau, L.M.: A large neighbourhood search approach to the
multi-activity shift scheduling problem. Journal of Heuristics 16(3), 373–392 (2010)

26. Restrepo, M.I., Gendron, B., Rousseau, L.M.: Branch-and-price for personalized
multiactivity tour scheduling. INFORMS Journal on Computing 28(2), 334–350
(2016)

27. Salvagnin, D., Walsh, T.: A hybrid MIP/CP approach for multi-activity shift
scheduling. In: Principles and practice of constraint programming – CP 2012. pp.
633–646. Springer (2012)

28. Triska, M., Musliu, N.: A constraint programming application for rotating work-
force scheduling. In: Developing Concepts in Applied Intelligence, Studies in Com-
putational Intelligence, vol. 363, pp. 83–88. Springer Berlin / Heidelberg (2011)

