
Application of Machine Learning to
Algorithm Selection for TSP

Josef Pihera
Vienna PhD School of Informatics
Vienna University of Technology

pihera@dbai.tuwien.ac.at

Nysret Musliu
Institute of Information Systems
Vienna University of Technology

musliu@dbai.tuwien.ac.at

Abstract—The Travelling Salesman Problem (TSP) has been
extensively studied in the literature and various solvers are
available. However, none of the state-of-the-art solvers for TSP
outperforms the others in all problem instances within a given
time limit. Therefore, the prediction of the best performing
algorithm can save computational resources and optimise the
results. In this paper, the TSP is studied in context of automated
algorithm selection. Our aim is to identify the relevant features of
problem instances and tackle this scenario as a machine learning
task. We extend the set of existing features in the literature and
propose several novel features to better characterise the problem.
The contribution of the new features is statistically analysed and
experiments show that adding our new features improves the
prediction accuracy. We identified that our features based on
kNN graph transformation are especially helpful.

To create the training datasets, two state-of-the-art
(meta-)heuristic algorithms are systematically evaluated on more
than 2000 problems. Overall, we show that our prediction can
be substantially more accurate than simple preference of an
algorithm with the best performance for a majority of problem
instances.

Index Terms—TSP; algorithm selection; features; machine
learning

I. INTRODUCTION

TSP is a famous NP-hard problem with many important
applications such as logistics, genome sequencing and tele-
scope aiming [1]. Hence, this problem has been extensively
investigated and researchers have been proposing different
state-of-the-art solution techniques. Such methods include the
prominent exact solver Concorde [1], the heuristic solver LKH
[2] based on Lin-Kernighan [3] heuristic, the meta-heuristic
solver MAOS [4] etc. Currently, there is no best algorithm for
the TSP which dominates the other algorithms in all classes
of instances, if the runtime is limited.

An instance of the Travelling Salesman Problem is given as
a graph G = (V,E) with edge costs c : E 7→ R. The problem
is to find a cyclic tour T which visits each vertex v ∈ V
exactly once and which minimizes the total cost

∑
c(e)e∈T .

For so-called Euclidean TSP instances, the coordinates of
vertices V are specified in a plane, edges connect each pair of
vertices and edge cost c is equal to Euclidean distance between
corresponding vertices.

In this paper we deal with the following question: given an
instance of TSP and a runtime limit, which method should be
used to solve that instance? In other words, we want to predict

which of the given algorithms will find the best solution. To
this aim, we carefully analyse the characteristics of TSP and
exploit machine learning techniques to make the prediction
based on extracted features of a problem instance.

The main contributions of this paper can be summarized as
follows:
• We analyse the existing features (provided by the liter-

ature) for TSP and propose several categories of new
features to better characterise this problem. We use a
kNN graph transformation which allows us to intro-
duce a whole new category of features (note, that kNN
graph transformation and k-NN algorithm/classifier are
two different things). We propose also new local search
probing and geometric features. Some of these features
are derived directly from the graph representation of the
problem instance and could be generalised for other prob-
lems beside TSP. Experiments in this paper show that our
new features based on kNN transformation and on local
search probing are especially helpful. Features related to
tour segments are also beneficial (see Section III).

• We create new training data sets for TSP. For this
purpose, we evaluate the performance of two state-of-
the-art (meta)heuristic algorithms (LKH and MAOS) on
2163 instances with average size of more than 2700
vertices. The run time data were compiled together with
the computed features into the new training datasets.

• We investigate various machine learning algorithms for
prediction of the performance of algorithms on new
instances. To this aim, we assessed the classifiers with
different parameter settings and present a comparison
of three feature sets and of five classifiers based on
statistical tests. Our results show that prediction of the
best performing algorithm is significantly more accurate
than simple selection of an algorithm which performs best
in majority of cases.

A. Related work

The research most closely related to ours is the one of Hutter
el al. [5]. They described a method for prediction of runtime
of Concorde and LKH on problem instances with fewer
than 1000 vertices on average. In our scenario with a time
constraint, Concorde can not be used as it does not yield an
interim solution for larger problems in a short time. Moreover,

Fig. 1. Algorithm selection framework

we predict the best performing algorithm at given time point
instead of the prediction of runtime. Kanda et al. [6] used
a set of simple meta-heuristic algorithms and evaluated them
on instances with fewer than 100 vertices. Their instances are
defined on general graphs (both symmetric and asymmetric),
whereas we focus on instances in Euclidean plane. Smith-
Miles and Hemert [7] consider two variants of Lin-Kernighan
heuristic where one of the heuristics addresses specifically the
instances with clustered nodes. They studied which instances
are hard and which are easy for the two algorithms. Therefore,
they artificially created instances with 100 nodes which were
intentionally easy or hard and investigated their features.
Mersmann et al. [8] also used instances with up to 100
vertices but only a particular search operator was studied.
Algorithm selection has been used also for different other
combinatorial problems like for example graph coloring [9],
[10] etc. For more information we refer the reader to the
following surveys [11], [12].

Compared to the literature, our problem scenario includes
a prediction of a relative performance of algorithms at any
time point. We use two state-of-the-art solvers which yield
interim solutions (i.e. anytime algorithms) and consider larger
instances (with more than 2700 vertices in average) than
in aforementioned works. Moreover, we invent new features
which help us to better characterise the problem instances in
our scenario.

This paper is organised as follows. In Section 2, the back-
ground information about algorithm selection is presented.
Section 3 focuses on features used in algorithm selection for
TSP; the new features are discussed in detail. Some details
about our benchmarking problems, experiment objectives and
processing methods are covered in Section 4. Experiments and
the respective evaluation are given in Section 5. Finally, our
conclusions are presented in Section 6.

II. ALGORITHM SELECTION

An algorithm selection problem was already formulated by
Rice [13] in 1976. We will briefly describe the algorithm
selection framework and follow the description given by
Smith-Miles [11]. We are given a problem domain P , a set
of available algorithms A, a performance space Y and a
feature space F . Performance y(A,P) of algorithm A ∈ A
on problem P ∈ P is given by mapping y : P × A 7→ Y .
Features f(P) characterizing the problem P are given by
mapping f : P 7→ F . The task is to find the mapping
s : F 7→ A which for each problem P ∈ P selects an
algorithm AP = s(f(P)) such that the performance y(AP , P)
is maximised. This framework is presented in Figure 1.

It is necessary to find and define relevant features F that
characterise the problem well and to construct a good mapping

s in order to apply algorithm selection successfully [13]. Also
the set of training problem instances, according to which s
is constructed, must be representative for the problem. The
training instances must not bias the mapping s towards a
special class of inputs only.

A. Algorithms

Our set of algorithms A comprises two state-of-the-art
(meta-)heuristic algorithms: MAOS1 and LKH2. We didn’t
include the popular exact solver Concorde [1] as it is not an
anytime algorithm which is a necessary property for our task.

LKH is a solver based on Lin-Kernighan heurstic [3].
It is currently the most successful algorithm in the World
TSP challenge [14]. Its search is restricted to candidate sets
which, in simple words, focus on the closer vertices instead
of the distant ones. This motivates us to apply the kNN
transformation (see Section III-3) and examine the resulting
graph.

MAOS is a multi-agent based solver which does not contain
any explicit local search heuristic. Instead, it uses limited
declarative and procedural knowledge [4]. Its performance was
found to be competitive with LKH during our preliminary
tests. We seek to exploit the differences between these two
solvers.

III. FEATURES FOR TSP
To apply algorithm selection, instances should be charac-

terised by features. It is important to have a comprehensive
set of features that can describe the problem well. In order to
automate the algorithm selection, we designed new features
which fall into these categories: local search probing features,
geometric features and nearest neighbourhood features.

Several features characterizing the TSP have been proposed
in the literature, they are described in [5], [7], [8]. We compile
the existing features (78) together with our new features (319)
in Table I. Our new features are in bold face and prepended
with *. We now discuss the new features:

1) New local search probing features:
In this section we describe the new features whose values

are based on application of Lin-Kernighan heuristic to a
problem instance. Both the inner processing of the heuristic
and its results are reflected. The heuristic is evaluated in 10
runs and each run produces series of different values. Features
are computed as statistics of such series of values.

Number of improving and best improving steps capture
the properties of the search neighbourhood of Lin-Kernighan
heuristics. A step is considered improving if it decreases the
total tour cost, it is considered the best improving if the tour
cost is not decreased more by any other improving step (i.e.
there is no better step). Information about improving and best
improving steps directly relate to a situation when the search
algorithm has to decide which direction it should proceed in. If
there are few improving steps, the search is probably attracted
to some local minimum. No improving steps correspond to
position in local minimum.

1http://www.adaptivebox.net/main/maos-tsp-algorithm/
2http://www.akira.ruc.dk/∼keld/research/LKH/

TABLE I
FEATURES FOR TSP. OUR NEW FEATURES RESPECTIVELY FEATURE GROUPS ARE IN BOLD FACE AND LABELLED WITH *

Basic
Number of nodes
Cost Matrix
Cost statistics - mean, std. deviation, skew
Minimum spanning tree
Cost statistics - sum, mean, std. deviation, skew
Node degree statistics - mean, std. deviation, skew
Node depth - mean, max, median, std. deviation
Cluster distance features
Cluster distance

• based on min. spanning tree - mean, std. devi-
ation, skew

• based on GDBSCAN - #clusters, #outliers,
variation coefficient of cluster sizes

Local search probing
Tour costs from construction heuristics - mean, std.
deviation, skew
Local minimum of tour length - mean, std. deviation,
skew
Improvement per step - mean, std. deviation, skew
Steps to local minimum - mean, std. deviation, skew
Distance between local minima - mean, std. devia-
tion, skew
Probability of edges in local minima - mean, std.
deviation, skew
*Number of improving steps - mean, std. deviation,
skew
*Number of best improving steps - mean, std.
deviation, skew
*Edge lengths in quartiles - mean, std. deviation,
skew
*Tour segments

• segment length - mean, std. deviation, skew
• segment edge count - mean, std. deviation,

skew
• edge lengths in segment - mean, std. deviation,

skew
*Tour intersections in plane - mean, std. deviation,
skew
Branch and cut
Improvement per cut - mean, std. deviation, skew
Ratio of upper bound and lower bound
Solution after probing - statistics on non-integer
values

Ruggedness
Autocorrelation coefficient
Timing features
Time for computation of other groups of features
Node distribution features
Cost matrix standard deviation - after normalization
to square [0, 400]2

Fraction of distinct distances
Centroid coordinates
Radius - mean distance from node to centroid
Geometric features
Area - area of rectangle containing nodes
Hull area - area of convex hull (after normalization
to square [0, 1]2)
Fraction of nodes on the hull
Angle of edges connection 2 nearest neighbours -
mean, std. deviation, skew, min, max, median
*Cosinus of the angle above - mean, std. deviation,
skew, min, max, median
*Distance of nodes to hull contour - mead, std.
deviation, min, max, median
*Edge lengths of the convex hull - mean, std.
deviation, min, max, median
Nearest neighbourhood features
Nearest neighbour distance - std. deviation, variance
*Input degree in directed kNN graph - min, max,
q1, median, q3, std. deviation, skew
*Strongly connected components in directed kNN
graph

• #components, #components / n
• size of components - min, max, median, mean,

std. deviation, skew
• normalised size of components - min, max,

median, mean, std. deviation, skew
*Weakly connected components in kNN graph

• #components, #components / n
• size of components - min, max, median, mean,

std. deviation, skew
• normalised size of components - min, max,

median, mean, std. deviation, skew
*Ratio of number of strongly and weakly connected
components

Edge length in quartiles are derived from the analyses of
generated tours. The histogram of edge lengths is analysed. We
normalise the lengths of edges of each tour separately. Then
the edges are sorted by their lengths and split to quartiles.
Quartiles of edges are joined for all tours and statistics on
the normalised edge lengths within quartiles are calculated.
The intuition behind these features is that a bias in histogram
to certain values relates to complexity of the search. If most
values are at the beginning of the histogram (i.e. 0 after edge
length normalization), the tour consists mostly of short edges
and only few long links occur. Long links can, for example,
connect some clusters.

Tour segments’ features are obtained by first cutting away
the long edges from the tour. When a tour is found by the
heuristic, its edge lengths are normalised. More precisely,
the edges that are 1.5 times longer than shortest edge in
4th quartile are removed. But at least top 5% of the longest

Fig. 2. Gray dashed line represent the removed long edges, black lines are
the remaining edges which constitute the tour segments.

edges are always removed. The remaining tour segments (see
Figure 2) are then analysed. The computed features are the
statistics of the length of segments, statistics of the number
of edges in each segment and statistics of the length of edges

Fig. 3. A tour has 1 intersection which can be easily removed by an edge
swap.

within segments. This information reflects how the short edges
are grouped together within the tour. If segments are mostly
short, it means that long edges are evenly present in the tour.
Motivation for the features concerning the segments comes
from the idea that segments might represent a part of the
tour inside clusters of nodes while long edges interlink such
clusters.

Tour intersections in plane reflect the placement of the
tour in Euclidean plane. The number of line intersections of
one tour is normalised and recorded for each heuristically
generated tour. Statistics of these numbers are extracted as
features. TSP tours in Euclidean plane tend to use edges which
do not intersect any other edge in the tour when drawn in
plane. One can quickly think of primitive cases where simple
edge swap removes the intersection and probably also shortens
the total tour, see Figure 3. Therefore, we expect that the
number of intersections expresses how successful the heuristic
was during its search. Note that these features are on the verge
of local probing and geometric features.

2) New geometric features:
The novel features from this category are based on convex

hull of the graph nodes in the Euclidean plane . Note, that
convex hull of n points in plane can be computed in O(n ·
log(n)) [15].

Edge lengths of the convex hull are the statistics reflecting
the shape of the convex hull. Relatively short edges of the hull
may indicate that optimal tour will contain them, on the other
hand, long edges probably just reflect that interesting parts of
the instance are more inside the hull.

Distance of the nodes to hull contour is calculated for all
inner nodes (which are not on the hull) and corresponding
statistics are extracted as features. For example, consider an
instance, where all nodes are placed on circle. Then the
distance to convex hull contour is zero for all nodes. However,
if there are many points scattered inside this circle, the average
distance grows. At the same time, the optimal solution for the
instance is no longer obvious. Similar situation is in Figure 4.
We expect these features to correspond with the complexity
of the search.

3) New nearest neighbourhood features:
This category of features requires a transformation of an

original instance’s graph. The transformation will allow us
to quantify the local relations between nodes by focusing on
the k nearest neighbours of each point. We can, for example,
reflect on groupings of points in a sense which is different
from the standard clustering approach. Therefore, we expect

Fig. 4. Two instances are shown. Average distance of points to hull
contour is bigger for the instance on the right side.

Fig. 5. Above is a kNN undirected graph of some graph G. Each node
is connected with its three nearest neighbours, i.e. k = 3. The result of
the transformation has 2 connected components.

our novel features to capture new important information about
the problem instance. To best of our knowledge, only features
stemming from simple statistics of nearest neighbour distances
are present in the literature. For further description of the novel
features, we have to define two transformations of an original
instance’s graph.

Definition 1: Let a graph G = (V,E) and a cost function
C : V × V 7→ R be given. Let N(v, i), v ∈ V, 1 ≤ i < |V |
be an i-th nearest neighbour of vertex v, i.e. C(v,N(v, 1)) ≤
C(v,N(v, 2)) ≤ . . . ≤ C(v,N(v, |V | − 1)).

Let, for some k ∈ N, Ek = {(v,N(v, i))|v ∈ V, 1 ≤ i ≤
k}. Then we call Gk = (V,Ek) a kNN directed graph of G.

Let for some k ∈ N, E′k = {{v,N(v, i)}|v ∈ V, 1 ≤ i ≤
k}. We call G′k = (V,E′k) a kNN (undirected) graph of G.

Informally, we defined a directed and undirected version of
graph G, where only edges that connect k nearest neighbours
of each node are preserved. Figure 5 shows an example of kNN
undirected graph, where k = 3. Reinelt [16] mentions such
graphs with regard to heuristics for TSPs; however, we aim
to extract new features and use the transformation as a mid-
step. Moreover, such a transformation can be done in O(n ·
log(n)+k·n) [17] and consequently the calculation of features
is relatively fast.

Number of strongly (resp. weakly) connected components
is information which can be directly observed from kNN
(un)directed graph of TSP instance. There are two arguments
why such information is relevant.

Firstly, we consider this as a different approach to a charac-
terisation of presence of clusters in the problem instance. Stan-
dard clustering approaches usually try to dissect the nodes into
clusters, while calculating the cluster centroids and adjusting
the number of clusters. The number of clusters and centroid
positions can be seen as rather global parameters affecting
which cluster a node pertains to. On the other hand, number
of nearest neighbours is a more local property and the splitting
to components is a natural result. Number of components is
not determined a priori or by optimization of any metric but
merely stems from the neighbourhood relations of the nodes.

Secondly, the transformations are related to internal char-
acteristics of the search algorithm, particularly of LKH. Lin-
Kernighan heuristics is performing k-opt moves but it is rather

Fig. 6. Performance of algorithms on one problem instance

inefficient to check all such possible moves. Hence the search
neighbourhood is usually focused on nearest neighbours of
some current node. The kNN (un)directed graph thus relates
to what the search algorithm considers in its processing.

Sizes of components and ratio of strongly and weakly con-
nected components are statistics which we extract as features.
The values are present also in a normalised version, i.e. divided
by the number of nodes in the graph.

Input degree of nodes is another set of statistical features
obtained from the kNN directed graph. Note that average input
degree is omitted since it is always k.

All the aforementioned features were com-
puted for several values of k, namely k ∈
{3, 5, 7, N1/3, 2·N1/3, 1/2·N1/2, N1/2}, where N = |V |.

IV. DATA PREPARATION AND PROCESSING
This section will discuss our benchmarking problem in-

stances, how we compile the training datasets and which
machine-learning techniques we investigate.

We focus on Euclidean TSP instances in our study. We
took subset of 163 instances applicable to our study from
TSPLIB [18] and VLSI and National TSPs problem libraries
[19], [20], which are based on real world problems. Another
2000 instances were generated using port(c)gen tools [21].
A half of them have uniform random placement of nodes,
the others use clustered random placement. We consider this
set of instances to be representative, as it includes real world
problems and the hardness of instances differs. Moreover, the
algorithms perform differently on the chosen instances.

We continuously recorded the interim solutions yielded by
MAOS and LKH algorithms. Both algorithms were executed
10 times on each problem. We define the performance Y p

a (t)
of algorithm a ∈ A on problem p ∈ P at time t as a median
of solution qualities in the 10 runs. An example of such Y for
both MAOS and LKH can be seen in figure 6.

Three training datasets are compiled – for time point 60s,
for time point 1800s and for a time point when one of the
algorithms finishes. The first two represent which algorithm
performs best in 60s resp. 1800s. The last dataset assumes

that we are willing to wait until one of the algorithms finishes.
Note, that if an algorithm finished it does not necessarily mean
it found the best solution.

Training datasets consist of rows where each row represents
one problem instance. The row contains a set of features F
which was described above and the class label (MAOS or
LKH), which indicates the best performing algorithm on a
given instance. Moreover, a weight w is assigned to each
problem instance: Let CLKH and CMAOS be an interim tour
cost found by the two algorithms, then we define the weight
w = max(CLKH ,CMAOS)

min(CLKH ,CMAOS) − 1.
The datasets were normalised and discretised. Therefore,

each dataset participated in the experiments in 3 forms:
original, normalised and discretised. According to several
preliminary experiments, we concluded that discretisation us-
ing Kononenko’s MDL criterion [22] performs best for our
purposes. Our instances, collected runtime data and datasets
can be found online at: http://www.dbai.tuwien.ac.at/user/
pihera/ tsp

The task where a training dataset is given and the corre-
sponding class label should be determined for the new problem
instance using its features is a supervised classification task. In
our study, we investigate different machine-learning techniques
and compare their performance. The following techniques
are applied: Bayesian networks, decision tree (J48), k-nearest
neighbours (IBk), random forests (RF) and support vector
machine (SVM) using their implementations in Weka 3.7
[23], which contains a collection of state-of-the-art machine
learning techniques.

V. EXPERIMENTAL RESULTS
The run time data were collected for all the benchmark

instances on machines with 4 processors Intel i3-2120 at
3.3GHz and 4GiB RAM with SUSE Linux. Four problem
instances were solved in parallel on each machine using
GNU Parallel [24] tool. MAOS used Java virtual machine
with 800MiB heap limit. Machine dependent features were
computed on a station with 8 processors Intel Xeon E5345 at
2.33GHz and 48GiB RAM.

We experimented with two types of datasets. The first type
has three class labels LKH, MAOS and ANY. Label ANY
represents problem instances with weight w < 10−4, i.e. the
two algorithms perform similarly. The second type of datasets
is obtained from the first one by removing the instances with
label ANY because we assume that selection of algorithm is
irrelevant in such cases. Therefore, we have these two types of
datasets: 3-class datasets with labels LKH, MAOS and ANY
and 2-class datasets with labels LKH and MAOS.

To study the contribution of our new features, we consider
three feature subsets and split the datasets accordingly. Let us
denote the set of the features taken from literature as O (old)
and the new features as N . Note that F = O ∪N , where F
denotes all features. Each dataset D is assessed in 3 versions:
DF , DO, DN where the index denotes the subset of features
in the dataset.

Overall, we have 18 datasets Dt,q
f ∈ D where t ∈

{60, 1800, firstfinish}, q ∈ {2 − class, 3 − class} and

Fig. 7. Performance summary of all classifiers

f ∈ {F , O,N}. Each such dataset is present in original,
normalised and discretised form (see Section IV), which
results in 54 datasets in total.

A. Classification
Each classification algorithm C ∈ C (see Section IV) was

evaluated on each of the datasets D ∈ D with multiple
different parameter settings. One of the classifiers’ parame-
ters determines which of the 3 forms (original, normalised,
discretised) of each dataset is used. Accuracy of a classifier C
for some parameter setting parC is calculated as an average
accuracy in 10 runs of 10-fold cross-validation. The best
reached accuracy using some parameter settings parmax

C is
taken as the resulting accuracy of a classifier C. The average
accuracies of each 10-fold cross-validation run with parmax

C

is recorded and used for Welch’s statistical tests. All tests use
the threshold p < 0.01.

We present the comparison of classifiers’ accuracy in Figure
7, where for each time point t ∈ {60, 1800, firstfinish} and
set of classes q ∈ {2− class, 3− class} a separate sub-figure
is given. We included the performance of simple classifier
which always predicts the majority class (ZeroR). We will now
analyse and compare how particular classifiers performed.

In case of 1800s time constraint (bottom row in Figure
7), the RF (random forest) performed best and the difference
between algorithms is confirmed to be statistically significant.
Only for 3-class dataset with new features only, the IBk (k-
nearest neighbours) classifier performed better. Similar sce-
nario repeats for the firstfinish dataset (the top row of
Figure 7). RF dominates again with only exception of IBk for
2-class dataset and new features only. The 60s time constraint
breaks the pattern, where J48 (decision tree) performs best in
3 cases, RF in two cases and IBk in one case. Interestingly,
the 3-class dataset with new features is the situation where
difference between J48 and RF is insignificant; otherwise the
best and the second best classifier always differ significantly.

There is a substantial difference in obtained accuracy when
2 or 3 classes are considered. Let us first focus on the 3-class
datasets (the right column of Figure 7). In all cases, the best
achieved prediction is better than simple choice of the majority
class (ZeroR). For 1800s, the best accuracy is around 69%;
∼64% for firstfinish and 64%-67% for 60s dataset. For 3-
class datasets, the level of hardness of prediction seems to be
relatively the same for all time points.

The 2-class datasets were predicted with much higher
accuracy. In case of 1800s time constraint, the best classifier
(RF) achieved ∼89.5% over ∼85.4% of ZeroR. For 60s, the
performance is ∼83% and for firstfinish ∼86% but in both
cases it is big improvement over ZeroR. Similarly as for 3-
class datasets, the 1800s time point is predicted with highest
accuracy; however, it seems that it is hard to improve a lot
over the ZeroR.

In certain cases, the average accuracy of classifier was
higher when only subset of all features was used. Therefore,
we performed another set of tests after applying feature
selection to each dataset D ∈ D. The bi-directional Linear-
ForwardSearch algorithm inside Weka with 10 back-tracking
steps and CfsSubsetEval as evaluator selected the features. We
report the average accuracy of classifiers on these datasets in
Figure 8.

Feature selection caused that all classifiers have now at least
once best performance. However, J48 and Bayesian network
mostly perform best. When all features are given, Bayesian
network dominates for firstfinish datasets for both 2 and
3 classes, for 60s and 1800s time point with 3 classes. J48
dominates for the 60s time point in most cases. We observe
that RF and IBk outperform the other classifiers before feature
selection; however, J48 and Bayesian network perform well for
datasets with fewer features.
B. Feature evaluation

Firstly, we analyse the datasets before feature selection. As
we see in Figure 7 for case of firstfinish datasets, there

Fig. 8. Performance summary of all classifiers applied to datasets after feature selection

is no statistically significant difference between the feature
sets (resp. between the best performing classifiers using these
feature sets). For 1800s time constraint and 3 classes, the IBk
trained on the new features performed significantly better than
the best performing classifiers (RF) on the all features and the
old features. The 60s time constraint breaks the pattern, as for
2 classes the old features perform best but all features perform
best for 3 classes.

Feature selection changed which classifiers perform best but
also the relative difference between the best performances on
given feature sets. For 1800s time constraint and 2 classes,
the old features are better than all features but not better
(statistically) than the new features, i.e. feature selection failed
to identify the important features in the set of all features.
However, for 1800s and 3 classes, both the all and new features
are better than the old ones. The very same result holds for
60s and 2 classes but there is no significant difference between
feature sets for 60s and 3 classes. The firstfinish dataset
with 3 classes has the old feature set as the best performing
one; however, for 2 classes it is the set of all features.

If we neglect the cases, where old features or new features
outperform all features together, the addition of new features
can statistically significantly improve the results. It is surpris-
ing that new features alone were competitive with the set of all
features and old features because new features did not contain
a lot of basic features. The number of vertices in the TSP
instance is the only basic feature in set of new features.

We have further inspected which our new features remained
in the set of all features after the feature selection process.
Between 25% to 50% of the selected features in all datasets
were related to kNN graph transformation. An example of their
role in decision tree can be seen in Figure 9. We derive (for
firstfinish, 2 classes and all features) that when there are
more weakly connected components after kNN transformation
and with bigger size, the LKH is the preferable algorithm.

nn5-wc-std

nnN^1/3-wc-n nn7-sc-M-n

hullpoints nn5-wc-min-n

nn3-wc-n

class: LKH
(18 vs 3)

class: MAOS
(11 vs 3)

class: LKH
(28 vs 9)

class: MAOS
(813 vs 91)

class: LKH
(682 vs 101)

class: MAOS
(34 vs 13)

class: LKH
(14 vs 5)

 Classified as:
 MAOS LKH

Tr
u

e
cl

as
s:

MAOS

LKH

747 123

111 619

CONFUSION MATRIX

Fig. 9. Simplified decision tree for time point firstfinish with all features
and 2 classes. Accuracy of prediction is over 85% compared to 54.37% with
ZeroR and confusion matrix does not indicate any bias. Features whose label
starts with ”nn” are based on kNN transformation. The values near the class
labels denote the number of correctly and incorrectly classified instances in
full dataset. Note, that feature values on the edges are left out for brevity.

Note, that the features used by the decision tree can be
computed in O(n4/3) time, where n is the number of vertices
in the problem instance.

These results confirm that kNN features characterise the
algorithm performance rather well. Edge lengths of the con-
vex hull and tour segments’ features were also present in
most datasets after feature selection. The number of tour
intersections was selected in datasets for firstfinish time
point. Distance to convex hull contour and number of (best)
improving steps appeared in some of the datasets as well.
Interesting observation is that the portfolio of selected features
changes with the considered time point. To sum up, the feature

selection indicates that the highest contribution comes from
the kNN features, lengths of convex hull edges and features
related to tour segments.

VI. CONCLUSION
We tackled the scenario where user requires the best possi-

ble solution of a given problem instance within a certain time
limit. Our approach is based on algorithm selection techniques
which characterise the problem instance by features and deter-
mines the best solver by machine-learning algorithms. We used
LKH [2] and MAOS [4], which, to best of our knowledge, are
the state-of-the-art heuristic algorithms for TSP and they have
not been considered together in algorithm selection context
before.

For purpose of problem characterisation, we introduced a set
of novel features and assessed their contribution with regard to
the existing features described in literature. We compiled a set
of more than 2000 benchmark problems, on which the feature
sets and machine-learning algorithms were evaluated. Our
experiments show that predicting which of the two TSP solvers
will perform best can be substantially more successful than
simple majority class prediction. We also show that addition
of new features can improve the prediction accuracy and we
confirmed that the difference is significant by statistical tests.

We identified the new kNN graph transformation features
and tour segments’ features (see Section III-1) to be especially
helpful for improvements of algorithm selection accuracy.
The kNN features were obtained by analysis of the LKH
algorithm and the results confirmed our assumptions. They
are the most important features among all the new features
we introduced. Some of our features are derived purely from
the graph of a problem instance. We believe that they could
improve the characterisation of other problems beside TSP and
be beneficial for other domains.

Our comparison of machine learning algorithms for this
task revealed that k-nearest neighbours and random forests are
convenient choice for datasets with a lot of features. However,
if the dataset is preprocessed by feature selection, the decision
trees and Bayesian networks outperform the other classifiers.
The feature selection was beneficial, with respect to accuracy,
mainly for datasets with almost 400 features. Moreover, the
smaller subset of features is needed, faster is the algorithm
selection process.

In future, we would like to study the factors affecting that
some feature is more important at certain time point than at
the other one. Moreover, we want to consider the time point
as a variable parameter instead of working with a fixed set of
values. As we have shown, the set of existing features can be
extended and improved and we aim to invent new features and
refine the existing ones as well.

VII. ACKNOWLEDGEMENTS
This work was supported by the Austrian Science Fund

(FWF): P24814-N23. 1st author is financially supported by
the Vienna PhD School of informatics 3.

3http://www.informatik.tuwien.ac.at/teaching/phdschool

REFERENCES

[1] Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling
Salesman Problem: A Computational Study (Princeton Series in Applied
Mathematics). Princeton University Press (January 2007)

[2] Helsgaun, K.: An effective implementation of the Lin-Kernighan
traveling salesman heuristic. Eur. Jour. of Operational Research 126(1)
(October 2000) 106–130

[3] Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the
traveling-salesman problem. Operations Research 21(2) (March 1973)
498–516

[4] Xie, X.F., Liu, J.: Multiagent optimization system for solving the
traveling salesman problem (TSP). IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics) 39(2) (April 2009) 489–502

[5] Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime
prediction: Methods & evaluation. Artificial Intelligence 206 (2014)
79–111

[6] Kanda, J., de Carvalho, A.C.P.L.F., Hruschka, E.R., Soares, C.: Selection
of algorithms to solve traveling salesman problems using meta-learning.
In: Int. J. Hybrid Intell. Syst. Volume 8. (2011) 117–128

[7] Smith-Miles, K., van Hemert, J.: Discovering the suitability of op-
timisation algorithms by learning from evolved instances. Annals of
Mathematics and Artificial Intelligence 61(2) (2011) 87–104

[8] Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J.,
Neumann, F.: A novel feature-based approach to characterize algorithm
performance for the traveling salesperson problem. Annals of Math. and
Artif. Intell. (March 2013)

[9] Smith-Miles, K., Wreford, B., Lopes, L., Insani, N.: Predicting meta-
heuristic performance on graph coloring problems using data mining.
In Talbi, E.G., ed.: Hybrid Metaheuristics. Volume 434 of Studies in
Computational Intelligence. Springer Berlin Heidelberg (2013) 417–432

[10] Musliu, N., Schwengerer, M.: Algorithm selection for the graph coloring
problem. In Nicosia, G., Pardalos, P., eds.: Learning and Intelligent
Optimization. Volume 7997 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2013) 389–403

[11] Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for
algorithm selection. ACM Computing Surveys 41(1) (Dec 2008) 1–25

[12] Kotthoff, L.: Algorithm selection for combinatorial search problems: A
survey. CoRR abs/1210.7959 (2012)

[13] Rice, J.R.: The algorithm selection problem. In: Advances in Computers.
Volume 15. Elsevier (1976) 65–118

[14] Cook, W.: World TSP. http://www.math.uwaterloo.ca/tsp/world/index.
html (September 2013) Acessed: 2014-04-14.

[15] Toussaint, G.T.: A historical note on convex hull finding algorithms.
Pattern Recognition Letters 3(1) (1985) 21 – 28

[16] Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP
Applications. Springer-Verlag, Berlin, Heidelberg (1994)

[17] Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional
point sets with applications to k-nearest-neighbors and n-body potential
fields. J. ACM 42(1) (January 1995) 67–90

[18] Reinelt, G.: TSPLIB. http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/ (January 2003) Acessed: 2014-01-21.

[19] Rohe, A.: VLSI data sets. http://www.math.uwaterloo.ca/tsp/vlsi/ (May
2013) Accessed: 2014-01-21.

[20] Cook, W.: National Traveling Salesman Problems. http://www.tsp.
gatech.edu/world/countries.html (April 2009) Acessed: 2014-04-14.

[21] McGeoch, L.: Instance generating code for DIMACS TSP challenge.
http://dimacs.rutgers.edu/Challenges/TSP/codes.zip Accessed: 2014-01-
13.

[22] Kononenko, I.: On biases in estimating multi-valued attributes. In:
IJCAI. Volume 95. (1995) 1034–1040

[23] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten,
I.H.: The WEKA data mining software: An update. SIGKDD Explor.
Newsl. 11(1) (November 2009) 10–18

[24] Tange, O.: GNU Parallel – The Command-Line Power Tool. The
USENIX Magazine 36 (2011) 42–47

