
Fundamenta Informaticae XX (2016) 1–24 1

DOI 10.3233/FI-2012-0000

IOS Press

Shift Design with Answer Set Programming ∗

Michael Abseher C

TU Wien, Austria

Martin Gebser
University of Potsdam, Germany

Nysret Musliu
TU Wien, Austria

Torsten Schaub†

University of Potsdam, Germany
INRIA Rennes, FranceStefan Woltran

TU Wien, Austria

Abstract. Answer Set Programming (ASP) is a powerful declarative programming paradigm that
has been successfully applied to many different domains. Recently, ASP has also proved success-
ful for hard optimization problems like course timetabling and travel allotment. In this paper, we
approach another important task, namely, the shift design problem, aiming at an alignment of a min-
imum number of shifts in order to meet required numbers of employees (which typically vary for
different time periods) in such a way that over- and understaffing is minimized. We provide an ASP
encoding of the shift design problem, which, to the best of our knowledge, has not been addressed by
ASP yet. Our experimental results demonstrate that ASP is capable of improving the best known so-
lutions to some benchmark problems. Other instances remain challenging and make the shift design
problem an interesting benchmark for ASP-based optimization methods.

1. Introduction

Answer Set Programming (ASP) [13] is a declarative formalism for solving hard computational prob-
lems. Thanks to the power of modern ASP technology [24], ASP was successfully used in various ap-
plication areas, including product configuration [38], decision support for space shuttle flight controllers
[33], team building and scheduling [36], and bio-informatics [26]. Recently, ASP also proved successful

∗This work extends a preliminary workshop paper [2] presented at ASPOCP’15. A short version [3] appeared at LPNMR’15.
CCorresponding author
†Affiliated with Simon Fraser University, Canada, and IIIS Griffith University, Australia.

2 M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming

for optimization problems that had not been amenable to complete methods before, for instance in the
domains of timetabling [8] and allotment [20].

In this paper, we investigate the application of ASP to another important domain, namely, work-
force scheduling [16]. Finding appropriate staff schedules is of great relevance because work schedules
influence health, social life, and motivation of employees at work. Furthermore, organizations in the
commercial and public sector must meet their workforce requirements and ensure the quality of their
services and operations. Such problems appear especially in situations where the required number of
employees fluctuates throughout time periods, while operations dealing with critical tasks are performed
around the clock. Examples include air traffic control, personnel working in emergency services, call
centers, etc. In fact, the general employee scheduling problem includes several subtasks. Usually, in the
first stage, the temporal requirements are determined based on tasks that need to be performed. Further,
the total number of employees is determined and the shifts are designed. In the last phase, the shifts
and/or days off are assigned to the employees. For shift design [32], employee requirements for a period
of time, constraints about the possible starts and lengths of shifts, and limits for the average number of
duties per week are considered. The aim is to generate solutions consisting of shifts (and the number
of employees per shift) that fulfill all hard constraints, while minimizing the number of distinct shifts
as well as over- and understaffing. This problem has been addressed by local search techniques, includ-
ing a min-cost max-flow approach [32] and a hybrid method combining network flow with local search
[17]. These techniques have been used to successfully solve randomly generated examples and problems
arising in real-world applications.

Although the aforementioned state-of-the-art approaches for the shift design problem are able to pro-
vide optimal solutions in many cases, obtaining optimal solutions for large problems is still a challenging
task. Indeed, for some instances the best solutions are still unknown. Therefore, the application of exact
techniques like ASP is an important research target. More generally, it is interesting to see how far an
elaboration-tolerant, general-purpose approach such as ASP can compete with dedicated methods when
tackling industrial problems. Our ASP solution is based on the first author’s master thesis [1] and relies
on sophisticated modeling and solving techniques, whose application provides best practice examples
for addressing similarly demanding use cases. On the one hand, we demonstrate how order encoding
techniques [14] can be used in ASP for modeling complex interval constraints. On the other hand, our
empirical evaluation contrasts traditional model-guided1 optimization techniques with orthogonal core-
guided techniques [30], revealing another case in which the latter have an edge over the former. While
our experiments show that the shift design problem provides challenging benchmarks for state-of-the-art
ASP technology, we are able to identify yet unknown global optima for some hard instances.

2. The Shift Design Problem

To begin with, let us introduce the shift design problem. Our problem formulation follows the one in [32],
where an input specifies the following:

• consecutive time slots [a0, a1), [a1, a2), . . . , [an−1, an), all of them with the duration slotlength .
We call this collection of time slots the planning horizon or, synonymously, the planning period
of the problem. Often, this collection of time slots is partitioned into d days, where each of the

1That is, branch-and-bound based strategies; the term ‘model-guided’ was coined in [5].

M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming 3

shift type min-start max -start min-length max -length

M 07:00 08:00 07:00 09:00

D 10:30 11:30 07:00 09:00

A 14:00 16:00 07:00 08:00

N 22:00 24:00 07:00 09:00

Table 1. Possible shift types

days consists of the same number daylength of time slots. Furthermore, each time slot [ai, ai+1)
is associated with a number wi of employees who should be present during the slot.

• shift types {t1, . . . , tm}with the associated parameters min-start and max -start , representing the
earliest and latest start, and min-length and max -length , representing the minimum and maximum
length of a shift. An example of such shift types is given in Table 1. For convenience, the discrete
parameter values of the respective shift types are represented by the corresponding day times as
this is the most likely input format one will receive from the managers of a company.

The aim is to generate a collection s1, . . . , sk of shifts. Each shift si is determined by its start and length ,
which must belong to some shift type. Additionally, each si is associated with parameters si.workersj
indicating the number of employees assigned to si on each day j ∈ {1, . . . , d} of the planning period.
Note that we consider cyclic planning periods, where the successor of the last time slot is equal to the
first time slot.

In analogy to [17], we investigate the optimization of the following criteria: sum of shortages of
workers at each time slot during the planning period, sum of excesses of workers at each time slot during
the planning period, and the number of shifts.2 Traditionally, the objective function to minimize is a
weighted sum of the three components (although this kind of aggregation is not mandatory with ASP).

Related work. Solving the shift design problem by local search has been thoroughly investigated in
[32], where a tabu search approach and several neighborhood relations were proposed. The algorithms
have been included in the scheduling system OPA (Operating Hours Assistant), which is used for solving
real-world shift design problems in several companies. The NP-hardness of the shift design problem was
shown in [17], where also an improved local search technique and a hybrid method combining a min-
cost max-flow approach with local search was introduced. The inclusion of breaks into shift design was
considered in [10, 11, 18, 42]. A detailed overview of previous work on shift design and break scheduling
is given in [19].

A related problem is shift scheduling. To solve this problem, mainly exact approaches based on In-
teger Programming have been applied. For instance, following the set-covering formulation due to [15],
several methods were proposed [7, 9, 35, 41]. Other approaches include large neighborhood search [34],
tabu search [40], etc. The original shift design problem differs in several aspects from the shift schedul-
ing problem. In our setting, shifts are constructed for the whole week and cyclicity is taken into account.
Furthermore, we consider the minimization of the number of shifts, and both over- and understaffing are
allowed.
2In [32], additionally, the average number of duties per week is considered.

4 M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming

Finally, there is also the area of workforce management, where the focus is on the allocation of
employees of different qualifications to tasks requiring particular skills. Similar to shift design and
scheduling problems, constraints concerning the workload have to be taken into account. In [36], a
concrete problem from this domain has been tackled via ASP, and the resulting system is tailored to the
specific needs of the seaport of Gioia Tauro. From the conceptual point of view, the main difference
is that the problem encoded in [36] is a classical allocation problem with optimization towards work
balance, while the problem we tackle aims at an optimal alignment of shifts.

3. Answer Set Programming

This section gives a brief introduction to the stable model semantics of logic programs, serving as the
basis for encoding the shift design problem in ASP below. In particular, we consider logic programs with
choice rules [37] and weak constraints [28]. A rule r in such a program is an expression of the form

h ← a1, . . . , am,∼am+1, . . . ,∼an (1)

where a1, . . . , an are atoms of the form s(t1, . . . , tk), in which s is a predicate symbol and t1, . . . , tk
are terms, viz. constants, variables, or functions, and ∼ stands for default negation. The head h of r is
either an atom a, a choice {a}, or the special symbol ⊥. If h is an atom and n = 0, we call r a fact, a
choice rule if h is {a}, and an integrity constraint if h is ⊥; we skip← or ⊥, respectively, when writing
rules (1) with n = 0 and integrity constraints below. A weak constraint c is an expression of the form

w@p, t1, . . . , tk f a1, . . . , am,∼am+1, . . . ,∼an (2)

where a1, . . . , an are atoms and t1, . . . , tk are terms. Moreover, the distinguished terms w and p provide
the weight and priority of c. A logic program P is a set of rules and weak constraints. In the first-order
case, terms occurring in P may include arithmetic expressions, and atoms may be based on relational
operators like “<”. On the other hand, a term, atom, rule, weak constraint, or program is ground if it does
not include variables, arithmetic expressions, or relational operators. A first-order program P stands for
the set grd(P) of all instances of rules and weak constraints constructible by substituting ground terms
for variables and evaluating arithmetic expressions as well as relational operators in the standard way.
For details on ground instantiation, we refer the interested reader to [21, 25].

For example, the first-order program P1 consisting of

p(1)

{q(2)}
r(X) ← p(X), X < 2,∼r(X+1)

r(X) ← q(X), 1 < X,∼r(X−1)

← r(X), q(Y), X < Y

X@1 f r(X)

1@X f X ∈ [1, 2],∼q(X)

yields a ground instantiation grd(P1) as follows:

M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming 5

p(1)

{q(2)}
r(1) ← p(1),∼r(2)

r(2) ← q(2),∼r(1)

← r(1), q(2)

1@1 f r(1)

2@1 f r(2)

1@1 f ∼q(1)

1@2 f ∼q(2)

Note that variables, denoted by uppercase letters in P1, are substituted by constants 1 and 2 in grd(P1)
such that relational operators, if any, in rules and weak constraints hold. Then, atoms based on relational
operators are dropped and arithmetic expressions mapped to the result of their evaluation.

The semantics of a logic program P is given by its stable models, which are particular sets of (true)
ground atoms as defined in the following. The reduct PX relative to a set X of ground atoms is the set of
all rules (1) and weak constraints (2) in grd(P) such that {a1, . . . , am} ⊆ X , {am+1, . . . , an}∩X = ∅,
and a ∈ X if h = {a} is a choice for a rule (1). Then, X is a stable model of P if it is⊆-minimal among
the sets of ground atoms such that, for all rules (1) in PX , {a1, . . . , am} ⊆ X implies h ∈ X or a ∈ X
if h = {a}. Note that PX cannot include integrity constraints relative to a stable model X , as the head⊥
is not an atom and thus h /∈ X . Moreover, the ⊆-minimality condition expresses that each atom a ∈ X
must be derivable from PX , and thus a must occur in the head of at least one rule in PX .

The stable models of P1 above are formed as follows. First, the fact p(1) belongs to the reduct
relative to any set of ground atoms, so that each stable model must include p(1). Since {q(2)} is a
choice, the atom q(2) may be omitted, in which case rules depending positively on q(2) are not contained
in the reduct. Then, r(2) is underivable, so that p(1) and ∼r(2) yield r(1), leading to the stable model
X1 = {p(1), r(1)} of P1. On the other hand, if q(2) is made true in view of the choice {q(2)}, the
integrity constraint in grd(P1) asserts that r(1) must be false, which in turn leads to r(2) and the second
stable model X2 = {p(1), q(2), r(2)} of P1. Note that weak constraints do not affect these stable models.

Weak constraints allow for selecting optimal stable models of a logic program P . For a set X
of ground atoms, let Σ(PX) be the set of all tuples w@p, t1, . . . , tk from weak constraints (2) in PX

such that w and p are integers. Then, X is dominated by another set Y of ground atoms if there is an
integer i such that

∑
(w@i,t1,...,tk)∈Σ(PY) w <

∑
(w@i,t1,...,tk)∈Σ(PX) w and

∑
(w@j,t1,...,tk)∈Σ(PY) w =∑

(w@j,t1,...,tk)∈Σ(PX) w for all integers j > i. In turn, a stable model X of P is optimal if it is not
dominated by any other stable model Y of P . Given this, the idea of ASP is to encode a computational
problem by a first-order program such that its (optimal) stable models provide (preferred) solutions to
arbitrary instances of the problem.

Reconsidering P1, the weak constraints in PX1
1 give Σ(PX1

1) = {1@1, 1@2} for X1 = {p(1), r(1)},
while PX2

1 yields Σ(PX2
1) = {2@1, 1@1} for X2 = {p(1), q(2), r(2)}. Since

∑
(w@2)∈Σ(P

X2
1)

w = 0 <

1 =
∑

(w@2)∈Σ(P
X1
1)

w for tuples of priority 2, X1 is dominated by the optimal stable model X2 of P1,

regardless of
∑

(w@1)∈Σ(P
X1
1)

w = 1 < 3 =
∑

(w@1)∈Σ(P
X2
1)

w for tuples of the smaller priority 1.

6 M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming

4. Shift Design in ASP

To begin with, Section 4.1 lays some formal foundations for our ASP approach to shift design. This
provides the basis for the fact format of problem instances specified in Section 4.2, as well as the corre-
spondence between problem schedules and stable models of the ASP encoding developed in Section 4.3.

4.1. Formal Preliminaries

As mentioned in Section 2, an instance of the shift design problem is characterized by

• a number daylength of time slots (of duration slotlength) per day along with a number d of days,
determining the total number n = d× daylength of slots,

• desired numbers wi of employees for the time slots indexed by i ∈ {0, . . . , n− 1},

• a collection {t1, . . . , tm} of shift types, each associated with parameters min-start , max -start ,
min-length , and max -length , where 0 ≤ t.min-start ≤ t.max -start < daylength and 0 <
t.min-length ≤ t.max -length ≤ n for t ∈ {t1, . . . , tm}. (The conditions express that the start
times of shift types must correspond to times in a day and that lengths must not exceed the planning
horizon, given that the planning period is cyclic and a shift cannot include any slot twice.)

The shift types {t1, . . . , tm} induce a set

S =

{
(s.start , s.length)

∣∣∣∣∣ t ∈ {t1, . . . , tm}, s.start ∈ {t.min-start , . . . , t.max -start},
s.length ∈ {t.min-length, . . . , t.max -length}

}

of admissible shifts s ∈ S, each characterized by its start slot within a day and its length. For example,
the instance shown on the left in Figure 1 can be specified in terms of a slotlength of 3 hours, a daylength
of 8 slots, and d = 1 for a planning horizon of one day. This yields the time slots indexed 0, . . . , 7, whose
associated numbers of employees are displayed in the grid at the bottom left, e.g., w0 = 1 and w7 = 3.
Moreover, the admissible shifts, whose potential assignments (for day 1) are indicated above the grid,
are induced, e.g., by shift types as follows:

shift type min-start max -start min-length max -length

t1 06:00 06:00 06:00 12:00

t2 12:00 21:00 06:00 12:00

These types represent the set S = {(2, l), (4, l), (5, l), (6, l), (7, l) | l ∈ {2, 3, 4}} of shifts, whose
start slots 2 and 4, . . . , 7 stand for beginnings at day time 06:00, 12:00, 15:00, 18:00, or 21:00, respec-
tively, while l ∈ {2, 3, 4} expresses a duration of 6, 9, or 12 hours. Note that some s ∈ S, e.g., those
with s.start = 7, wrap into the beginning of the planning period, reflecting the cyclic interpretation of
schedules. However, if another day were added, i.e., for d = 2, the extended horizon would include eight
additional slots, and shifts assigned on the second day (eight slots to the right) would wrap over.

A schedule for the given instance, utilizing the shifts s1 = (2, 4), s2 = (4, 4), and s3 = (7, 4)
from S, is shown on the right in Figure 1. Note that several workers can be assigned to each shift, and
the number of assigned workers can also vary from day to day. In view of the planning horizon of one

M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming 7

0 1 2 3 4 5 6 7

4 3

2 1

4 3

2 1

4 3 2 1

4 3

4 3

2

1

2 1

3 2

1

4
0 1 2 3 4 5 6 7

Figure 1. Work demands over a day with admissible shifts indicated above (left) and the unique optimal schedule
with shifts of length 4 starting from slots 2, 4, and 7, assigned to three, two, or one employee, respectively (right)

day in our example, the displayed schedule is characterized by s1.workers1 = 3, s2.workers1 = 2,
s3.workers1 = 1, and s.workers1 = 0 for all s ∈ S \ {s1, s2, s3}. The resulting coverage of slots
by employees is indicated in the grid at the bottom right, where the numbers labeling blocks provide
the residual lengths of assigned shifts at each slot. In fact, for each slot i ∈ {0, . . . , n − 1}, the grid
visualizes a multiset

Li =

((k + s.length)− (i + c)
)s.workersj

∣∣∣∣∣∣∣
s ∈ S, j ∈ {1, . . . , d}, c ∈ {0, n},
k = s.start + (j − 1)× daylength,

k ≤ i + c < k + s.length


where

(
(k + s.length) − (i + c)

)s.workersj stands for s.workersj repetitions of a residual length k +
s.length − (i+ c), usually obtained by subtracting the index i from the end of s marked by k + s.length
for a day j. Moreover, adding c = n to i captures overwrapping shifts including slots at the beginning
of the planning period. E.g., considering s3 = (7, 4) and s3.workers1 = 1, we have k = s3.start = 7
and k + s.length = 11, and in addition to a residual length 4 for c = 0 at slot 7, using c = 1 captures
residual lengths of 3, 2, or 1, respectively, at slots 0, 1, and 2. Also note that s1.workers1 = 3 for
s1 = (2, 4) maps to three occurrences of 4 in L2 = [4, 4, 4, 1], where the assignment of three workers to
s1 is reflected by L2 \ [l − 1 | l ∈ L1] = [4, 4, 4, 1] \ [1] = [4, 4, 4]. Unlike that, for L3 = [3, 3, 3], the
difference L3 \ [l − 1 | l ∈ L2] = [3, 3, 3] \ [3, 3, 3, 0] = [] yields that no shift starts from slot 3. That is,
comparing the multisets associated with neighboring slots provides a way to identify start slots, lengths,
and assigned workers of shifts, and our ASP encoding in Section 4.3 makes use of such an alternative
representation.

For a given schedule, the resulting number of employees at a slot i ∈ {0, . . . , n − 1} is simply the
cardinality |Li| of the multiset of residual lengths associated with i. Given this, deviationi = |Li| − wi

indicates over- or understaffing relative to the desired number wi of employees in terms of positive or
negative outcomes, respectively. It can be desirable to restrict either or both kinds of deviation via limits

8 M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming

excess and shortage (using∞ as value for expressing no limitation), and we say that a schedule is legal,
if deviationi ≤ excess and −deviationi ≤ shortage for all i ∈ {0, . . . , n− 1}, or illegal otherwise.

In practice, optimization criteria are important for distinguishing preferred schedules among the
candidates that are legal. To this end, we map any schedule to three quality measures as follows:

Deviation+ =
∑n−1

i=0 max{0, deviationi}
Deviation− =

∑n−1
i=0 max{0,−deviationi}

Selected = |{s ∈ S |
∑d

j=1s.workersj > 0}|

That is, Deviation+ accumulates overstaffing by summing up excesses of desired numbers of employees,
Deviation− analogously captures understaffing, and Selected provides the number of shifts to which
employees are assigned on at least one day. To customize the accumulation of these measures m, we
assume that each of them is associated with two non-negative integers specifying a priority p(m) and a
weight w(m). When priorities p1, . . . , pk such that p1 > · · · > pk are used (where k ≤ 3 in view of the
three measures at hand), the quality of a schedule is expressed by a vector 〈

∑
p(m)=pj

w(m) ×m〉kj=1.
Given this, a schedule is optimal, if its quality vector is lexicographically smallest among those of all legal
schedules, so that priorities are handled hierarchically from greater to smaller ones. For instance, taking
p(Deviation−) = 3, p(Deviation+) = 2, p(Selected) = 1, and w(Deviation−) = w(Deviation+) =
w(Selected) = 1, the schedule on the right in Figure 1 yields 〈0, 0, 3〉, i.e., there is neither under- nor
overstaffing, and employees are assigned to three shifts. One can further check that this schedule is
optimal (w.r.t. the priorities and weights), while any other schedule without over- and understaffing must
utilize at least four shifts.

Finally, note that we have not specified explicit restrictions on the number s.workersj of employees
that can at most be assigned to a shift s ∈ S for a day j ∈ {1, . . . , d}. (Recall that ∞ may be used
for excess to impose no hard limitation.) However, the maximum number of desired employees over
slots included in the shift provides a natural upper bound, as it is sufficient to avoid understaffing, while
unnecessary overstaffing and employee assignments do never improve solution quality. More formally,

max{wi | i ∈ {0, . . . , n−1}, c ∈ {0, n}, k = s.start + (j−1)×daylength, k ≤ i+ c < k+s.length}

gives a safe upper bound for s.workersj . E.g., this maximum is w7 = 3 for the shifts (7, 2) and (7, 3)
of our example in Figure 1, since the desired numbers of employees for slots at the beginning of the
planning period are w0 = w1 = 1. However, the shift (7, 4) with greater length also includes slot 2,
so that w2 = 4 provides the maximum of employees possibly assigned to this shift. While the planning
horizon in our example includes one day only, like desired numbers of employees, the upper bounds for
shifts can vary from day to day, yet it remains trivial to read them off from a given problem instance.

4.2. Fact Format

The fact format of instances of the shift design problem follows the above elaborations. E.g., the facts de-
scribing the instance shown in Figure 1 are given in Figure 2. To begin with, facts of the form time(S, T)
provide the day time T ∈ {0, . . . , daylength − 1} for each slot S ∈ {0, . . . , n− 1} of the planning pe-
riod. Our example instance includes one day, divided into eight slots, corresponding to the times 0, . . . , 7.
Facts next(S′, S) specify consecutive slots, where S is usually S′+ 1, except for the last slot whose suc-
cessor is 0. For each slot S, a fact work(S,N) gives the desired number N = wS of employees. Facts

M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming 9



time(0, 0), time(1, 1), . . . , time(7, 7),next(0, 1),next(1, 2), . . . ,next(7, 0),

work(0, 1),work(1, 1),work(2, 4),work(3, 3),work(4, 5),work(5, 5),

work(6, 2),work(7, 3), exceed(1), shorten(1), opt(shortage, 3, 1),

opt(excess, 2, 1), opt(select , 1, 1), range(2, 2, 1), . . . , range(2, 2, 4),

range(2, 3, 1), . . . , range(2, 3, 5), range(2, 4, 1), . . . , range(2, 4, 5),

range(4, 2, 1), . . . , range(4, 2, 5), range(4, 3, 1), . . . , range(4, 3, 5),

range(4, 4, 1), . . . , range(4, 4, 5), range(5, 2, 1), . . . , range(5, 2, 5),

range(5, 3, 1), . . . , range(5, 3, 5), range(5, 4, 1), . . . , range(5, 4, 5),

range(6, 2, 1), . . . , range(6, 2, 3), range(6, 3, 1), . . . , range(6, 3, 3),

range(6, 4, 1), . . . , range(6, 4, 3), range(7, 2, 1), . . . , range(7, 2, 3),

range(7, 3, 1), . . . , range(7, 3, 3), range(7, 4, 1), . . . , range(7, 4, 4)


Figure 2. ASP facts providing the instance of the shift design problem shown on the left in Figure 1

exceed(E) as well as shorten(F) provide the deviation limits E = excess and F = shortage (or are
omitted for value∞ imposing no limitation). For instance, given excess = shortage = 1 and w7 = 3,
they express the upper bound 4 and the lower bound 2 for employees present at slot 7. Facts of the form
range(S,L, 1), . . . , range(S,L,M) specify numbers of employees that can possibly be assigned to a
shift s = (T, L) for the day j = d S+1

daylength e, where T is the day time given by time(S, T) and M is the
maximum number of desired employees over slots included in the shift. That is, M provides the upper
bound for s.workersj described at the end of Section 4.1. E.g., for shifts of length 2 or 3 starting from
slot 7, the maximum is given by w7 = 3, while the shift of length 4 also includes slot 2 with w2 = 4.

Moreover, facts opt(shortage, P,W), opt(excess, P,W), and opt(select , P,W) specify optimiza-
tion criteria in terms of priority P and weight W . The values in Figure 2 represent p(Deviation−) = 3,
p(Deviation+) = 2, p(Selected) = 1, and w(Deviation−) = w(Deviation+) = w(Selected) = 1.
That is, the desired number of employees shall be present in the first place, then the amount of additional
employees ought to be minimal, and third the number of utilized shifts should be as small as feasible.

4.3. Problem Encoding

Our ASP encoding of the shift design problem is shown in Figure 3. For a slot S, the intuitive reading
of the predicate run(S,L, I) is that at least I employees are assigned to shifts including S and L − 1
or more successor slots, i.e., 0 < I ≤ |[l ∈ LS | L ≤ l]| holds for the multiset LS of residual
lengths at S. This is further refined by length(S,L, I, J), telling that 0 < J ≤ |[l ∈ LS | l = L]|
employees are assigned to shifts of exact residual length L, where I + J ≤ s.workersj + 1 (and J ≤
s.workersj) for the corresponding shift s = (T, L) as given by time(S, T) on day j = d S+1

daylength e. The
predicate shift(S,L, J) drops the latter condition that S is a potential start slot and simply expresses
that 0 < J ≤ |[l ∈ LS | l = L]|. Finally, start(S,L, J) indicates that the J-th employee in a shift
of exact residual length L is assigned to the corresponding shift with start slot S, i.e., |[l ∈ LS′ | l =
L+ 1]| < J holds for the predecessor slot given by next(S′, S). A schedule is thus characterized by the
number of (true) atoms of the form start(S,L, J), yielding the employees assigned to a shift of length L

10 M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming

{run(S,L, I)} ← range(S,L, I) (3)

run(S,L, I) ← run(S′, L+1, I),next(S′, S), 0 < L (4)

run(S,L, I) ← run(S,L+1, I), 0 < L (5)

run(S,L, I+J) ← run(S,L+1, I), shift(S,L, J) (6)

← run(S,L, I+1), 0 < I,∼run(S,L, I) (7)

← work(S,N), exceed(E), run(S, 1, N+E+1) (8)

← work(S,N), shorten(F), F < N,∼run(S, 1, N−F) (9)

length(S,L, I, 1) ← range(S,L, I), run(S,L, I),∼run(S,L+1, I) (10)

length(S,L, I, J) ← length(S,L, I+1, J−1), 0 < I,∼run(S,L+1, I) (11)

shift(S,L, J) ← length(S,L, I, J) (12)

shift(S,L, J) ← shift(S′, L+1, J),next(S′, S), 0 < L (13)

start(S,L, J) ← range(S,L, J),next(S′, S), shift(S,L, J),∼shift(S′, L+1, J) (14)

W@P, S, I, shortage f opt(shortage, P,W),work(S,N), I ∈ [1, N],∼run(S, 1, I) (15)

W@P, S, I, excess f opt(excess, P,W),work(S,N), run(S, 1, I), N < I (16)

W@P, T, L, select f opt(select , P,W), start(S,L, J), time(S, T) (17)

Figure 3. ASP encoding of the shift design problem

starting from slot S. For example, the schedule displayed in Figure 1 is described by a stable model
containing start(2, 4, 1), start(2, 4, 2), start(2, 4, 3), start(4, 4, 1), start(4, 4, 2), and start(7, 4, 1).
When additionally assigning one employee to the shift of length 2 starting from slot 6, this would be
indicated by start(6, 2, 3), as it adds to the two employees in a shift of residual length 2 starting from
slot 4. However, the displayed schedule is the unique optimal solution, given that it matches the desired
employees and uses a minimum number of shifts, viz. shifts of length 4 starting from slots 2, 4, and 7.

In more detail, the potential assignment of an I-th employee to a shift of length L starting from
slot S is reflected by the choice rule (3) in Figure 3. Rule (4) propagates such an assignment to the L− 1
successor slots of S included in the shift, where the residual length is successively decreased down to 1
in the last slot. For shifts with longer residual length L, rule (5) closes the interval between 1 and L,
thus overturning any choice rules for potential starts of shifts of shorter length. Moreover, this allows for
associating information about a J-th employee assigned to some shift of residual length L at slot S with
a position I + J (in the representation of LS) whenever I ≤ |[l ∈ LS | L < l]|, as expressed by rule (6).
The integrity constraint (7) asserts that the positions associated with assigned shifts must be ordered by
residual length, thus guaranteeing a unique representation of the multiset LS of residual lengths at S.
This condition eliminates guesses on positions I reflecting the assignment of employees to a shift, and
it also provides a shortcut making interconnections between positions of assigned shifts explicit, which
in preliminary tests turned out as effective to improve search performance. The additional integrity
constraints (8) and (9) are applicable whenever the deviation from a desired number of employees is
bounded above or below, respectively. Note that it is sufficient to inspect atoms of the form run(S, 1, I)
for appropriate positions I , given that residual lengths are propagated down to 1 via rule (5).

M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming 11

In order to derive the number of employees assigned to shifts of exact residual length L at slot S,
where s = (T, L) and j = d S+1

daylength e are the corresponding shift and day, rule (10) marks posi-
tions I ≤ s.workersj with 1 when the length L matches, i.e., |[l ∈ LS | L < l]| < I ≤ |[l ∈ LS |
L ≤ l]|. Rule (11) then counts on the number of employees (backwards) over positions |[l ∈ LS |
L < l]|+ 1, . . . , I − 1. By projecting the positions I out, rule (12) then yields numbers 1, . . . , J stand-
ing for employees possibly assigned to shift s on day j, where J = |[l ∈ LS | L ≤ l]| − |[l ∈
LS | L < l]| = |[l ∈ LS | l = L]|. In addition, employees assigned to longer shifts whose
residual length decreases to L at S are propagated via rule (13). Finally, rule (14) captures numbers
|[l ∈ LS′ | l = L+1]|+1, . . . , |[l ∈ LS | l = L]| expressing the difference between employees assigned
to shifts of residual length L starting from S and those continued from the predecessor slot S′ given by
next(S′, S). As a consequence, a stable model represents a schedule in terms of sequences of the form
start(S,L,M), . . . , start(S,L,N), telling that N +1−M employees are assigned to a shift of length L
starting from slot S.

It remains to assess the quality of a schedule, which is accomplished by means of the weak con-
straints (15), (16), and (17) for the three optimization criteria at hand. The penalty for deviating from a
desired number of employees is characterized in terms of the priority P and weight W given in facts,
a position I pointing to under- or overstaffing at a slot S, and a corresponding keyword shortage or
excess , respectively, for avoiding clashes with penalties due to the utilization of shifts. The latter include
the keyword select and map the start slot S of an assigned shift of length L to its day time T given by
time(S, T), so that the penalty W@P is incurred at most once for a shift s = (T, L), no matter how
many and on how many days employees are actually assigned. The hierarchical treatment of penalties by
priorities along with summation of weights within distinct term tuples t such that the condition c of some
weak constraint tf c holds then match the notion of optimality specified in Section 4.1. Since over- and
understaffing at a slot are mutually exclusive for a schedule, the below variants of the weak constraints
(15) and (16) can also be used for quality assessment, without modifying the optimal outcomes:

W@P, S,N+1−I, deviate f opt(shortage, P,W),work(S,N), I ∈ [1, N],∼run(S, 1, I) (15’)

W@P, S, I−N, deviate f opt(excess, P,W),work(S,N), run(S, 1, I), N < I (16’)

These variants treat positive and negative deviations from a desired number of employees symmetrically
by mapping them to similar term tuples, thus reducing the number of distinct tuples when the priority P
and weight W in facts of the form opt(shortage, P,W) and opt(excess, P,W) coincide. In the next
section, we empirically contrast both formulations and evaluate the impact on optimization performance.

A prevalent feature of our ASP encoding in Figure 3 is the use of closed intervals (starting from 1) to
represent quantitative values such as residual lengths or numbers of assigned employees. The basic idea
is similar to the so-called order encoding [14], which has been successfully applied to solve constraint
satisfaction problems by means of SAT [39]. In our ASP encoding, rules (6), (10), and (11) take particular
advantage of the order encoding approach by referring to one value, viz. L+1, for testing whether any
shift with longer residual length than L is assigned. Likewise, the integrity constraints (8) and (9) as
well as the weak constraints (15) and (16) (or (15’) and (16’)) focus on value 1, standing for any residual
length, to determine the number of present employees. That is, the order encoding approach enables a
compact formulation of existence tests and general conditions, which then propagate to all target values
above or below a certain threshold.

12 M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming

5. Experiments

In the following, we present the experimental evaluation of our approach. The main part of the experi-
ments is based on the solver clasp 3.1.3 [22]. Additional experiments, based on the solver WASP 2.0 [4],
are provided in Section 5.4. All benchmark results were obtained using a machine with two Intel(R)
Xeon(R) E5-2637 v3 @ 3.50GHz processors and 256GB RAM running Debian 8.2 (jessie). Each test
run, using gringo 4.4.0 [25] for grounding and clasp 3.1.3 (or WASP 2.0 in case of Section 5.4) for solv-
ing, was bound to a single core and 8GB (64GB for WASP 2.0) RAM with a time limit of 60 minutes.

Preliminary tests showed best results with clasp’s configuration handy. Additionally, we consider
the tweety configuration, as it is clasp’s default for ASP solving. More importantly, we compare the
two main optimization strategies of clasp: (i) Branch-and-bound based optimization in hierarchical order
of priorities (--opt-strategy=bb,1) and (ii) Unsatisfiable-core based optimization with disjoint-
core preprocessing and implications to represent weak constraints (--opt-strategy=usc,3). With
strategy (i), we utilize domain heuristics (--dom-mod=4,8), which in preliminary tests turned out to
greatly accelerate the process of convergence towards an optimum. The heuristic parameters express
that choices on atoms occurring in weak constraints shall always pick the truth value that falsifies the
condition of a respective weak constraint; note that this modification is void for strategy (ii) because such
truth values are pre-assigned anyway in the search for unsatisfiable cores. In case of balanced optimiza-
tion criteria with common priority and weight, we also provide results for the encoding variant using the
weak constraints (15’) and (16’) for a symmetric representation of shortage and excess deviations; this
alternative encoding, activated through gringo’s constant replacement, is indicated by obj=1 below.

The traditional branch-and-bound strategy constitutes a model-guided approach that aims at succes-
sively producing solutions of descending costs until an optimum is found (by establishing the unsatisfia-
bility of the problem with an even lower cost). In addition, the hierarchical variant of clasp [23] allows for
non-uniform descents during optimization. For instance in multi-criteria optimization, this enables the
consideration of criteria in the order of priority, rather than producing spurious (intermediate) solutions.

Core-guided approaches originated in the area of MaxSAT [12]. They rely on identifying and succes-
sively relaxing unsatisfiable subsets of weak constraints until a solution that is guaranteed to be optimal is
obtained (see [30]). The implementation in clasp utilizes the core-guided optimization algorithm oll [6].
Its (optional) combination with disjoint-core preprocessing [29], as a side effect, provides a quick ap-
proximation of an optimum, while no intermediate solutions are obtained otherwise.

5.1. Problem Instances

We use instances of the shift design problem from four different benchmark sets. Below we briefly
explain their basic structure and relevant characteristics. All benchmark sets are publicly available under
the address http://www.dbai.tuwien.ac.at/proj/Rota/benchmarks.html.3 The data
sets were first described in [31, 32] and also used in [17] for evaluating hybrid solving approaches.

DataSet1: The first data set contains 30 instances that can be solved without any deviation, since they
were generated by first constructing a feasible assignment of employees to selected shifts (also called the
seed solution), and then the resulting coverage values were taken as requirements in respective instances.

DataSet2: The second data set also consists of 30 instances, which are quite similar to those of the
first data set, yet constructed with the intention to study the impact of the number of shifts in the best

3The ASP facts and encoding are provided at: http://www.dbai.tuwien.ac.at/proj/Rota/DataSetASP.zip

M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming 13

known solution on computation time. To this end, seed solutions were picked in such a way that the
instances 1–10 should need at least 12 shifts to be solved exactly. The instances 11–20 are based on
seed solutions of 16 shifts, and the remaining ten instances were constructed with seed solutions using
20 shifts. Di Gaspero et al. [17] note that their heuristic solving method was also able to find better
solutions for some of the problem instances. In our experimental evaluation, we thus use their results for
reference.

DataSet3: Di Gaspero et al. [17] highlight that in cases where an exact solution exists, the behavior
of heuristics could be biased in comparison to the general case that there is no solution without deviation.
To evaluate the solving efficiency on instances that cannot be solved exactly, the third data set contains
30 instances that were constructed in the same way as the two previous data sets, but this time, invalid
shifts were added during the construction process. Such invalid shifts are not admitted in a solution, so
that it is unlikely that an instance of the third data set can be solved without deviation. The instances
1–10 were constructed with seed solutions of 12 shifts (valid and invalid ones), and also the remaining
instances are generated using the same scheme concerning the number of shifts as the second data set.

DataSet4: The fourth data set contains three problem instances, among which the first one is a com-
plex real-world example to complement randomly generated instances. The second instance is almost
identical to the fifth one in DataSet3, but the duration of time slots is halved. In this way, the second
instance allows for investigating the impact of increasing the scheduling granularity. A similar approach
is used for the third instance, but here the requirements are doubled instead of the number of time slots.
Note that no best known fitness values have been published for the fourth data set in the paper by Di
Gaspero et al. [17], which we use for our comparison here.

Shift design problems arising in practical contexts are in many cases similar to the instances consid-
ered here. This is due to the fact that, although the majority of the instances we investigate is randomly
generated, the parameters (maximum number of workers per time slot in the seed solution, number of
time slots, and the configuration of shift types) are based on real-world instances like the one in DataSet4.

5.2. Balanced Optimization Criteria

Tables 2–4 provide fitness values and runtimes for all data sets, taking a common priority and weight to
penalize deviations as well as the utilization of shifts. In the second column of the tables, the best known
fitness values are listed, and the columns to the right of it show the results we obtained using ASP.

The values given in the tables represent the median of five test runs per instance at the time of their
termination. The reference values in columns for the best known fitness, taken from [17], are means over
ten, for DataSet1 and DataSet2, or hundred, in case of DataSet3, trials with incomplete methods. An
entry “> 1h” denotes that the corresponding instance has not been solved within the time limit of one
hour, and a dash in a column for the fitness expresses that clasp did not produce any solution within one
hour. Given that our experiments are conducted without hard limits on the maximum shortage and excess
and since we also do not restrict the maximum number of utilized shifts, we can directly compare our
results to previous work on the same instances, and we will provide formerly unknown global optima for
four instances. In fact, the fitness according to [17] is based on a balanced sum penalizing deviations and
the utilization of shifts equitably, corresponding to weak constraints of common priority and weight.

In Table 2, we see that the branch-and-bound based optimization strategy (shown in columns headed
by --opt-strategy=bb,1) is outperformed by the unsatisfiable-core based strategy (in columns
headed by --opt-strategy=usc,3). Not surprisingly, branch-and-bound based optimization leads

14 M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming

Instance Best --opt-strategy=bb,1 --opt-strategy=usc,3

Fitness --dom-mod=4,8

[17] tweety handy handy, obj=1 tweety handy handy, obj=1

Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time
1 480 2820 > 1h 3780 > 1h 2760 > 1h 480 8.3 480 14.6 480 15.8
2 300 3000 > 1h 6000 > 1h 4470 > 1h 300 101.7 300 91.8 300 96.5
3 600 5160 > 1h 5940 > 1h 6480 > 1h 600 14.5 600 24.1 600 29.6
4 450 11730 > 1h 11310 > 1h 8640 > 1h 450 708.2 450 221.0 450 209.0
5 480 480 1001.7 2880 > 1h 2700 > 1h 480 6.3 480 7.6 480 7.8
6 420 420 167.2 420 1046.3 420 1053.1 420 2.8 420 4.0 420 4.1
7 270 5100 > 1h 5400 > 1h 2130 > 1h 270 110.9 270 115.7 270 108.0
8 150 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
9 150 10155 > 1h 8010 > 1h 5160 > 1h 150 1682.4 150 1982.0 150 1820.6
10 330 9390 > 1h 7800 > 1h 4920 > 1h 330 129.9 330 132.0 330 140.9
11 30 30 744.0 390 > 1h 30 674.7 30 212.2 30 200.7 30 230.4
12 90 5385 > 1h 5175 > 1h 4185 > 1h 90 934.8 90 846.0 90 928.6
13 105 10080 > 1h 7665 > 1h 4605 > 1h 105 1728.4 105 1449.8 105 1606.1
14 195 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
15 180 180 4.2 180 11.8 180 2.1 180 0.5 180 0.7 180 0.8
16 225 18090 > 1h 19275 > 1h 7980 > 1h 225 3505.6 225 3286.7 225 3451.7
17 540 11040 > 1h 9840 > 1h 9270 > 1h 540 333.6 540 302.4 540 659.4
18 720 7260 > 1h 8640 > 1h 6720 > 1h 720 13.4 720 23.5 720 22.1
19 180 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
20 540 1320 > 1h 2640 > 1h — > 1h 540 7.3 540 10.5 540 10.3
21 120 5640 > 1h 5430 > 1h 3735 > 1h 120 1138.6 120 1032.5 120 978.4
22 75 1500 > 1h 1455 > 1h 2415 > 1h 75 547.4 75 588.6 75 548.1
23 150 15660 > 1h 13245 > 1h 4965 > 1h 150 2363.0 150 2106.3 150 2265.1
24 480 480 690.7 900 > 1h 480 3497.0 480 4.9 480 5.9 480 6.3
25 480 11520 > 1h 11190 > 1h 5010 > 1h 480 422.0 480 323.3 480 369.1
26 600 1740 > 1h 3540 > 1h 1260 > 1h 600 7.8 600 12.7 600 14.1
27 480 6840 > 1h 5220 > 1h 5580 > 1h 480 14.2 480 21.0 480 22.4
28 270 2970 > 1h 2670 > 1h 3240 > 1h 270 29.0 270 37.4 270 40.1
29 360 10170 > 1h 9000 > 1h 3630 > 1h 360 150.5 360 138.7 360 259.3
30 75 1215 > 1h 2385 > 1h 765 > 1h 75 375.0 75 346.6 75 394.2

Table 2. Fitness values and runtimes for DataSet1

to a vast number of intermediate, non-optimal solutions, so that fitness values are improved rather slowly.
In contrast, the unsatisfiable-core based approach takes more time to come up with intermediate solu-
tions, but it produces much fewer of them before converging to an optimum. Another important point to
mention is the fact that using domain heuristics on top of the branch-and-bound approach is crucial to im-
prove the quality of obtained solutions and absolutely recommended when applying branch-and-bound
based optimization to our ASP encoding.

Beyond that --opt-strategy=usc,3 delivers global optima for all but three instances of the
first data set, another interesting observation is that the performance of different configurations varies de-
pending on the instance and the optimization strategy used. E.g., consider Instances 3 and 4 in Table 2.
The tweety configuration turns out to be better than handy for Instance 3, no matter whether the en-
coding variant denoted by obj=1 is used with the latter. On the other hand, for Instance 4, the tweety

M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming 15

Instance Best --opt-strategy=bb,1 --opt-strategy=usc,3

Fitness --dom-mod=4,8

[17] tweety handy handy, obj=1 tweety handy handy, obj=1

Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time
1 720 3120 > 1h 4020 > 1h 3720 > 1h 720 5.3 720 10.0 720 9.6
2 720 4680 > 1h 6180 > 1h 4320 > 1h 720 10.9 720 18.8 720 20.0
3 360 13320 > 1h 11760 > 1h 7470 > 1h 360 276.01 360 254.7 360 256.1
4 360 5880 > 1h 6540 > 1h 4860 > 1h 360 88.9 360 98.1 360 98.1
5 720 5280 > 1h 5340 > 1h 5340 > 1h 720 9.5 720 14.3 720 11.8
6 360 14160 > 1h 13050 > 1h 3300 > 1h 360 217.3 360 248.9 360 238.0
7 720 9180 > 1h 8460 > 1h 7380 > 1h 720 17.9 720 20.9 720 21.4
8 180 10635 > 1h 9480 > 1h 6270 > 1h 180 2056.8 180 1968.3 180 2038.7
9 360 12780 > 1h 9570 > 1h 7350 > 1h 360 177.7 360 193.0 360 197.0
10 660 5760 > 1h 7560 > 1h 5760 > 1h 660 15.0 660 24.4 660 31.9
11 480 9750 > 1h 8250 > 1h 4230 > 1h 480 1172.2 480 1239.4 480 1209.2
12 900 5460 > 1h 7320 > 1h 2700 > 1h 900 35.4 900 63.2 900 49.4
13 900 10620 > 1h 9900 > 1h 7260 > 1h 900 48.4 900 41.5 900 88.1
14 840 8040 > 1h 9420 > 1h 6480 > 1h 840 20.0 840 25.1 840 39.2
15 480 13620 > 1h 11070 > 1h 2190 > 1h 480 1103.6 480 798.8 480 1947.4
16 240 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
17 960 7920 > 1h 7920 > 1h 4260 > 1h 960 23.7 960 21.0 960 26.3
18 840 8760 > 1h 10560 > 1h 5520 > 1h 840 42.3 840 57.9 840 144.5
19 240 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
20 960 8280 > 1h 10140 > 1h 5940 > 1h 960 26.7 960 26.3 960 27.0
21 600 14940 > 1h 15030 > 1h 11610 > 1h 600 640.6 600 1159.7 600 1352.3
22 1080 11220 > 1h 11640 > 1h 9960 > 1h 1080 716.3 1080 176.8 1080 1316.9
23 300 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
24 600 12780 > 1h 11850 > 1h 9180 > 1h 600 1359.0 600 760.2 600 1056.1
25 600 16410 > 1h 15060 > 1h 9660 > 1h 600 2688.4 600 1047.9 600 1665.9
26 1020 11700 > 1h 7800 > 1h 6120 > 1h 1020 49.6 1020 60.4 1020 91.5
27 300 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
28 300 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
29 1140 10020 > 1h 11160 > 1h 7860 > 1h 1140 223.2 1140 89.2 1140 647.2
30 1020 13260 > 1h 9960 > 1h 2280 > 1h 1020 2600.3 1020 3316.3 3900 > 1h

Table 3. Fitness values and runtimes for DataSet2

configuration leads to a three times longer run with --opt-strategy=usc,3 and deteriorates the
fitness value with --opt-strategy=bb,1. That is, the average performance is primarily governed
by the applied optimization strategy, while the effect of search parameter configurations is non-uniform
(although clasp in branch-and-bound mode completes more instances with the tweety configuration).
Moreover, the interplay between a strategy and the encoding of objectives can be crucial, as witnessed by
handy with obj=1, whose symmetric representation of deviations improves branch-and-bound based
optimization in comparison to the plain handy configuration for the vast majority of instances. Unlike
that, unsatisfiable-core based optimization turns out to be agnostic here, and obj=1 makes little differ-
ence relative to the plain handy and tweety configurations with --opt-strategy=usc,3. Given
the similar nature of the second data set, the performance results in Table 3 yield analogous behavior.

While the previous outcomes already show that --opt-strategy=usc,3 is a viable choice for

16 M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming

Instance Best --opt-strategy=bb,1 --opt-strategy=usc,3

Fitness --dom-mod=4,8

[17] tweety handy handy, obj=1 tweety handy handy, obj=1

Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time
DataSet3

1 2386.80 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
2 7672.59 21330 > 1h 18780 > 1h 17130 > 1h 12930 > 1h 12840 > 1h 14730 > 1h
3 9582.14 20640 > 1h 18780 > 1h 15510 > 1h 10470 > 1h 9540 2080.3 9540 3402.6
4 6634.40 18480 > 1h 17070 > 1h 12630 > 1h 8700 > 1h 6540 1728.7 9690 > 1h
5 9996.00 16800 > 1h 16140 > 1h 14940 > 1h 13500 > 1h 13380 > 1h 14040 > 1h
6 2076.75 9135 > 1h 9345 > 1h 7275 > 1h 5445 > 1h 6300 > 1h 4485 > 1h
7 6075.00 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
8 8860.50 19320 > 1h 19440 > 1h 17370 > 1h 12660 > 1h 12870 > 1h 15720 > 1h
9 6036.90 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
10 2968.95 11130 > 1h 10140 > 1h 8010 > 1h 5940 > 1h 6810 > 1h 6540 > 1h
11 5490.90 21570 > 1h 20760 > 1h 16320 > 1h 9840 > 1h 10200 > 1h 8850 > 1h
12 4171.20 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
13 4662.00 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
14 9616.55 14820 > 1h 15480 > 1h 13560 > 1h 12900 > 1h 12720 > 1h 14580 > 1h
15 11445.00 24060 > 1h 24780 > 1h 23820 > 1h 13530 > 1h 13650 > 1h 16770 > 1h
16 10734.00 20460 > 1h 18120 > 1h 14100 > 1h 13800 > 1h 13560 > 1h 14880 > 1h
17 4729.05 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
18 6692.40 16650 > 1h 14280 > 1h 14580 > 1h 10440 > 1h 10950 > 1h 10680 > 1h
19 5157.45 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
20 9153.90 28110 > 1h 24420 > 1h 21030 > 1h 15540 > 1h 16920 > 1h 18060 > 1h
21 6053.55 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
22 12870.30 29640 > 1h 27840 > 1h 24450 > 1h 15750 > 1h 15600 > 1h 17640 > 1h
23 8384.24 19560 > 1h 18840 > 1h 15900 > 1h 13320 > 1h 12660 > 1h 20460 > 1h
24 10417.80 23460 > 1h 22980 > 1h 18900 > 1h 13800 > 1h 15720 > 1h 19680 > 1h
25 13204.80 23520 > 1h 19740 > 1h 19500 > 1h 13020 43.3 13020 45.1 13020 111.14
26 13117.80 37680 > 1h 33420 > 1h 28050 > 1h 22020 > 1h 20610 > 1h 21900 > 1h
27 10081.20 19020 > 1h 19200 > 1h 17760 > 1h 10020 124.5 10020 1348.8 10020 207.2
28 10603.80 20160 > 1h 20040 > 1h 18600 > 1h 14580 > 1h 13800 > 1h 17760 > 1h
29 6690.00 21870 > 1h 22290 > 1h 18000 > 1h 11010 > 1h 10290 > 1h 9120 > 1h
30 13723.80 24480 > 1h 23400 > 1h 19980 > 1h 17460 > 1h 17520 > 1h 20160 > 1h

DataSet4
1 N/A 51600 > 1h 50040 > 1h 48360 > 1h 57600 > 1h 60060 > 1h 50460 > 1h
2 N/A 16860 > 1h 19680 > 1h 17700 > 1h 13260 > 1h 13170 > 1h 16560 > 1h
3 N/A 36360 > 1h 35280 > 1h 29100 > 1h 25980 > 1h 28560 > 1h 30180 > 1h

Table 4. Fitness values and runtimes for DataSet3 and DataSet4

tackling the shift design problem, in Table 4, presenting our results for the third and fourth data set, we
see that our approach also works quite well on instances having no solutions without deviation from the
requirements. In particular, we would like to draw the reader’s attention to Instances 3, 4, 25, and 27
of the third data set. For these four instances, our approach allows us to find formerly unknown global
optima (highlighted in boldface), thus improving on results obtained with incomplete methods [17]. In
particular, the plain handy configuration, not switching the encoding as done with obj=1, turns out to

M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming 17

be robust by solving all of the four instances within the time limit. We note that the known solutions for
other instances have been further improved recently [27], but to the best of our knowledge, the optimality
of some solutions for instances of the third data set has been shown for the first time by our approach.
This highlights the prospects of ASP-based optimization methods for shift design, for which instances
of the third and fourth data set contribute challenging benchmarks in turn.

5.3. Hierarchical Optimization Criteria

In practical situations, deviations from requirements and the utilization of shifts may be more or less
significant, so that the flexibility to customize priorities and weights of optimization criteria is of interest.
To assess the capabilities of our approach in such application scenarios, we conducted experiments with
hierarchical criteria, minimizing understaffing, overstaffing, and the number of shifts in decreasing order
of priority. For computing optimal solutions in this setting, it is sufficient to provide opt(shortage, 3, 1),
opt(excess, 2, 1), and opt(select , 1, 1) via facts in the input, as illustrated in Figure 2. In view of the
existence of exact solutions for instances of DataSet1 and DataSet2, we in the following concentrate on
DataSet3 and DataSet4, where deviations and shift utilizations both impose non-trivial challenges.

Table 5 provides objective values and runtimes obtained with branch-and-bound and unsatisfiable-
core based optimization, using the handy configuration of clasp. Note that the encoding variant denoted
by obj=1 above does not make any difference when shortage and excess are distinguished by priority,
so that it does not contribute an additional alternative here. To the best of our knowledge, the reported
objective values for shortage, excess, and shifts (the measures Deviation−, Deviation+, and Selected
described in Section 4.1) constitute new best known results w.r.t. the hierarchical criteria. Rows in gray
highlight that the respective results in boldface supply global optima.

In contrast to Table 4, we observe that clasp provides us with global optima for far more instances. In
fact, we are able to determine global optima for two out of three very large instances of DataSet4. That
is, hierarchical criteria facilitate optimization because different and partially conflicting objectives can
be tackled in separation. Nevertheless, the instances of DataSet3 for which global optima are obtained
do not subsume those for which the same has been accomplished under balanced criteria, as reported
in Table 4. This applies to Instances 4 and 27, while the promising results for unsatisfiable-core based
optimization in Table 5 indicate that global optimization may be feasible for them when given more
time. Although branch-and-bound based optimization remains clearly behind again, we note that its
intermediate solution for Instance 27 is of better quality than the one obtained with unsatisfiable-core
based optimization. This reminds of that branch-and-bound based optimization stays worthwhile as
an anytime approach whenever global optimization via the unsatisfiable-core based strategy is beyond
reach. Moreover, as demonstrated in [22], parallel portfolios, combining complementary optimization
strategies as well as search parameter configurations, may significantly improve the overall robustness,
even though such setups are beyond the scope of this paper in view of the vast number of options to
compose portfolios.

5.4. Experiments with Other Solvers

In addition to our main evaluation based on clasp, we compared the solver WASP 2.0 [4], again using
gringo 4.4.0 for grounding. The comparison is based on balanced optimization criteria as in Section 5.2
and takes the following configurations of WASP into account: default (no parameters used, core-

18 M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming

Instance --opt-strategy=bb,1 --opt-strategy=usc,3

--dom-mod=4,8

handy handy

Shortage Excess Shifts Time Shortage Excess Shifts Time
DataSet3

1 — — — > 1h — — — > 1h
2 0 407 41 > 1h 0 325 18 232.3
3 0 729 39 > 1h 0 673 15 116.3
4 0 474 50 > 1h 0 415 51 > 1h
5 0 194 22 > 1h 0 194 9 34.8
6 0 353 55 > 1h 0 226 44 > 1h
7 — — — > 1h — — — > 1h
8 0 485 42 > 1h 0 367 15 386.6
9 — — — > 1h — — — > 1h

10 0 205 31 > 1h 0 137 22 236.6
11 0 803 55 > 1h 0 778 67 > 1h
12 — — — > 1h — — — > 1h
13 — — — > 1h — — — > 1h
14 0 229 19 > 1h 0 215 13 324.5
15 0 820 53 > 1h 0 706 15 1083.8
16 0 234 25 > 1h 0 234 14 24.2
17 — — — > 1h — — — > 1h
18 0 377 48 > 1h 0 265 21 747.0
19 — — — > 1h — — — > 1h
20 0 1081 58 > 1h 0 998 66 > 1h
21 — — — > 1h — — — > 1h
22 0 834 66 > 1h 0 661 16 1407.4
23 0 291 29 > 1h 0 232 17 341.3
24 0 301 23 > 1h 0 275 15 80.6
25 0 311 25 > 1h 0 266 17 218.5
26 0 1066 60 > 1h 0 1049 84 > 1h
27 0 380 21 > 1h 0 393 26 > 1h
28 0 283 30 > 1h 0 229 18 > 1h
29 0 653 53 > 1h 0 520 64 > 1h
30 0 333 22 > 1h 0 278 17 43.5

DataSet4
1 0 1736 8 > 1h 0 1729 7 566.0
2 0 513 38 > 1h 0 470 56 > 1h
3 0 430 23 > 1h 0 388 9 2766.3

Table 5. Objective values and runtimes for DataSet3 and DataSet4 w.r.t. hierarchical optimization criteria

guided), basic (model-guided), opt (model-guided), and oll (core-guided). With the oll configu-
ration, we used the additional parameters --enable-disjcores and --minimize-unsatcore,
as they showed best results in preliminary tests. In view of the sometimes higher memory requirements
of WASP, we allowed 64GB RAM, again with a time limit of 60 minutes per run.

Table 6 shows the results of experiments on DataSet1. The first four columns provide instance IDs,
best fitness values from [17], and the performance of clasp using --opt-strategy=usc,3 along

M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming 19

Instance Best clasp WASP
Fitness handy, usc3 default basic opt oll

[17] Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time
1 480 480 14.6 480 13.0 45960 > 1h 480 > 1h 480 15.2
2 300 300 91.8 300 88.0 48870 > 1h 450 > 1h 300 86.3
3 600 600 24.1 600 19.8 68760 > 1h 600 > 1h 600 22.9
4 450 450 221.0 450 217.5 119040 > 1h — > 1h 450 205.3
5 480 480 7.6 480 7.1 27180 > 1h 480 946.8 480 6.9
6 420 420 4.0 420 6.2 21540 > 1h 420 261.9 420 5.5
7 270 270 115.7 270 111.1 59730 > 1h 270 > 1h 270 114.0
8 150 — > 1h — > 1h 93345 > 1h — > 1h 150 3421.6
9 150 150 1982.0 150 1779.6 67485 > 1h 150 > 1h 150 1567.8
10 330 330 132.0 330 130.7 89400 > 1h 540 > 1h 330 136.4
11 30 30 200.7 30 202.5 22620 > 1h 30 264.1 30 195.3
12 90 90 846.0 90 819.1 44130 > 1h 90 > 1h 90 753.8
13 105 105 1449.8 105 1546.3 56640 > 1h 225 > 1h 105 1380.3
14 195 — > 1h — > 1h — > 1h — > 1h — > 1h
15 180 180 0.7 180 1.1 10560 > 1h 180 1.3 180 1.1
16 225 225 3286.7 — > 1h 107820 > 1h — > 1h 225 3025.5
17 540 540 302.4 540 442.5 120270 > 1h — > 1h 540 253.1
18 720 720 23.5 720 22.5 68040 > 1h 2820 > 1h 720 17.1
19 180 — > 1h — > 1h — > 1h — > 1h — > 1h
20 540 540 10.5 540 8.9 31560 > 1h 540 > 1h 540 9.3
21 120 120 1032.5 120 1011.5 43650 > 1h — > 1h 120 882.4
22 75 75 588.6 75 670.1 36705 > 1h 75 2842.9 75 445.3
23 150 150 2106.3 150 2204.4 79185 > 1h 225 > 1h 150 1969.7
24 480 480 5.9 480 6.0 25500 > 1h 480 > 1h 480 5.4
25 480 480 323.3 480 517.8 105090 > 1h — > 1h 480 362.0
26 600 600 12.7 600 18.5 41520 > 1h 600 > 1h 600 12.5
27 480 480 21.0 480 16.8 66300 > 1h 480 > 1h 480 16.8
28 270 270 37.4 270 31.7 37710 > 1h 270 > 1h 270 34.0
29 360 360 138.7 360 135.1 70650 > 1h 2040 > 1h 360 131.5
30 75 75 346.6 75 353.0 29370 > 1h 75 1709.2 75 294.1

Table 6. Fitness values and runtimes for DataSet1 (WASP)

with the handy configuration, which in Section 5.2 turned out to be robust, for reference. The remaining
columns give results obtained with WASP, where the core-guided default and oll approaches behave
very similar to clasp. We observe that WASP with the oll approach is the only configuration that solves
Instance 8 within the time limit, and otherwise it is often slightly faster than clasp. Interestingly, the
model-guided opt approach also turns out to be competitive. In many cases, an optimum is found and
only the final unsatisfiability check exceeds the time limit. However, similar to clasp’s branch-and-bound
based optimization, WASP’s basic approach performs poorly in terms of resulting fitness values, while
it produces the most (non-optimal) intermediate solutions.

Table 7 provides performance results on DataSet2. While WASP’s oll approach was slightly more
efficient than clasp on the “easy” instances of DataSet1, both solvers perform evenly here. In fact,
they complete the same number of instances, and the default and opt approaches are competitive

20 M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming

Instance Best clasp WASP
Fitness handy, usc3 default basic opt oll

[17] Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time
1 720 720 10.0 720 8.4 42900 > 1h 720 > 1h 720 8.7
2 720 720 18.8 720 22.2 73560 > 1h 720 > 1h 720 16.7
3 360 360 254.7 360 284.8 102900 > 1h 1200 > 1h 360 306.5
4 360 360 98.1 360 91.9 45510 > 1h — > 1h 360 94.4
5 720 720 14.3 720 21.0 39600 > 1h 720 > 1h 720 15.5
6 360 360 248.9 360 243.0 103920 > 1h — > 1h 360 254.5
7 720 720 20.9 720 21.6 87540 > 1h 720 > 1h 720 29.8
8 180 180 1968.3 180 1959.7 86070 > 1h — > 1h 180 2451.5
9 360 360 193.0 360 184.7 81060 > 1h 360 > 1h 360 227.0

10 660 660 24.4 660 27.2 82380 > 1h 660 > 1h 660 19.8
11 480 480 1239.4 480 1122.1 95430 > 1h — > 1h 480 911.6
12 900 900 63.2 900 85.3 78420 > 1h 900 > 1h 900 69.8
13 900 900 41.5 900 44.3 124620 > 1h 900 > 1h 900 37.9
14 840 840 25.1 840 33.7 76680 > 1h 840 > 1h 840 30.7
15 480 480 798.8 480 426.9 116310 > 1h — > 1h 480 617.9
16 240 — > 1h — > 1h — > 1h — > 1h — > 1h
17 960 960 21.0 960 58.8 77220 > 1h 1440 > 1h 960 41.0
18 840 840 57.9 840 103.0 110400 > 1h — > 1h 840 59.4
19 240 — > 1h — > 1h — > 1h — > 1h — > 1h
20 960 960 26.3 960 35.7 90360 > 1h 960 > 1h 960 36.6
21 600 600 1159.7 600 1034.6 152700 > 1h — > 1h 600 544.4
22 1080 1080 176.8 1080 1570.6 122280 > 1h 1080 > 1h 1080 407.7
23 300 — > 1h — > 1h — > 1h — > 1h — > 1h
24 600 600 760.2 600 916.2 140040 > 1h — > 1h 600 1043.4
25 600 600 1047.9 600 624.2 138450 > 1h — > 1h 600 684.4
26 1020 1020 60.4 1020 84.2 122820 > 1h — > 1h 1020 40.5
27 300 — > 1h — > 1h — > 1h — > 1h — > 1h
28 300 — > 1h — > 1h — > 1h — > 1h — > 1h
29 1140 1140 89.2 1140 358.9 89640 > 1h 1560 > 1h 1140 136.2
30 1020 1020 3316.3 1020 2402.0 173040 > 1h — > 1h 1020 754.9

Table 7. Fitness values and runtimes for DataSet2 (WASP)

as well. However, the oll approach, based on the same algorithm as clasp’s unsatisfiable-core based
optimization, is again the fastest WASP configuration on average, thus highlighting the effectiveness of
respective optimization methods over complementary implementations.

A general observation made in the solver comparison was that clasp’s branch-and-bound based opti-
mization frequently produced more intermediate, non-optimal solutions than WASP with either model-
or core-guided approaches. Unfortunately, this also led to the situation that, for the hard instances of
DataSet3 and DataSet4 (having no solutions without deviation), WASP was able to provide intermediate
solutions for few instances only. We thus omit a corresponding table here, while finding better suited
WASP configurations for DataSet3 and DataSet4 would be of interest.

M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming 21

6. Discussion

In this work, we presented a novel approach to tackle the shift design problem by using ASP. Finding
good solutions for shift design problems is of great importance in many kinds of organizations. However,
such problems are very challenging due to the huge search space and conflicting objectives. Our work
contributes to better understanding the strengths of ASP technology in this domain and extends the state
of the art for the shift design problem by providing new optimal solutions. Below we summarize the
main observations regarding the application of ASP to the shift design problem:

• ASP-based optimization methods show very good results for shift design problems that have so-
lutions without over- and understaffing. Our proposed ASP approach was able to provide optimal
solutions for almost all such benchmark instances.

• The results for problems that do not have solutions without over- or understaffing are promising.
Although our current approach could not reproduce best known solutions in a number of cases, we
were able to find global optima for four hard instances, not previously solved to the optimum.

• Our ASP formulation of the shift design problem is inspired by the order encoding from SAT.
The main idea is to express quantitative values in terms of closed intervals to allow for a compact
representation of arithmetic comparisons. Such compactness is crucial when facing instances of
high scheduling granularity. Given that our benchmark set includes instances with a planning
horizon of one week divided into 15-minute slots, in order to avoid memory blow-ups due to
grounding, it was important to keep the encoding linear w.r.t. values in the input.

• In our encoding, we also exploited the dual nature of shortage and excess in case they are optimized
with common priority and weight. Interestingly, a symmetric treatment significantly improves the
quality of intermediate solutions in branch-and-bound based optimization, while it has little effect
on unsatisfiable-core based optimization.

• We furthermore showed the flexibility of our approach by providing global optima w.r.t. hierar-
chically ordered optimization criteria. Distinguishing criteria by priority allows for more targeted
optimization, which led to an increased number of instances that could be solved to the optimum.

• The positive effect of domain heuristics on branch-and-bound based optimization indicates that
combining our approach with other heuristic methods could be advantageous as well. For example,
solutions computed with meta-heuristic or min-cost max-flow techniques may be further improved
using ASP.

• Our experimental evaluation showed that ASP-based optimization methods have the potential to
provide good solutions for shift design problems. However, finding global optima for large in-
stances without exact solutions is still a challenging task, as there are few hard constraints in-
volved that would help to restrict the search space. Hence, the obtained collection of benchmarks
is suitable to assess and further improve state-of-the-art ASP technology.

As future work, we plan to tackle the problem of optimization in shift design by combining ASP with
domain-specific heuristics in order to better guide the search. We are confident that ASP combined with

22 M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming

heuristics is a powerful tool for tackling problems in the area of workforce scheduling. This is already
underlined by the significantly improved results obtained for the branch-and-bound based approach when
activating clasp’s integrated heuristics. By using customized heuristics, tailored to the specific problem
at hand, the chance for further improvements is thus high.

Acknowledgments. This work was funded by AoF (251170), DFG (550/9), and FWF (P25607-N23,
P24814-N23, Y698-N23).

References

[1] Abseher, M.: Solving Shift Design Problems with Answer Set Programming, Master Thesis, Technische
Universität Wien, 2013.

[2] Abseher, M., Gebser, M., Musliu, N., Schaub, T., Woltran, S.: Shift Design with Answer Set Program-
ming, Proceedings of the Eighth Workshop on Answer Set Programming and Other Computing Paradigms
(ASPOCP’15) (D. Inclezan, M. Maratea, Eds.), 2015.

[3] Abseher, M., Gebser, M., Musliu, N., Schaub, T., Woltran, S.: Shift Design with Answer Set Programming,
Proceedings of the Thirteenth International Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR’15) (F. Calimeri, G. Ianni, M. Truszczyński, Eds.), vol. 9345 of Lecture Notes in Computer
Science, Springer-Verlag, 2015, 32–39.

[4] Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: A Native ASP Solver Based on Constraint
Learning, Proceedings of the Twelfth International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’13) (P. Cabalar, T. Son, Eds.), vol. 8148 of Lecture Notes in Computer Science, Springer-
Verlag, 2013, 54–66.

[5] Alviano, M., Dodaro, C., Marques-Silva, J., Ricca, F.: On the Implementation of Weak Constraints in WASP,
Proceedings of the Seventh Workshop on Answer Set Programming and Other Computing Paradigms (AS-
POCP’14) (D. Inclezan, M. Maratea, Eds.), 2014.

[6] Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-Based Optimization in clasp, Tech-
nical Communications of the Twenty-eighth International Conference on Logic Programming (ICLP’12)
(A. Dovier, V. Santos Costa, Eds.), vol. 17 of Leibniz International Proceedings in Informatics, Dagstuhl
Publishing, 2012, 212–221.

[7] Aykin, T.: A Comparative Evaluation of Modeling Approaches to the Labor Shift Scheduling Problem, Eu-
ropean Journal of Operational Research, 125(2), 2000, 381–397.

[8] Banbara, M., Soh, T., Tamura, N., Inoue, K., Schaub, T.: Answer Set Programming as a Modeling Language
for Course Timetabling, Theory and Practice of Logic Programming, 13(4-5), 2013, 783–798.

[9] Bechtold, S., Jacobs, L.: Implicit Modeling of Flexible Break Assignments in Optimal Shift Scheduling,
Management Science, 36(11), 1990, 1339–1351.

[10] Beer, A., Gärtner, J., Musliu, N., Schafhauser, W., Slany, W.: Scheduling Breaks in Shift Plans for Call
Centers, Proceedings of the Seventh International Conference on the Practice and Theory of Automated
Timetabling (PATAT’08), 2008.

[11] Beer, A., Gärtner, J., Musliu, N., Schafhauser, W., Slany, W.: An AI-Based Break-Scheduling System for
Supervisory Personnel, IEEE Intelligent Systems, 25(2), 2010, 60–73.

[12] Biere, A., Heule, M., van Maaren, H., Walsh, T., Eds.: Handbook of Satisfiability, vol. 185 of Frontiers in
Artificial Intelligence and Applications, IOS Press, 2009.

M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming 23

[13] Brewka, G., Eiter, T., Truszczyński, M.: Answer Set Programming at a Glance, Communications of the ACM,
54(12), 2011, 92–103.

[14] Crawford, J., Baker, A.: Experimental Results on the Application of Satisfiability Algorithms to Scheduling
Problems, Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI’94) (B. Hayes-
Roth, R. Korf, Eds.), AAAI Press, 1994, 1092–1097.

[15] Dantzig, G.: A Comment on Eddie’s “Traffic delays at toll booths”, Operations Research, 2(3), 1954, 339–
341.

[16] den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., De Boeck, L.: Personnel Scheduling: A
Literature Review, European Journal of Operational Research, 226(3), 2013, 367–385.

[17] Di Gaspero, L., Gärtner, J., Kortsarz, G., Musliu, N., Schaerf, A., Slany, W.: The Minimum Shift Design
Problem, Annals of Operations Research, 155(1), 2007, 79–105.

[18] Di Gaspero, L., Gärtner, J., Musliu, N., Schaerf, A., Schafhauser, W., Slany, W.: A Hybrid LS-CP Solver
for the Shifts and Breaks Design Problem, Proceedings of the Seventh International Workshop on Hybrid
Metaheuristics (HM’10) (M. Blesa, C. Blum, G. Raidl, A. Roli, M. Sampels, Eds.), vol. 6373 of Lecture
Notes in Computer Science, Springer-Verlag, 2010, 46–61.

[19] Di Gaspero, L., Gärtner, J., Musliu, N., Schaerf, A., Schafhauser, W., Slany, W.: Automated Shift Design
and Break Scheduling, Automated Scheduling and Planning – From Theory to Practice (S. Uyar, E. Özcan,
N. Urquhart, Eds.), vol. 505 of Studies in Computational Intelligence, Springer-Verlag, 2013, 109–127.

[20] Dodaro, C., Leone, N., Nardi, B., Ricca, F.: Allotment Problem in Travel Industry: A Solution Based on ASP,
Proceedings of the Ninth International Conference on Web Reasoning and Rule Systems (RR’15) (B. ten Cate,
A. Mileo, Eds.), vol. 9209 of Lecture Notes in Computer Science, Springer-Verlag, 2015, 77–92.

[21] Faber, W., Leone, N., Perri, S.: The Intelligent Grounder of DLV, Correct Reasoning: Essays on Logic-
Based AI in Honour of Vladimir Lifschitz (E. Erdem, J. Lee, Y. Lierler, D. Pearce, Eds.), vol. 7265 of Lecture
Notes in Computer Science, Springer-Verlag, 2012, 247–264.

[22] Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in clasp Series 3, Proceedings of
the Thirteenth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’15)
(F. Calimeri, G. Ianni, M. Truszczyński, Eds.), vol. 9345 of Lecture Notes in Computer Science, Springer-
Verlag, 2015, 368–383.

[23] Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-Criteria Optimization in Answer Set Program-
ming, Technical Communications of the Twenty-seventh International Conference on Logic Programming
(ICLP’11) (J. Gallagher, M. Gelfond, Eds.), vol. 11 of Leibniz International Proceedings in Informatics,
Dagstuhl Publishing, 2011, 1–10.

[24] Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice, Synthesis Lectures on
Artificial Intelligence and Machine Learning, Morgan & Claypool Publishers, 2012.

[25] Gebser, M., Kaminski, R., Schaub, T.: Grounding Recursive Aggregates: Preliminary Report, Proceedings
of the Third Workshop on Grounding, Transforming, and Modularizing Theories with Variables (GTTV’15)
(M. Denecker, T. Janhunen, Eds.), 2015.

[26] Guziolowski, C., Videla, S., Eduati, F., Thiele, S., Cokelaer, T., Siegel, A., Saez-Rodriguez, J.: Exhaustively
Characterizing Feasible Logic Models of a Signaling Network Using Answer Set Programming, Bioinfor-
matics, 29(18), 2013, 2320–2326.

[27] Kocabas, D.: Exact Methods for Shift Design and Break Scheduling, Master Thesis, Technische Universität
Wien, 2015.

24 M. Abseher, M. Gebser, N. Musliu, T. Schaub, S. Woltran / Shift Design with Answer Set Programming

[28] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV System for Knowl-
edge Representation and Reasoning, ACM Transactions on Computational Logic, 7(3), 2006, 499–562.

[29] Marques-Silva, J., Planes, J.: On Using Unsatisfiability for Solving Maximum Satisfiability, Computing
Research Repository, abs/0712.1097, 2007.

[30] Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and Core-Guided MaxSAT
Solving: A Survey and Assessment, Constraints, 18(4), 2013, 478–534.

[31] Musliu, N.: Intelligent Search Methods for Workforce Scheduling: New Ideas and Practical Applications,
Ph.D. Thesis, Technische Universität Wien, 2001.

[32] Musliu, N., Schaerf, A., Slany, W.: Local Search for Shift Design, European Journal of Operational Re-
search, 153(1), 2004, 51–64.

[33] Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog Decision Support System
for the Space Shuttle, Proceedings of the Third International Symposium on Practical Aspects of Declarative
Languages (PADL’01) (I. Ramakrishnan, Ed.), vol. 1990 of Lecture Notes in Computer Science, Springer-
Verlag, 2001, 169–183.

[34] Quimper, C., Rousseau, L.: A Large Neighbourhood Search Approach to the Multi-Activity Shift Scheduling
Problem, Journal of Heuristics, 16(3), 2010, 373–391.

[35] Rekik, M., Cordeau, J., Soumis, F.: Implicit Shift Scheduling with Multiple Breaks and Work Stretch Dura-
tion Restrictions, Journal of Scheduling, 13(1), 2010, 49–75.

[36] Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.: Team-Building with Answer
Set Programming in the Gioia-Tauro Seaport, Theory and Practice of Logic Programming, 12(3), 2012,
361–381.

[37] Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Semantics, Artificial
Intelligence, 138(1-2), 2002, 181–234.

[38] Soininen, T., Niemelä, I.: Developing a Declarative Rule Language for Applications in Product Configu-
ration, Proceedings of the First International Symposium on Practical Aspects of Declarative Languages
(PADL’99) (G. Gupta, Ed.), vol. 1551 of Lecture Notes in Computer Science, Springer-Verlag, 1999, 305–
319.

[39] Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling Finite Linear CSP into SAT, Constraints, 14(2),
2009, 254–272.

[40] Tellier, P., White, G.: Generating Personnel Schedules in an Industrial Setting Using a Tabu Search Al-
gorithm, Proceedings of the Sixth International Conference on the Practice and Theory of Automated
Timetabling (PATAT’06) (E. Burke, H. Rudová, Eds.), vol. 3867 of Lecture Notes in Computer Science,
Springer-Verlag, 2006, 293–302.

[41] Thompson, G.: Improved Implicit Modeling of the Labor Shift Scheduling Problem, Management Science,
41(4), 1995, 595–607.

[42] Widl, M., Musliu, N.: The Break Scheduling Problem: Complexity Results and Practical Algorithms,
Memetic Computing, 6(2), 2014, 97–112.

