
Problem Solving and Search
in Artificial Intelligence

Tabu Search

Nysret Musliu
Database and Artificial Intelligence Group,
Institut für Informationssysteme, TU-Wien

Introduction
Local search techniques

Tabu search
Simulated annealing
Stochastic Hill-Climber
…

Tabu Search uses memory during the search
In memory are stored relevant information about the history of
search
The memory should help to avoid the cycles during the search
Tabu search is a deterministic heuristic technique

Basic Tabu Search
Procedure Tabu-Suche

begin
Initialize tabu list

Basic Tabu Search
Procedure Tabu-Suche

begin
Initialize tabu list
Generate randomly Initial Solution sc

Basic Tabu Search
Procedure Tabu-Suche

begin
Initialize tabu list
Generate randomly Initial Solution sc
Evaluate sc

Basic Tabu Search
Procedure Tabu-Suche

begin
Initialize tabu list
Generate randomly Initial Solution sc
Evaluate sc
repeat
Generate all neighborhood solutions of the solution sc

Basic Tabu Search
Procedure Tabu-Suche

begin
Initialize tabu list
Generate randomly Initial Solution sc
Evaluate sc
repeat
Generate all neighborhood solutions of the solution sc
Find best solution sx in the neighborhood

Basic Tabu Search
Procedure Tabu-Suche

begin
Initialize tabu list
Generate randomly Initial Solution sc
Evaluate sc
repeat
Generate all neighborhood solutions of the solution sc
Find best solution sx in the neighborhood
if sx is not tabu solution then sc= sx

Basic Tabu Search
Procedure Tabu-Suche
begin
Initialize tabu list
Generate randomly Initial Solution sc
Evaluate sc
repeat
Generate all neighborhood solutions of the
solution sc
Find best solution sx in the neighborhood
if sx is not tabu solution then sc= sx
else if 'aspiration criteria' is fulfilled then

sc= sx

Basic Tabu Search
Procedure Tabu-Suche
begin
Initialize tabu list
Generate randomly Initial Solution sc
Evaluate sc
repeat
Generate all neighborhood solutions of the solution sc
Find best solution sx in the neighborhood
if sx is not tabu solution then sc= sx
else if 'aspiration criteria' is fulfilled then

sc= sx
else

find best not tabu solution in the neighborhood snt
sc = snt

Basic Tabu Search
Procedure Tabu-Suche
begin
Initialize tabu list
Generate randomly Initial Solution sc
Evaluate sc
repeat
Generate all neighborhood solutions of the solution sc
Find best solution sx in the neighborhood
if sx is not tabu solution then sc= sx
else if 'aspiration criteria' is fulfilled then

sc= sx
else

find best not tabu solution in the neighborhood snt
sc = snt

Update tabu list
until (terminate-condition)
end

Example

SAT problem:
Make a a compound statement of Boolean
variables to evaluate to true
Suppose we have to solve the SAT problem with
8 variables:

Find the truth assignment for each variable xi
such that F(x)=TRUE

)742
(...)

21()731()(xxxxxxxxxF ∨∨∧∧∨∧∨∨=

General questions
Representation of solution

Candidate solution is represented with a binary string of
length n (number of variables)

Example: X=(0,0,0,1,1,1,0,1) represents this solution: x1=0,
x2=0, x3=0, x4=1, x5=1, x6=1, x7=0, x8=1

Evaluation of function:
Weighted sum of a number of satisfied clauses (weights
depends on the number of variables in clause)

Initial Solution
Can be generated for example by random assignment of
variables with 0 or 1: X=(0,1,1,1,0,0,0,0)

Neighborhood generation
Moves

A simple move is defined, which flips the value of
one variable from 1 to 0 or from 0 to 1
More moves can be defined…

If we apply only the first move the whole
neighborhood of solution can be generated
by flipping of value of each variable
In tabu search usually the whole
neighborhood is generated during each
iteration

Tabu seach specific questions

Memory
Which information should we store during the
search to possibly avoid the cycles?

Memory
Recency-based memory

Some parameters of few past iterations are stored
For example for SAT problem we could store the
information for the flipped variables in past 5 iterations

Based on that we could forbid (make tabu) the flipping of
variables which were flipped in last 5 iterations

0 0 2 0 0 0 4 0

Variable x3
should not be
flipped in next
2 iterations

Variable x7
should not be
flipped in next
4 iterations

Memory
Frequency-based memory

Stores information for larger number of iterations
For example for SAT problem we could store the
information about number of flipps for each variable during
the last 100 iterations

Based on that we could prefer some of flipps of variables more
than others during the search

12 3 35 20 10 15 12 3

Variable x2
has been
flipped 3 times
in past 100
iterations

Variable x5
has been
flipped 12
times in past
100 iterations

Selection of solutions

The acceptance of solution for next iteration
depends not only from its quality
The memory has also the impact in the
selection process
Solution are classified in tabu and not tabu
solutions
Usually the best non tabu solutions is
accepted for the next iteration

Selection of solutions
Aspiration criteria

Tabu solution may be accepted if it fulfills some
conditions

Example: The tabu solution is the best solution so
far

Based on frequency based memory
Search can be intensified

More frequent moves are preferred
Search can be diversified

Less used moves during the search are preferred

SAT example
Procedure Tabu-Suche
begin
Initialize tabu list
Generate randomly Initial Solution sc
Evaluate sc
repeat

Generate all neighborhood solutions of the solution sc
Find best solution sx in the neighborhood
if sx is not tabu solution then sc= sx
else if 'aspiration criteria' is fulfilled then

sc= sx
else
find best not tabu solution in the neighborhood snt
sc = snt

Update tabu list
until (terminate-condition)
end

SAT Problem

Initialize memory
Recency based memory

M:

Frequency based memory

F:

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

SAT example
Procedure Tabu-Suche
begin
Initialize tabu list
Generate randomly Initial Solution sc
Evaluate sc
repeat

Generate all neighborhood solutions of the solution sc
Find best solution sx in the neighborhood
if sx is not tabu solution then sc= sx
else if 'aspiration criteria' is fulfilled then

sc= sx
else
find best not tabu solution in the neighborhood snt
sc = snt

Update tabu list
until (terminate-condition)
end

SAT example

Initial Solution
Random generated solution

sc: 1 0 1 0 0 0 1 1

SAT example
Procedure Tabu-Suche
begin
Initialize tabu list
Generate randomly Initial Solution sc
Evaluate sc
repeat

Generate all neighborhood solutions of the solution sc
Find best solution sx in the neighborhood
if sx is not tabu solution then sc= sx
else if 'aspiration criteria' is fulfilled then

sc= sx
else
find best not tabu solution in the neighborhood snt
sc = snt

Update tabu list
until (terminate-condition)
end

SAT example

Evaluate solution
Suppose that the fitness of solution is 30

SAT example
Procedure Tabu-Suche
begin
Initialize tabu list
Generate randomly Initial Solution sc
Evaluate sc
repeat

Generate all neighborhood solutions of the solution sc
Find best solution sx in the neighborhood
if sx is not tabu solution then sc= sx
else if 'aspiration criteria' is fulfilled then

sc= sx
else
find best not tabu solution in the neighborhood snt
sc = snt

Update tabu list
until (terminate-condition)
end

Neighborhood of current
solution

1 0 1 0 0 0 1 1

0 0 1 0 0 0 1 1s1

sc

Neighborhood of current
solution

1 0 1 0 0 0 1 1

0 0 1 0 0 0 1 1

1 1 1 0 0 0 1 1

s1

sc

s2

Neighborhood of current
solution

1 0 1 0 0 0 1 1

0 0 1 0 0 0 1 1

1 1 1 0 0 0 1 1

1 0 0 0 0 0 1 1

1 0 1 1 0 0 1 1

1 0 1 0 1 0 1 1

1 0 1 0 0 1 1 1

1 0 1 0 0 0 0 1

1 0 1 0 0 0 1 0

s1

sc

s2

s3

s4

s5

s6

s7

s8

Eight
neighborhood
solutions, which
are obtained by
flipping of a single
bit in the solution
sc

SAT example
Procedure Tabu-Suche
begin
Initialize tabu list
Generate randomly Initial Solution sc
Evaluate sc
repeat

Generate all neighborhood solutions of the solution sc
Find best solution sx in the neighborhood
if sx is not tabu solution then sc= sx
else if 'aspiration criteria' is fulfilled then

sc= sx
else
find best not tabu solution in the neighborhood snt
sc = snt

Update tabu list
until (terminate-condition)
end

Evaluation of solutions
1 0 1 0 0 0 1 1

0 0 1 0 0 0 1 1

1 1 1 0 0 0 1 1

1 0 0 0 0 0 1 1

1 0 1 1 0 0 1 1

1 0 1 0 1 0 1 1

1 0 1 0 0 1 1 1

1 0 1 0 0 0 0 1

1 0 1 0 0 0 1 0

s1

sc

s2

s3

s4

s5

s6

s7

s8

Evaluation
29

31

34

37

32

29

29

28

33

Best solution
1 0 1 0 0 0 1 1

0 0 1 0 0 0 1 1

1 1 1 0 0 0 1 1

1 0 0 0 0 0 1 1

1 0 1 1 0 0 1 1

1 0 1 0 1 0 1 1

1 0 1 0 0 1 1 1

1 0 1 0 0 0 0 1

1 0 1 0 0 0 1 0

s1

sc

s2

s3

s4

s5

s6

s7

s8

Evaluation
29

31

34

37

32

29

29

28

33

Best
solution

SAT example
Procedure Tabu-Suche
begin
Initialize tabu list
Generate randomly Initial Solution sc
Evaluate sc
repeat

Generate all neighborhood solutions of the solution sc
Find best solution sx in the neighborhood
if sx is not tabu solution then sc= sx
else if 'aspiration criteria' is fulfilled then

sc= sx
else
find best not tabu solution in the neighborhood snt
sc = snt

Update tabu list
until (terminate-condition)
end

Update memory

Recency based memory

M: 0 5 0 0 0 0 0 0

Update memory

Recency based memory

M: 0 5 0 0 0 0 0 0

Flipping of bit in
position 2 is
Tabu in next 5
iterations

Update memory

Recency based memory

M:

Frequency based memory

F:

0 5 0 0 0 0 0 0

0 1 0 0 0 0 0 0

Flipping of bit in
position 2 is
Tabu in next 5
iterations

Update memory

Recency based memory

M:

Frequency based memory

F:

0 5 0 0 0 0 0 0

0 1 0 0 0 0 0 0

Flipping of bit in
position 2 is
Tabu in next 5
iterations

Bit in position 2
has been flipped
one time

Update memory

Suppose that in next iteration the best
solution is obtained by flipping the bit in
position 4. The content of memory after the
second iteration will be:

M:

F:

0 4 0 5 0 0 0 0

0 1 0 1 0 0 0 0

All non zeros
entries are
decreased by one
at every iteration

SAT problem
Suppose that after 8 iterations the short term memory has
following content:

M:

Suppose that the following solutions are obtained from the
neighborhood of the current solution:

eval(s1)=35, eval(s2)=38, eval(s3)=36, eval(s4)=34,
eval(s5)=32, eval(s6)=30, eval(s7)=34, eval(s8)=33

0 4 5 3 1 0 2 0

SAT problem
Suppose that after 8 iterations the short term memory
has following content:

M:

The following solutions are obtained from the
neighborhood of the current solution:

eval(s1)=35, eval(s2)=38, eval(s3)=36, eval(s4)=34,
eval(s5)=32, eval(s6)=30, eval(s7)=34, eval(s8)=33

Best solution in neighborhood has the fitness 38, but it
is obtained by flipping bit 2

0 4 5 3 1 0 2 0

Flip of bit 2 is tabu! Should we accept this solution?

SAT example
Procedure Tabu-Suche
begin
Initialize tabu list
Generate randomly Initial Solution sc
Evaluate sc
repeat

Generate all neighborhood solutions of the solution sc
Find best solution sx in the neighborhood
if sx is not tabu solution then sc= sx
else if 'aspiration criteria' is fulfilled then

sc= sx
else
find best not tabu solution in the neighborhood snt
sc = snt

Update tabu list
until (terminate-condition)
end

Aspiration criteria

The tabu solution may be accepted, if it fulfills
some conditions

For example if the solution is the best solution
found so far

Suppose that in SAT Example the best
solution found is far has fitness 39

SAT example
Procedure Tabu-Suche
begin
Initialize tabu list
Generate randomly Initial Solution sc
Evaluate sc
repeat

Generate all neighborhood solutions of the solution sc
Find best solution sx in the neighborhood
if sx is not tabu solution then sc= sx
else if 'aspiration criteria' is fulfilled then

sc= sx
else
find best not tabu solution in the neighborhood snt
sc = snt

Update tabu list
until (terminate-condition)
end

SAT example

M:

eval(s1)=35, eval(s2)=38, eval(s3)=36,
eval(s4)=34, eval(s5)=32, eval(s6)=30,
eval(s7)=34, eval(s8)=33

If the aspiration criteria is not fulfiled, only non tabu
solutions will be taken in consideration

Solutions: s1, s6,s8

0 4 5 3 1 0 2 0

SAT example

M:

eval(s1)=35, eval(s2)=38, eval(s3)=36,
eval(s4)=34, eval(s5)=32, eval(s6)=30,
eval(s7)=34, eval(s8)=33

If the aspiration criteria is not fulfiled, only non tabu
solutions will be taken in consideration

Solutions: s1, s6,s8

0 4 5 3 1 0 2 0

Solution s1 is accepted for the next iteration

SAT example
Procedure Tabu-Suche
begin
Initialize tabu list
Generate randomly Initial Solution sc
Evaluate sc
repeat

Generate all neighborhood solutions of the solution sc
Find best solution sx in the neighborhood
if sx is not tabu solution then sc= sx
else if 'aspiration criteria' is fulfilled then

sc= sx
else
find best not tabu solution in the neighborhood snt
sc = snt

Update tabu list
until (terminate-condition)
end

Termination condition

Optimal solution found
Number of iterations
Time
Empty Neighborhood
No improves of solution for a determined
time/number of iterations
User interaction
…

Use of frequency-based
memory

Suppose that the content of frequency-
based memory for SAT problem after 100
iterations has the following content

The following solutions are obtained from the neighborhood of
the current solution:

eval(s1)=46, eval(s2)=43, eval(s3)=46, eval(s4)=45,
eval(s5)=44, eval(s6)=43, eval(s7)=46, eval(s8)=46

12 11 15 10 11 11 27 3F:

Use of frequency-based
memory

Suppose that the content of frequency-based
memory for SAT problem after 100 iterations has the
following content

The following solutions are obtained from the
neighborhood of the current solution:

eval(s1)=46, eval(s2)=43, eval(s3)=46, eval(s4)=45,
eval(s5)=44, eval(s6)=43, eval(s7)=46, eval(s8)=46

Suppose that only solutions s3, s7, s8 are non-tabu
solutions

12 11 15 10 11 11 27 3F:

Use of frequency-based
memory

eval(s1)=46, eval(s2)=43, eval(s3)=46,
eval(s4)=45, eval(s5)=44, eval(s6)=43,
eval(s7)=46, eval(s8)=46
Solutions s3, s7, s8 are non-tabu solutions
Possible use of memory

Make less frequently used moves more attractive
Diversification of search

12 11 15 10 11 11 27 3F:

Use of frequency-based
memory

eval(s1)=46, eval(s2)=43, eval(s3)=46,
eval(s4)=45, eval(s5)=44, eval(s6)=43,
eval(s7)=46, eval(s8)=46
Solutions s3, s7, s8 are non-tabu solutions
Possible use of memory

Make less frequently used moves more attractive
Diversification of search

12 11 15 10 11 11 27 3F:

Solution s8 will be accepted for next iteration

Use of frequency-based
memory

Other possibilities of use of frequency-based
memory

Aspiration by default
Select a move that is the “oldest” of all considered

Aspiration by search direction
Memorize also whether or not the moves generated
improvements

Aspiration by influence
Particular move can have larger influence if a “larger”
step is made from the old solution to the new

Tabu list

Length of tabu list (for how many iteration
should the solution be made tabu)

Usually depends from size of problem
The length of tabu list could also change during
the search

Reactive tabu search

Tabu List

Hashing
FIFO list
Storage of last usage time of moves

Adaptive length of tabu list

Length is 1 in the beginning

Length increases when the repetitions of
solutions happens

Length decreases when the repetition of
solutions disappears

Literature
Z. Michalewicz and D. B. Fogel. How to Solve It:
Modern Heuristics. -- Chapter 5

Glover, F. 1989. Tabu Search - Part I. ORSA
Journal on Computing, Vol. 1, No. 3, pp 190-206.
Glover, F. 1990. Tabu Search - Part II. ORSA
Journal on Computing, Vol. 2, No. 1, pp 4-32.
Glover, F., Laguna, M. 1998. Tabu Search. Kluwer
Academic Publishers

