
Problem Solving and Search in
Artificial Intelligence

Local Search, Stochastic Hill Climbing, Simulated
Annealing

Nysret Musliu
Database and Artificial Intelligence Group
Institut für Informationssysteme, TU-Wien

Local Search
1. Pick a solution from the search space and evaluate

its merit. Define this as current solution
2. Apply a transformation to the current solution to

generate a new solution and evaluate its merit
3. If the new solution is better than the current

solution then exchange it with the current solution
4. Repeat steps 2 and three until no transformation in

the given set improves the current solution

Local search for SAT
GSAT algorithm is based on flip of variable that results in
the largest decrease number of unsatisfied clauses

Procedure GSAT
begin

for i=1 step 1 until MAX-TRIES do
begin

T<- a randomly generated truth assignment
for j=1 step 1 until MAX-FLIPS do

if T satisfies the formula then return(T)
else make a flip of variable in T that results in the

largest decrease in the number of unsatisfied clauses
end
return(“no satisfying assignment found“)

end

Local Search and TSP

One of simplest algorithm is 2-opt algorithm
Start with the random permutation of the cities
(call this tour T)
Tries to improve T based in its neighbourhood
Neighbourhood of T is defined as the set of all
tours that can be reached by changing two
nonadjacent edges in T
Move is called 2-interchange

Local Search and TSP
2-interchange move

2-Opt Algorithm

A new tour T‘after the 2-interchange move
replaces T if it is better
If non of the tours in neighbourhood is better
than the tour T the algorithm terminates
The algorithm should be started from several
random permutations
2-opt algorithm can be extended to k-opt
algorithm

Lin-Kernighan Algorithm

Refines the k-opt strategy by allowing k to
vary from one iteration to another
It favors the largest improvement in
neighbourhood, not the first improvement like
in k-opt
Generates near optimal solutions for TSPs
with up to million cities
Needs under one hour on a modern
workstation

Greedy Algorithms

Simple algorithms
Assigns the values for all decisions
variables one by one and at every step
makes the best available decision
Heuristic provides the best possible
move at each step
Do not always return the optimum
solution

Greedy Algorithm for the SAT
Possible greedy heuristic for SAT

For each variable from 1 to n, in any order, assign
the truth value that result in satisfying the
greatest number of currently unsatisfied clauses

Performance of such greedy algorithm is quite poor
For example:

)
41

()
21

(
1

xxxxx ∨∧∨∧

Greedy Algorithm for the SAT

Possible improve of previous greedy
algorithm

Sort all variables on basis of their frequency, from
the smallest to the largest
For each variable in order, assign a value that
would satisfy the greatest number of currently
unsatisfied clauses

Further improves to the greedy algorithm can
be done
There is no good greedy algorithm for the
SAT

Greedy Algorithm for the TSP

Nearest neighbourhood heuristic
Start from random city
Proceed to the nearest unvisited city
Continue with step 2 until every city has
been visited

The tour with this algorithms can be far
from perfect

Greedy Algorithm for the TSP
For example with this heuristic if we start from A
the following tour will be generated: A-B-C-D-A
(cost=33)
There exist much better tour A-C-B-D-A
(cost=19)

D

A C

B

5

4

2

3

7

23

Local search

+: Ease of implementation
+: Guarantee of local optimality
usually in small computational time
+: No need for exact model of the
problem
-: Poor quality of solution due to
getting stuck in poor local optima

Modern Heuristics (Metaheuristics)

These algorithms guide an underlying heuristic/local search to
escape from being trapped in a local optima and to explore
better areas of the solution space
Examples:

Single solution approaches: Simulated Annealing, Tabu
Search, etc.
Population based approaches: Genetic algorithm, Memetic
algorithm, ACO, etc.

+: Able to cope with inaccuracies of data and model, large sizes
of the problem and real-time problem solving
+: Including mechanisms to escape from local optima of their
embedded local search algorithms
+: Ease of implementation
+: No need for exact model of the problem
-: Usually no guarantee of optimality

Elements of Local Search
•Representation of the solution

• Evaluation function

• Neighbourhood function: to define solutions which can
be considered close to a given solution. For example:

• For optimisation of real-valued functions in
elementary calculus, for a current solution x0,
neighbourhood is defined as an interval (x0 –r, x0
+r)

• In clustering problem, all the solutions which can
be derived from a given solution by moving one
customer from one cluster to another

Elements of Local Search
The larger the neighbourhood, the harder it is to explore
and the better the quality of its local optimum
Finding an efficient neighbourhood:

balance between the quality of the solution and the
complexity of the search

Neighbourhood search strategy
random
systematic search

Acceptance criterion:
first improvement
best improvement,
best of non-improving solutions,
random criteria

Hill Climbing Algorithm

1. Pick a random point in the search space
2. Consider all the neighbours of the current state
3. Choose the neighbour with the best quality and

move to that state
4. Repeat 2 through 4 until all the neighbouring

states are of lower quality
5. Return the current state as the solution state

The Problem with Hill Climbing
Gets stuck at local minima
Possible solutions:

Try several runs, starting at different positions

Increase the size of the neighbourhood (e.g. in TSP try
3-opt rather than 2-opt)

Stochastic Hill-Climbing
Only one solution from neighbourhood is selected
This solution will be accepted for the next iteration

with some probability, which depends from the
difference between current solution and selected
solution

Stochastic Hill-Climbing
Procedure stochastic hill-climber
begin

t=0
select a current string vc at random
evaluate vc

repeat
select the string vn from the neighborhood
of vc

select vn with probability
t=t+1
until t=MAX

end

T
)eval(v)eval(v nc

e
−

+1

1

Stochastic Hill Climbing

The neighborhood of a current solution vc
consist from only one solution vn

The probability of acceptance of the solution
vn depends on:

Difference in merit between vc and vn

Parameter T

T remains constant during the execution of
algorithm

T
)eval(v)eval(v nc

e
p −

+
=

1
1

Role of parameter T

Example:
eval(vc)=107, eval(vn)=120
maximization problem

Te
p 13

1
1

−

+
=

0.5…1010

0.5650

0.6620

0.7810

0.935

1.001

pT

Role of parameter T

Example:
eval(vc)=107, eval(vn)=120
Maximization problem

Te
p 13

1
1

−

+
=

0.5…1010

0.5650

0.6620

0.7810

0.935

1.001

pT

The greater the parameter T,
the smaller the importance of
the relative merit of the
competing points vc and vn

Role of parameter T

If T is huge -> search becomes random
T is very small -> stochastic hill-climber reverts into
ordinary hill climber

Te
p 13

1
1

−

+
=

0.5…1010

0.5650

0.6620

0.7810

0.935

1.001

pT

The greater the parameter T,
the smaller the importance of
the relative merit of the
competing points vc and vn

Example:
eval(vc)=107, T=10

150
120
107
100
80

eval(vn)

-43
-13
0
7
27

eval(vc)-eval(vn)

0.99
0.78
0.50
0.33
0.06

p

Example:
eval(vc)=107, T=10

150
120
107
100
80

eval(vn)

-43
-13
0
7
27

eval(vc)-eval(vn)

0.99
0.78
0.50
0.33
0.06

p
If eval(vc)=eval(vn),
the probability of
acceptance is 0.5

Simulated Annealing

Changes the parameter T during the
search
Starts with high value for T – random
search
The value of T gradually decreases
To the end T is very small and the SA
behaves like an ordinary Hill-climber

Simulated Annealing

Is based on the analogy from the
thermodynamics
To grow a crystal, the row material is heated
to a molten state
The temperature of the crystal melt is
reduced until the crystal structure is frozen in
Cooling should not be done two quickly,
otherwise some irregularities are locked in
the crystal structure

Simulated Annealing
Prozedure simulated annealing
begin

t=0
Intialize T
select a current string vc at random
evaluate vc
repeat
repeat

select a new point vn in the neighborhood of vc

if eval(vc) < eval(vn) then vc =vn

else if then vc=vn
until (termination-condition)
T=g(T,t)
t=t+1
until (halting-criterion)

end

T
)ceval(v)neval(v

erandom
−

<)1,0[

SA – problem specific questions

What is a solution?
What are the neighbors of a solution?
What is a cost of a solution
How do we determine the initial
solution

SA – specific questions

How do we determine the intial
“temperature” T”
How do we determine the cooling ration
g(T,t)?
How do we determine the termination
condition?
How do we determine the halting
criterion?

STEP 1: T=Tmax
select vc at random

STEP 2: pick a point vn from the neighborhood of vc

if eval(vn) is better than the val(vc)
then select it (vc=vn)
else select it with probability

repeat this step kT times

STEP 3: set T=rT
if

then goto STEP 2
else goto STEP 1

T
eval

e
Δ−

min
TT ≥

Simulated Annealing for SAT problem
Procedure SA-SAT
begin

tries=0
repeat

v <- random truth assignment
j=0
repeat

If v satisfies the clauses then return v

for k=1 to the number of variables do
begin

compute the increase (decreases) δ in the number of clauses made true if vk was
flipped
flip variable vk with the probability
v <- new assignment if the flip is made

end
j=j+1

until
tries=tries+1

until tries=MAX-TRIES
end

jreTT −=
max

1)1(−
−

+ Te
δ

min
TT ≤

SA for SAT

r represents a decay rate for the temperature
Spears (1996) used

Tmax=0.03 and Tmin=0.01
r depend on the number of variables and number
of tries

SA-SAT appeared to satisfy at least as many
formulas as GSAT, with less work
Advantage of SA-SAT came from its backward
moves

Other application of SA

Traveling Salesman Problem
VLSI design
Production scheduling
Timetabling problems
Image processing
…

References
Z. Michalewicz and D. B. Fogel. How to Solve It:
Modern Heuristics

Chapters 3 (sec. 3.2), 4 (sec. 4.1) , 5 (sec. 5.1)

Other papers
Simulated annealing for hard satisfiability problems :
W.M. Spears

Optimization by Simulated Annealing: An Experimental
Evaluation; Part I, Graph Partitioning
DS Johnson, CR Aragon, LA McGeoch, C Schevon

