
Problem Solving and Search in
Artificial Intelligence

Uninformed Search Strategies

Nysret Musliu
Database and Artificial Intelligence Group
Institut für Informationssysteme, TU-Wien

Introduction

 Many classic algorithms are designed to
search spaces for an optimum solution

 Broadly, classic methods fall into two classes:
 Algorithms that only evaluate complete solutions

 Exhaustive search, local search, …

 Algorithms that require the evaluation of partially
constructed or approximate solutions
 Branch and bound strategies, …

Exhaustive Search

 Checks every solution in the search space
until the best global solution has been found

 Can be used only for small instances of
problems

 Exhaustive (enumerative) algorithms are
simple

 Search space can be reduced by backtracking
search

 Some optimization methods, e.g., branch and
bound and A* are based on an exhaustive
search

Exhaustive Search

 How can we generate a sequence of
every possible solution to the problem?
 The order in which the solution are

generated is irrelevant
 Depends from selected representation

Enumerating the SAT
 We have to generate every possible binary string of length

n
 All solutions correspond to whole numbers in a one-to-one

mapping
 Generate all non-negative integers from 0 to 2n-1 and

convert each of these integers into the matching binary
string of length n
0000 0

1010 12
1011 11
1010 10

1111 151001 90110 60011 3
1110 141000 80101 50010 2
1101 130111 70100 40001 1

Enumerating the SAT

 Tree representations of search space for
SAT

x1=T

x2=T
...

x1=F

x2=T

x2=F

x2=F

x3=F x3=T

Enumerating TSP

 How to generate all possible
permutations?

 If some cities are not connected, some
permutation might not be feasible

Generation of Permutations
Procedure gen1-permutation(i)
Begin

k=k+1
P[i]=k
if k=n then

for q=1 to n do
print P[q]

for q=1 to n do
if P[q]=0 then gen1-permutation(q)

k=k-1
P[i]=0

end

Uninformed search strategies

 Breadth first search
 Depth first search
 Depth limited search
 Iterative deepening search

Breadth First Search

 The shallowest
unexpanded node
is first expanded x1=T

x2=T
...

x1=F

x2=T

x2=F

x2=F

x3=F x3=T

Breadth First Search

 The shallowest
unexpanded node
is first expanded x1=T

x2=T
...

x1=F

x2=T

x2=F

x2=F

x3=F x3=T

Breadth First Search

 The shallowest
unexpanded node
is first expanded x1=T

x2=T
...

x1=F

x2=T

x2=F

x2=F

x3=F x3=T

Breadth First Search

 The shallowest
unexpanded node
is first expanded x1=T

x2=T
...

x1=F

x2=T

x2=F

x2=F

x3=F x3=T

Breadth First Search

x1=T

x2=T
...

x1=F

x2=T

x2=F

x2=F

x3=F x3=T

x1=T

x2=T
...

x1=F

x2=T

x2=F

x2=F

x3=F x3=T

Breadth First Search

x1=T

x2=T
...

x1=F

x2=T

x2=F

x2=F

x3=F x3=T

x1=T

x2=T
...

x1=F

x2=T

x2=F

x2=F

x3=F x3=T

Depth First Search
Procedure depth-first(v)
Begin

visit v
for each child w of v do
depth-first(w)

end

x1=T

x2=T
...

x1=F

x2=T

x2=F

x2=F

x3=F x3=T

Depth First Search
Procedure depth-first(v)
Begin

visit v
for each child w of v do
depth-first(w)

end

x1=T

x2=T
...

x1=F

x2=T

x2=F

x2=F

x3=F x3=T

Depth First Search
Procedure depth-first(v)
Begin

visit v
for each child w of v do
depth-first(w)

end

x1=T

x2=T
...

x1=F

x2=T

x2=F

x2=F

x3=F x3=T

Depth First Search
Procedure depth-first(v)
Begin

visit v
for each child w of v do
depth-first(w)

end

x1=T

x2=T
...

x1=F

x2=T

x2=F

x2=F

x3=F x3=T

Backtracking

 Suppose the SAT formula contains a
clause: ...(x1v x2)...

x1=T

x2=T
...

x1=F

x2=T

x2=F

x2=F

x3=F x3=T

Backtracking

 Suppose the SAT formula contains a
clause: ...(x1v x2)...

x1=T

x2=T
...

x1=F

x2=T

x2=F

x2=F

x3=F x3=T

Backtracking

 Suppose the SAT formula contains a
clause: ...(x1v x2)...

x1=T

x2=T
...

x1=F

x2=T

x2=F

x2=F

x3=F x3=T

Remaining branches
below this node can
lead to nothing but
a dead end

Backtracking

 Suppose the SAT formula contains a
clause: ...(x1v x2)...

x1=T

x2=T
...

x1=F

x2=T

x2=F

x2=F

x3=F x3=T

Remaining branches
below this node can
lead to nothing but
a dead end

backtrack

Search algorithms performance

 Completeness
 Does the algorithm finds a solution if that exists

 Optimality
 Does the algorithm finds an optimal solution

 Time Complexity
 Number of expanded nodes

 Space Complexity
 Memory needed to perform the search

Search algorithms performance

b : branching factor (maximum number of
successors)

d : the depth of the shallowest goal node
in the search tree

m : maximum depth of the tree

Breadth first search performance

 Complete if b is finite
 Optimal if the cost of each step is 1
 Time:

1 + b + b2 + … + bd = (bd+1-1)/(b-1)
= O(bd)

 Space:
O(bd)

Depth first search performance

 Complete if the search tree if finite
 Not optimal
 Time:

1 + b + b2 + … + bm = O(bm)

 Space:
O(bm)

Depth-limited search

 Depth first search with depth limit L
 Nodes at depth L are not expanded

 Eliminates problem with infinite path
 How to select L?
 Possible failures:

 No solution
 Cutoff – no solution within the depth limit

Iterative deepening depth first
search

 Repeat Depth-limited search with
L=1,2,3,…

Iterative deepening depth first
search

Iterative deepening depth first
search

Properties of Iterative deepening
search

 Complete
 Time

 O(bd): (d+1)(1) + db + (d-1)b2 + … + (1) bd

 Space:
 O(bd)

 Optimal if step cost is 1

Construct Search Tree for 8-Queens
Problem?

Construct search tree for 8-
Puzzle?

Exam question: 18.10.2007

(Artificial Intelligence, Russell and Norvig): The missionaries and
cannibals problem is usually stated as follows. Three
missionaries and three cannibals are on one side of the river,
along with a boat that can hold one or two people. Find a
way to get everyone to the other side, without ever leaving a
group of missionaries in one place outnumbered by the
cannibals in that place. This problem is famous in AI because
it was the subject of the first paper that approached problem
formulation from an analytical viewpoint (Amarel, 1968). (18
Points)

 Formulate the problem precisely, making only those distinctions
necessary to ensure a valid solution. Draw a diagram of the
complete state space.

 Solve this problem by using depth first search and breadth first
search. (Check for the repeated states).

DEMO…

 Rotating Workforce Scheduling

Illustration of depth first search and backtracking …

Literature

 Artificial Intelligence: A Modern
Approach (Stuart Russell and Peter
Norvig)
 Chapter 3

 How to Solve It: Modern Heuristics (Z.
Michalewicz and D. B. Fogel.)
 Chapter 3

