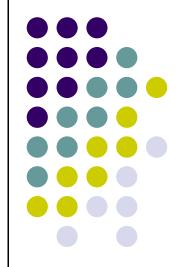
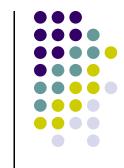
Problem Solving and Search in Artificial Intelligence

Algorithm Selection

Nysret Musliu Database and Artificial Intelligence Group Institut of Logic and Computation, TU Wien



Motivation



- Usually several search algorithms are available for solving a particular problem
- No free lunch theorem
 - "...for any algorithm, any elevated performance over one class of problems is offset by performance over another class" [1]

"any two algorithms are equivalent when their performance is averaged across all possible problems" [2]

How to select the best algorithm for a specific instance?

David Wolpert, William G. Macready: No free lunch theorems for optimization. IEEE Transac. Evolutionary Computation 1(1): 67-82 (1997)
 Wolpert, D.H., and Macready, W.G. (2005) "Coevolutionary free lunches," IEEE Transac. on Evolutionary Computation, 9(6): 721-735

Algorithm selection (Rice's framework)

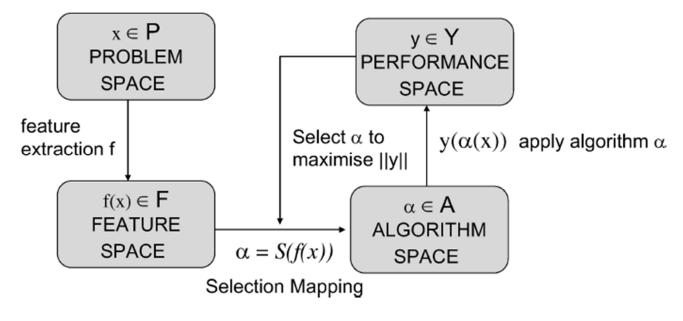


Figure taken from [9]

 [8] John R. Rice: The Algorithm Selection Problem. <u>Advances in Computers 15</u>: 65-118 (1976)
 [9] Kate Smith-Miles: Cross-disciplinary perspectives on meta-learning for algorithm selection. <u>ACM Comput. Surv. 41</u>(1): (2008)

Algorithm selection

Input (see [8] and [9]):

- Problem space P that represents the set of instances of a problem class
- A feature space F that contains measurable characteristics of the instances generated by a computational feature extraction process applied to P
- Set A of all considered algorithms for tackling the problem
- The performance space Y represents the mapping of each algorithm to a set of performance metrics

Problem:

For a given problem instance $x \in P$, with features $f(x) \in F$, find the selection mapping S(f(x)) into algorithm space, such that the selected algorithm a E A maximizes the performance mapping $y(a(x)) \in Y$

 ^[8] John R. Rice: The Algorithm Selection Problem. <u>Advances in Computers 15</u>: 65-118 (1976)
 [9] Kate Smith-Miles: Cross-disciplinary perspectives on meta-learning for algorithm selection. <u>ACM Comput. Surv. 41</u>(1): (2008)

Algorithm selection

- An important issue is the selection of appropriate features
 - Example: Selection of sorting algorithms based on features ([10]):
 - Degree of pre-sortedness of the starting sequence
 - Length of sequence
- A supervised machine learning approach can be used to select the algorithm to be used based on features of the input instance
- A training set with instances (and their features) and best performing algorithm should be provided to the supervised machine learning algorithms to train them

[9] Kate Smith-Miles: Cross-disciplinary perspectives on meta-learning for algorithm selection. <u>ACM Comput. Surv. 41</u>(1): (2008)
 [10] Guo, H. 2003. Algorithm selection for sorting and probabilistic inference: A machine learning-based approach.
 Ph.D. dissertation, Kansas State University.

Algorithm selection for sorting [10]

- P=43195 instances of random sequences of different sizes and complexities
- A=5 sorting algorithms (InsertionSort, ShellSort, heapSort, mergeSort, QuickSort)
- Y=algorithm rank based on CPU time to achieve sorted sequence
- F=3 measures of presortedness and length of sequences (size)
- Machine learning methods: C4.5, Naïve Bayes, Bayesian network learner

Different other examples are given in [9]

[10] Guo, H. 2003. Algorithm selection for sorting and probabilistic inference: A machine learning-based approach. Ph.D. dissertation, Kansas State University.

Other approaches

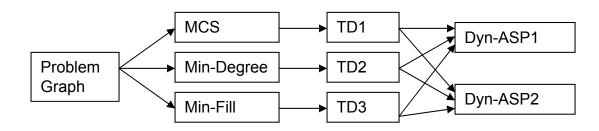
- Hyperheuristics [11]
 - Used to select between different low level heuristics
 - See different approaches used in hyperheuristic competition:

http://www.asap.cs.nott.ac.uk/chesc2011/

• Dynamic Algorithm selection with reinforcement learning [12]

- [11] Burke, E. K., M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and R. Qu (2010). <u>Hyper-heuristics: A Survey of the State of the Art</u>, School of Computer Science and Information Technology, University of Nottingham, Computer Science Technical Report No. NOTTCS-TR-SUB-0906241418-2747.
- [12] Michail G. Lagoudakis, Michael L. Littman: Algorithm Selection using Reinforcement Learning. ICML 2000: 511-518

Algorithm selection for treedecomposition based algorithms



- Select one of algorithms based on tree decomposition features (tree width, size of tree decomposition, ...)
- Classification
 - Predict the algorithm to be used based on features of the input instance
- Regression
 - Predict the running time of both algorithms and select then the more efficient algorithm

Reference:

Michael Morak, Nysret Musliu, Reinhard Pichler, Stefan Rümmele, Stefan Woltran. <u>Evaluating</u> <u>Tree-Decomposition Based Algorithms for Answer Set Programming</u>. Learning and Intelligent Optimization Conference (LION 6), Paris, Jan 16-20, 2012. Lecture Notes in Computer Science, Volume 7219, pages 130-144, Springer.

Case Studies

- Case study 1:
 - Application of Machine Learning for Algorithm Selection in Graph Coloring References:
 - Martin Schwengerer. <u>Algorithm Selection for the Graph Coloring Problem</u>. *Master Thesis, Vienna University of Technology, 2012.*
 - Nysret Musliu, Martin Schwengerer. <u>Algorithm Selection for the Graph Coloring Problem</u>. Learning and Intelligent OptimizatioN Conference (LION 7), Catania - Italy, Jan 7-11, 2013. Lecture Notes in Computer Science, to appear.
- Case study 2:
 - Improving the Efficiency of Dynamic Programming on Tree Decompositions via Machine Learning

References:

- Michael Abseher, Nysret Musliu, Stefan Woltran. Improving the Efficiency of Dynamic Programming on Tree Decompositions via Machine Learning. J. Artif. Intell. Res. 58: 829-858 (2017)
- Michael Abseher, Frederico Dusberger, Nysret Musliu, Stefan Woltran. Improving the Efficiency of Dynamic Programming on Tree Decompositions via Machine Learning. IJCAI 2015: 275-282

Algorithm Selection for the Graph Coloring Problem

Nysret Musliu Martin Schwengerer

DBAI Group, Institute of Information Systems, Vienna University of Technology

Learning and Intelligent OptimizatioN Conference 2013

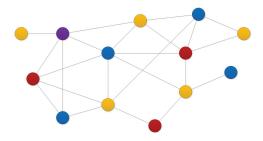
FAKULTÄT FÜR INFORMATIK

Faculty of Informatics

Supported by FWF (The Austrian Science Fund) and FFG (The Austrian Research Promotion Agency).

Graph Coloring

- The Graph Coloring Problem (GCP) is a well-known NP-hard problem.
- Input: Graph G = (V, E)
- Objective: assign each node a color such that
 - no adjacent nodes have the same color and
 - the total number of colors k is minimized.



Graph Coloring (cont.)

- ▶ Exact approaches are in general only usable up to 100 nodes.
- Several (meta)heuristic approaches:
 - Tabu search
 - Simulated annealing
 - Genetic algorithm
 - Ant colony optimization
 - ▶ ...
- But: None of these techniques is superior to all others.
- Practical issue: Which heuristic should be used?

Graph Coloring (cont.)

- ▶ Exact approaches are in general only usable up to 100 nodes.
- Several (meta)heuristic approaches:
 - Tabu search
 - Simulated annealing
 - Genetic algorithm
 - Ant colony optimization
 - ▶ ...
- But: None of these techniques is superior to all others.
- Practical issue: Which heuristic should be used?

Our approach: Select for each instance the algorithm which is expected to give best performance.

Algorithm Selection

- Algorithm Selection Problem by Rice [RICE, 1976]
- Main components:
 - Problem space P
 - Feature space F
 - Algorithm space A
 - Performance space Y
- ▶ Task: Find a selector *s* that selects for an instance $i \in P$ the best algorithm $a \in A$.

Related Work

- Algorithm selection for other problems
 - SAT (e.g. SATzilla [XU et al., 2008])
 - ► ASP (e.g. ME-ASP [MARATEA et al., 2012])
 - TSP (e.g. [KANDA et al., 2011])
 - ▶ ...
- Recent research concerning the GCP
 - Predicting performance of DSATUR and TABU search [SMITH-MILES et al., 2013]

Graph Coloring using Automated Algorithm Selection

Algorithm selection for the GCP using *machine learning*.

Our system:

- Problem space P: instances of the GCP
- ► Feature space F: 78 different attributes of a graph
- Algorithm space A: state-of-the-art heuristics for the GCP
- Performance criteria Y: lowest k and shortest runtime

As decision procedure S, we use *classification algorithms*.

Features

We identified **78** basic features of a GCP instance that can be calculated in polynomial time based on:

- Graph Size
- Node degree
- Clustering Coefficient
- Clique Size

- Greedy Coloring Algorithms
- Local Search Attributes
- Lower- and upper bounds
- Tree Decomposition

Features

Graph Size Features: 1 no. of nodes: n 2: no. of edges: m 3,4: ratio: $\frac{n}{m}$, $\frac{m}{n}$ 5: density: $\frac{2 \cdot m}{n \cdot (n-1)}$

Node Degree:

6-13: nodes degree statistics: min, max, mean, median, Q0. 25, $O_{0.75}$, variation coefficient, entropy

Maximal Clique:

14-20: normalized by n: variation coefficient, entropy

- 21: computation time
- 22: maximum cardinality

Clustering Coefficient 23: alobal clustering coefficient 24-31: local clustering coefficient: min, max, mean, median, $Q_{0,25}, Q_{0,75}$, variation coefficient, entropy 32-39: weighted local clustering coefficient: min. max. mean. median, O_{0.25}, O_{0.75}, variation coefficient, entropy 40: computation time

Local Search Probing Features: 41, 42: avg. impr.: per iteration, per run 43: avg no. iterations to local optima (LO) per a run 44, 45; no. conflict nodes: at LO, at end 46, 47: no. conflict edges: at LO, at end 48: no. LO found 49: computation time Greedy Coloring: 50.51: no. colors needed: kDSAT. KRIF 52, 53: computation time: t_{DSAT}, t_{RLF} 54, 55: ratio: $\frac{k_{DSAT}}{k_{DLE}}$, $\frac{k_{RLF}}{k_{DLE}}$ min, max, median, $Q_{0.25}$, $Q_{0.75}$, 56: best coloring: min(k_{DSAT} , k_{RLF}) 57-72: independent-set size: min, max, mean, median, Q_{0.25}, $Q_{0.75}$, variation coefficient, entropy

> Tree Decomposition: 73: width of decomposition 74: computation time

Lower- and Upper Bound-

75, 76: distance:
$$\frac{(B_l - B_u)}{B_l}$$
, $\frac{(B_u - B_l)}{B_u}$
77, 78: ratio: $\frac{B_l}{B_u}$, $\frac{B_u}{B_l}$

Algorithm Space

We tested 6 state-of-the-art heuristic algorithms:

- Foo-PartialCol (FPC)
- Hybrid Evolutionary Algorithm (HEA)
- Iteraded Local Search (ILS)
- Multi-Agent Fusion Search (MAFS)
- MMT
- ► TABUCOL (TABU)

[BLÖCHLIGER and ZUFFEREY, 2008]

[GALINIER and HAO, 1999]

[CHIARANDINI and STÜTZLE, 2002]

[XIE and LIU, 2009]

[MALAGUTI et al., 2008]

[HERTZ and DE WERRA, 1987]

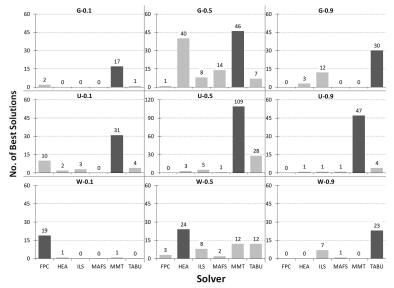
Benchmark Data

▶ 3 publicly available instance sets:

- chi500: 520 graphs with 500 vertices¹
- chi1000: 740 graphs with 1000 vertices¹
- dimacs: 174 graphs of the DIMACS challenge²
- Each instance is tested **10** times.
- Total runtime: roughly 90.000 CPU hours.
- ► Focus on hard instances (859 of the 1265 graphs).

¹available at http://www.imada.sdu.dk/~marco/gcp-study/ ²available at http://mat.gsia.cmu.edu/COLOR04/

Solver Performance



Number of hard instances from the set chil000 on which the algorithms show best performance.

Selection Procedure

• We tested **6** popular classification algorithms:

- Bayesian Networks (BN)
- C4.5 Decision Trees (DT)
- k-Nearest Neighbor (kNN)
- Random Forests (RF)
- Multilayer Perceptrons (MLP)
- Support-Vector Machines (SVM)

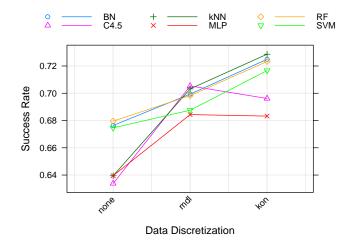
with several parameter configurations for each classifier.

Other Important Issues

In addition, we experimented with:

- Effect of Data Preparation:
 - Study the effect of two discretization methods:
 - ► The classical minimum-descriptive length (MDL) and
 - Kononenko's criteria (KON).
- Feature Selection:
 - Use best-first and a genetic search strategy to identify useful features.

Effect of Discretization

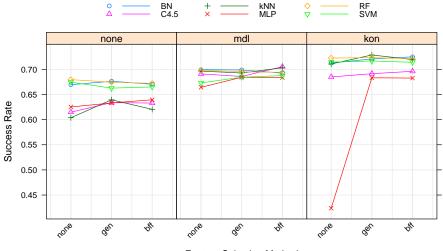


- Discretization improves the performance of almost any classifier.
- KON is slightly better than MDL for some classifiers.

Starting with our 78 basic attributes, we:

- 1. Apply *best-first* and a *genetic search* strategy to identify two subsets U_b and U_g .
- 2. Add the product $x_i \cdot x_j$ and the quotient x_i/x_j of each pair of features $x_i, x_j \in (U_b \cup U_g)$ as additional features.
- 3. Apply again *best-first* and a *genetic search*.

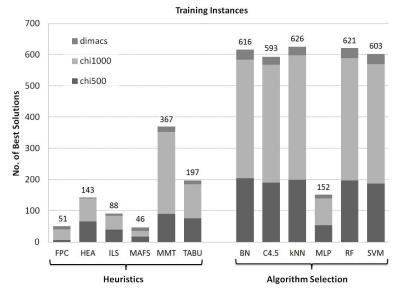
Results of Feature Selection



Results of Feature Selection and Data Discretization

- Use the feature subset obtained by the genetic search.
- Data discretized with Kononenko's criteria.

Results on the Training Data



Results of **20** runs of a *10-fold cross-validation* using *KON* and the results of the *genetic search*.

Results on the Training Data (cont.)

• We further applied a *corrected resampled T-test* with $\alpha = 0.05$ using cross-validation.

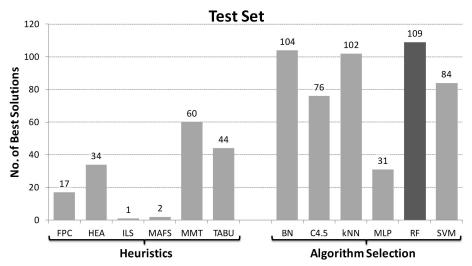
Results:

- ▶ *BN*, *kNN* and *RF* are significant better than *DT*.
- ► All other pairwise comparisons do not show significant differences.

Evaluation on the Test Set

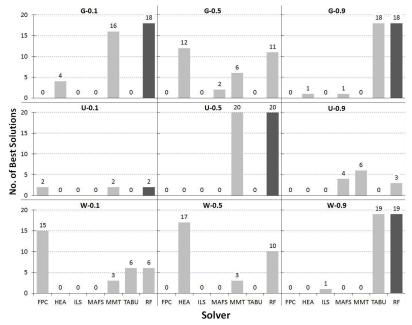
- We create a *test set* with 180 graphs of different class, size and density.
- Our system based on automated algorithm selection:
 - Using the all 6 heuristics.
 - Trained with the benchmark data.
 - Data discretized with Kononenko's criteria.

Evaluation on the Test Set - Results



Number of best solutions per solver. The dark bar denotes the approach that shows on the highest number of instances the best performance.

Evaluation on the Test Set (cont.)



Conclusion

- We applied automated algorithm selection for the GCP.
- Key features:
 - ▶ 78 basic features of an GCP instance.
 - 6 state-of-the-art heuristics.
 - Training data of 859 hard graphs.
 - Classification algorithms as selection procedure.

Results:

- Classification algorithms predicts for up to 70.39% of the graphs the most suited algorithm.
- Improvement of +33.55% compared with the best solver.

References I

- BLÖCHLIGER, I. and ZUFFEREY, N. (2008).
 Computers & Operations Research 35, 960–975.
- CHIARANDINI, M. and STÜTZLE, T. (2002).
 An application of Iterated Local Search to Graph Coloring.
 In JOHNSON, D. S., MEHROTRA, A., and TRICK, M. A., editors, *Proceedings of the Computational Symposium on Graph Coloring and its Generalizations*, pages 112–125, Ithaca, New York, USA.
- GALINIER, P. and HAO, J.-K. (1999). Journal of Combinatorial Optimization 3, 379–397.
- HERTZ, A. and DE WERRA, D. (1987). Computing 39, 345–351.
- KANDA, J., CARVALHO, A., HRUSCHKA, E., and SOARES, C. (2011). Neural Networks 8.
- MALAGUTI, E., MONACI, M., and TOTH, P. (2008). INFORMS Journal on Computing 20, 302–316.
- MARATEA, M., PULINA, L., and RICCA, F. (2012). Applying Machine Learning Techniques to ASP Solving. In DOVIER, A. and COSTA, V. S., editors, *ICLP (Technical Communications)*, volume 17 of *LIPIcs*, pages 37–48. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.
- RICE, J. R. (1976). Advances in Computers 15, 65–118.
- SMITH-MILES, K., WREFORD, B., LOPES, L., and INSANI, N. (2013). Predicting Metaheuristic Performance on Graph Coloring Problems Using Data Mining. In Hybrid Metaheuristics, Studies in Computational Intelligence, pages 417–432.
- XIE, X.-F. and LIU, J. (2009). Journal of Combinatorial Optimization 18, 99–123.

References II

XU, L., HUTTER, F., HOOS, H. H., and LEYTON-BROWN, K. (2008). Journal of Artificial Intelligence Research 32.

Appendix - Evaluation on the Test Set (cont.)

Solver	No. Best	s(c, I, A)	err(k, i)	Rank	
	Solution	(%)	(%)	avg	σ
Heuristics (H)					
FPC	17	11.18	25.42	3.29	1.42
HEA	34	22.37	14.91	2.66	1.38
ILS	1	0.66	21.73	3.82	1.36
MAFS	2	1.32	30.17	4.62	1.52
MMT	60	39.47	3.78	2.76	1.84
TABU	44	28.95	19.23	2.58	1.29
Algorithm Selection (AS)					
BN	104	68.42	5.16	1.59	1.08
C4.5	76	50.00	5.86	2.21	1.50
kNN	102	67.11	3.82	1.52	0.91
MLP	31	20.39	24.90	3.14	1.66
RF	109	71.71	5.44	1.41	0.78
SVM	84	55.26	8.32	1.97	1.38
Best (H)	60	39.47	3.78	2.58	1.29
Best (AS)	109	71.71	3.82	1.41	0.78

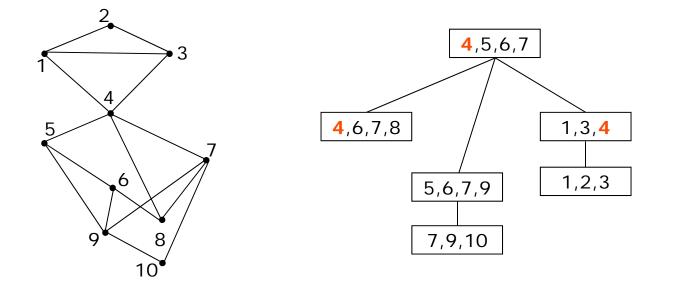
Improving the Efficiency of Dynamic Programming on Tree Decompositions via Machine Learning

Michael Abseher, Frederico Dusberger, Nysret Musliu, Stefan Woltran TU Wien

The work is supported by the Austrian Science Fund

- Many NP-hard problems are known to become tractable for instances whose treewidth is bounded by some constant k
- A promising approach for solving problems using tree decompositions:
 - Compute a tree decomposition with small width
 - Compute the solutions by a dynamic programming algorithm that consecutively solves the respective sub-problems

Tree decomposition of a graph

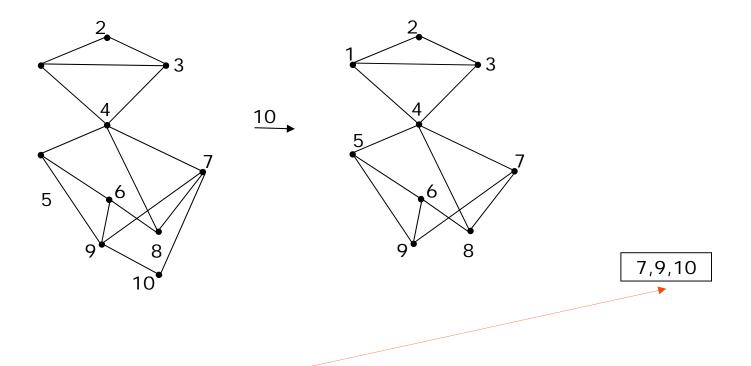


All pairs of connected vertices appear in some node of the tree Connectedness condition for *vertices*

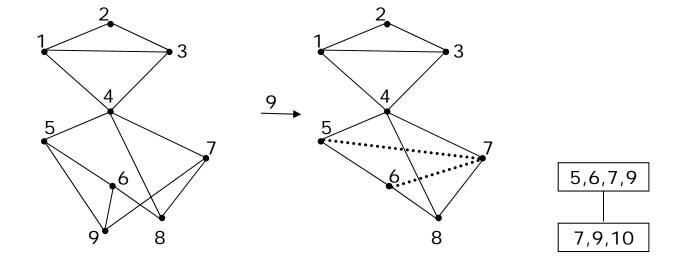
Width: (number of vertices in the largest tree node) -1 = 3 Treewidth: minimal width over all possible tree decompositions

- For the given problem find the tree decomposition with minimal width -> NP hard
- There exist perfect elimination ordering which produces tree decomposition with treewidth (smallest width)
- Tree decomposition problem → search for the best elimination ordering of vertices!

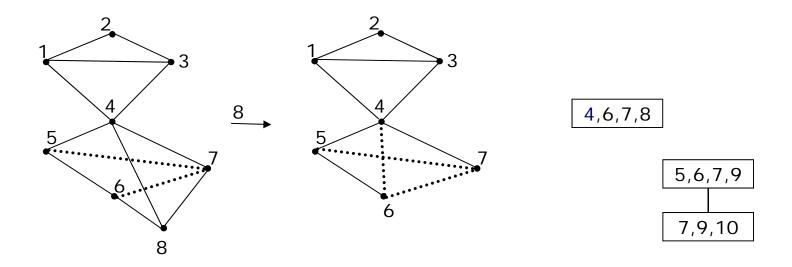
Perfect Elimination Ordering

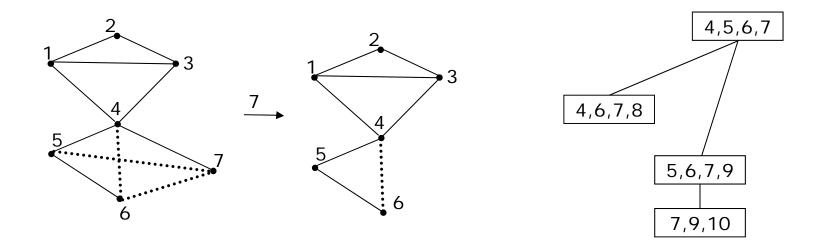


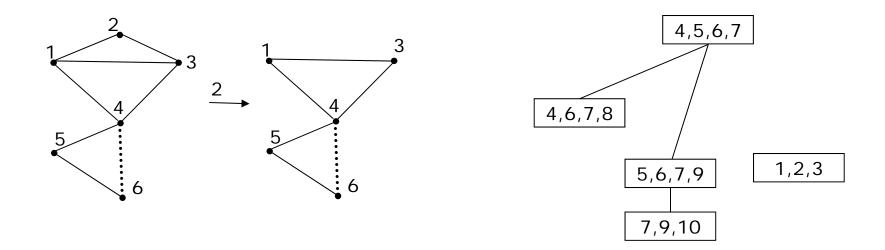
Vertex 10 is eliminated from the graph. All neighbors of 10 are connected and a tree node is created that contains vertex 10 and its neighbors

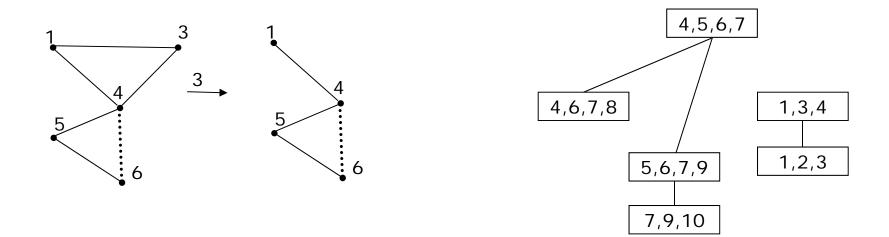


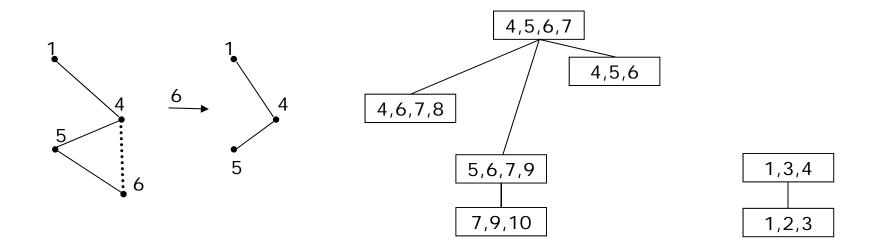
Vertex 9 is eliminated from the graph. All neighbors of vertex 9 are connected and a new tree node is created

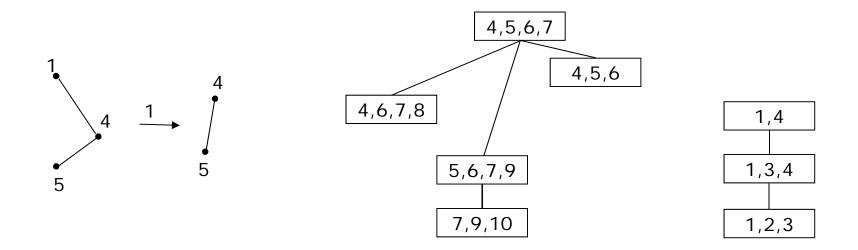


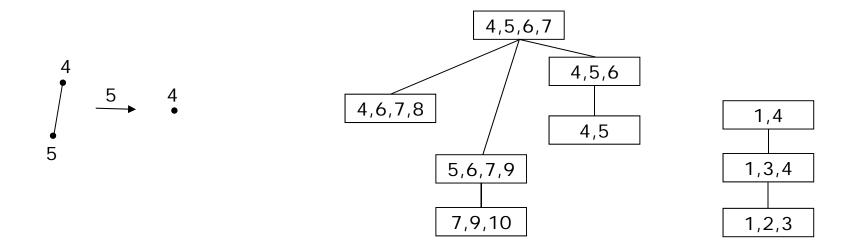


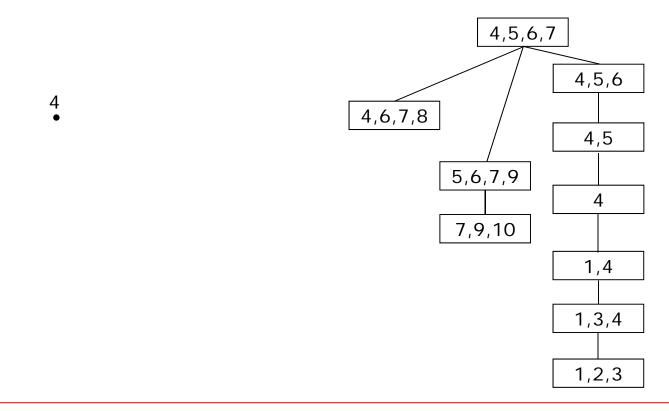


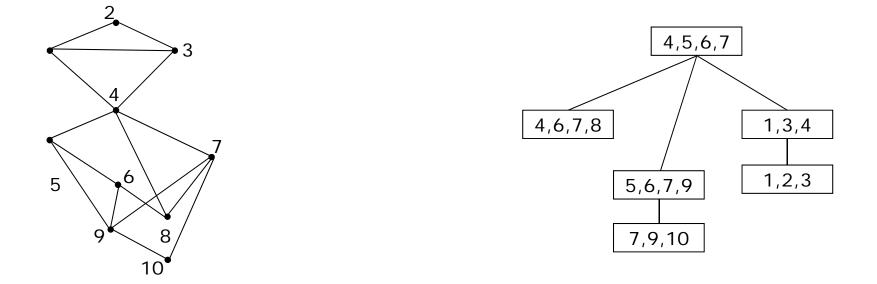








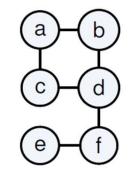


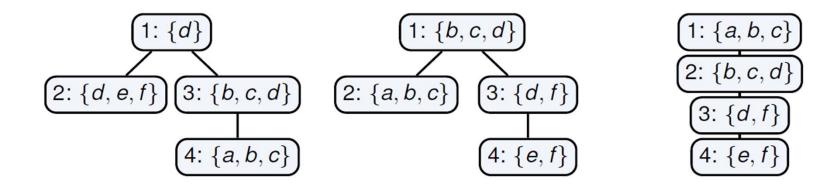


Algorithms for tree decompositions

- Exact Methods
 - Branch and bound algorithms
 - A* algorithm
- Greedy methods
 - Maximum Cardinality Search (MCS)
 - Min-fill
 - Min-degree
- Metaheuristic methods
 - Tabu Search
 - Genetic/Memetic Algorithms
 - Iterated Local Search
 - Ant Colony Optimization

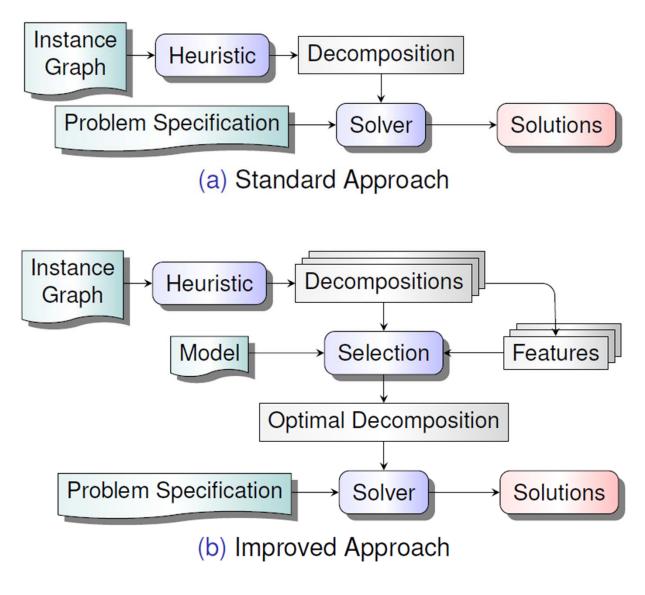
• A problem instance has various tree decompositions:



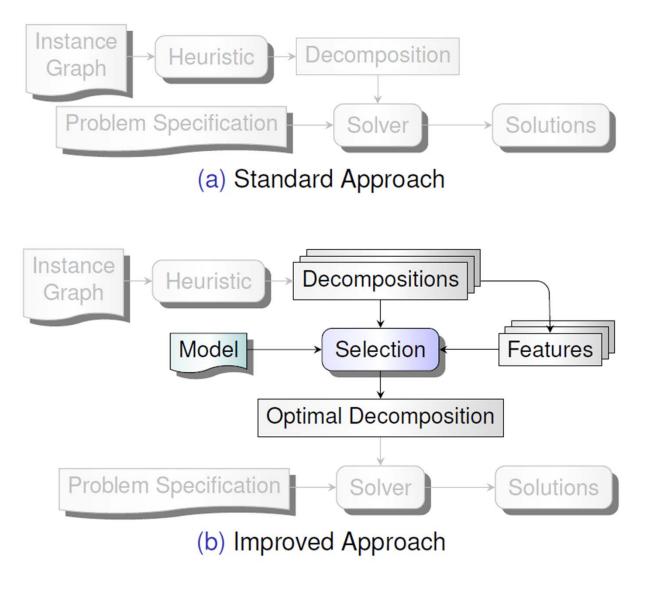


- Experiments show that the width is likely not the only important parameter having influence on the runtime of dynamic programming algorithms
- Even decompositions of the same width often yield extremely diverging runtimes
- How to determine the decomposition which promises best performance?

Improving the efficiency via machine learning



Selection of tree decomposition



Features of tree decomposition

Decomposition Size:

- BagSize*
- Σ BagSize
- NodeCount
- ContainerCount*

Node Features*:

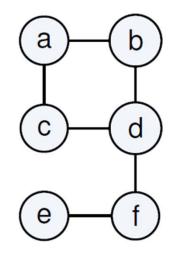
- Depth*
- BagSize*
- NodeCount
- Percentage

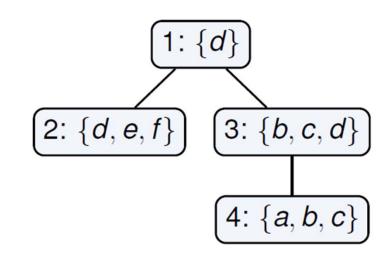
Structural Features:

- ItemLifetime*
- JoinNodeDistance*
- NumberOfChildren*
- BalancednessFactor
- AdjacencyRatio*
- ConnectednessRatio*
- NeighborCoverageRatio*

- * Mean, Standard Deviation, Median, Minimum, Maximum
- Separately for Introduce-Node, Forget-Node, Join-Node, Leaf-Node

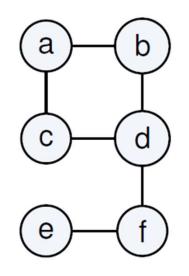
Feature BagSize

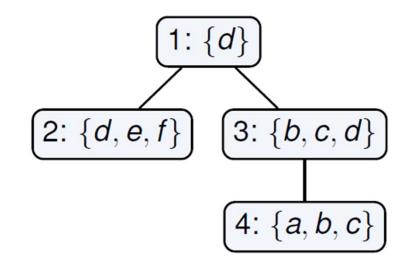




Node	BagSize
1	1
2	3
3	3
4	3
Total:	10

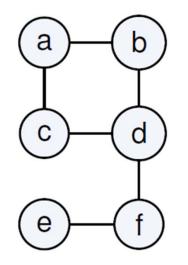
Feature ContainerCount

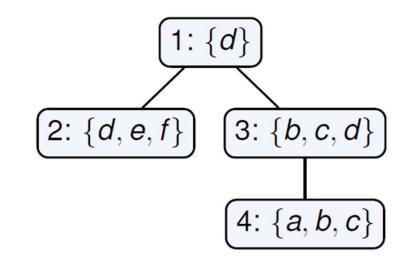




Vertex	Containers
а	1
b	2
С	2
d	3
е	1
f	1

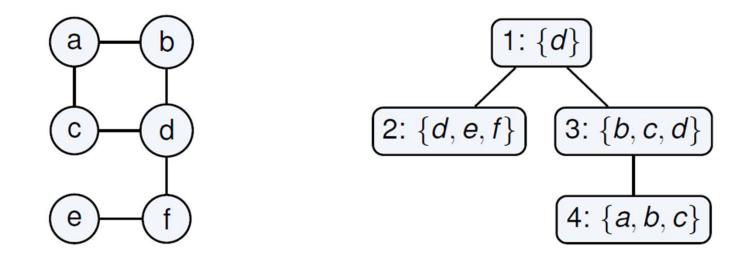
Feature ItemLifetime





Vertex	Lifetime
а	1
b	2
С	2
d	2
e	1
f	1

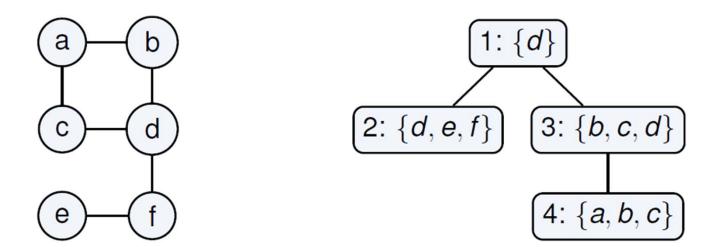
Feature AdjecencyRatio



AdjacencyRatio of a Bag $\chi(i)$

 $\begin{aligned} & \textit{AdjacencyRatio}(\chi(i)) = \sum_{x \in \chi(i)} |N(x) \cap \chi(i)| / max(1, |\chi(i)|) \\ & \text{where } N(x) = \{y \in V : (x, y) \in E, x \neq y\} \end{aligned}$

Feature NeighborCoverageRatio



NeighborCoverageRatio of a Bag $\chi(i)$

$$\begin{aligned} \textit{NeighborCoverageRatio}(\chi(i)) &= \sum_{x \in \chi(i)} \frac{|N(x) \cap \chi(i)|}{|N(x)|} / max(1, |\chi(i)|) \\ \end{aligned}$$
 where $N(x) = \{y \in V : (x, y) \in E, x \neq y\}$

Methodology

- Algorithm Space:
 - **D-FLAT (D)**:

Based on Answer Set Programming

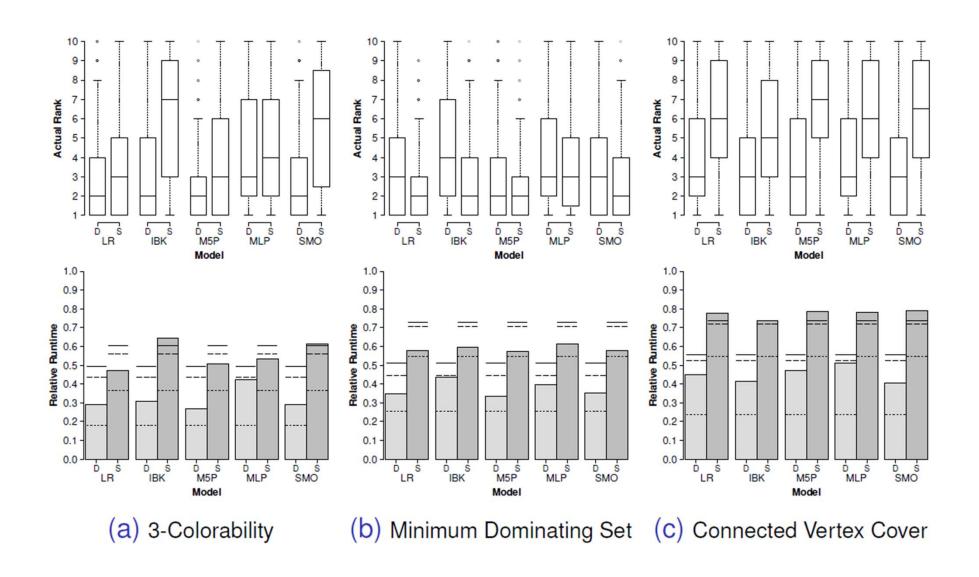
SEQUOIA (S):

Based on a solver for Monadic Second-Order Logic

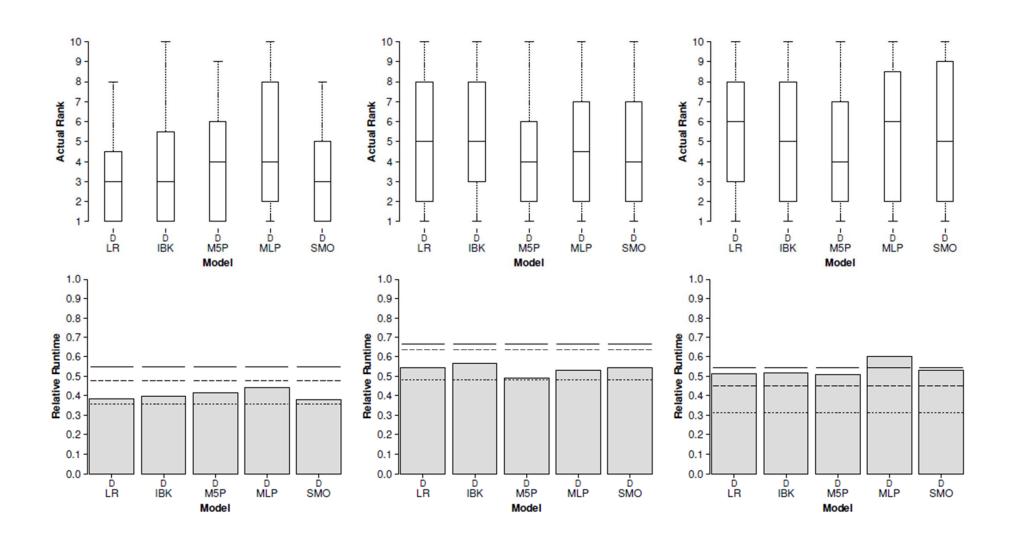
- Problem Space:
 - 3-Colorability, Minimum Dominating Set, Connected Vertex Cover
 - Graphs based on real-world instances
- Feature Space:
 - Width, NodeCount, ContainerCount
 - ... and more than 70 additional features

Methodology

- Training data:
 - 900 tree decompositions for each problem and solver
 - New features
 - Runtimes of dynamic programming algorithm
- Machine learning techniques:
 - Linear Regression (LR)
 - k-Nearest Neighbor (IBK)
 - M5P Regression Tree (M5P)
 - Multi-Layer Perceptron (MLP)
 - Support-Vector Machines (SMO)



Results: Real-world Instances



Conclusion and Future Work

- The *width* of a tree decomposition is not a reliable measure to predict the runtime of a dynamic programming algorithm in a real-world setting on its own
- We determined various features of tree decompositions. Our experiments indicate that ...
 - the new features indeed help to find good decompositions
 - computing the novel features is computationally cheap
 - selecting a good decomposition is of negligible effort
 - our concept also pays off in real-world settings
- Future work:
 - Investigation of additional problem domains
 - Identification of the most crucial features
 - Ultimate goal:
 - Development of new heuristics for tree decompositions
 - ... which consider the most important features