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Motivation
 Usually several search algorithms are available for solving a 

particular problem
 No free lunch theorem

“…for any algorithm, any elevated performance over one class of 
problems is offset by performance over another class” [1]

“any two algorithms are equivalent when their performance is 
averaged across all possible problems“ [2]

How to select the best algorithm for a specific instance?

[1] David Wolpert, William G. Macready: No free lunch theorems for optimization. IEEE Transac. Evolutionary Computation 1(1): 67-82 (1997)
[2] Wolpert, D.H., and Macready, W.G. (2005) "Coevolutionary free lunches," IEEE Transac. on Evolutionary Computation, 9(6): 721-735
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Algorithm selection (Rice’s 
framework)

Figure taken from [9] 

[8] John R. Rice: The Algorithm Selection Problem. Advances in Computers 15: 65-118 (1976) 
[9] Kate Smith-Miles: Cross-disciplinary perspectives on meta-learning for algorithm selection. 

ACM Comput. Surv. 41(1): (2008) 
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Algorithm selection
Input (see [8] and [9]):
 Problem space P that represents the set of instances of a problem class
 A feature space F that contains measurable characteristics of the 

instances generated by a computational feature extraction process 
applied to P

 Set A of all considered algorithms for tackling the problem
 The performance space Y represents the mapping of each algorithm to 

a set of performance metrics

Problem:
For a given problem instance x E P, with features f(x) E F, find the 

selection mapping S(f(x)) into algorithm space , such that the selected 
algorithm a E A maximizes the performance mapping y(a(x)) E Y

[8] John R. Rice: The Algorithm Selection Problem. Advances in Computers 15: 65-118 (1976) 
[9] Kate Smith-Miles: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1): (2008) 
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Algorithm selection
 An important issue is the selection of appropriate features

 Example: Selection of sorting algorithms based on features 
([10]):

 Degree of pre-sortedness of the starting sequence
 Length of sequence

 A supervised machine learning approach can be used to select 
the algorithm to be used based on features of the input instance 

 A training set with instances (and their features) and best 
performing algorithm should be provided to the supervised 
machine learning algorithms to train them

[9] Kate Smith-Miles: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1): (2008) 
[10] Guo, H. 2003. Algorithm selection for sorting and probabilistic inference: A machine learning-based approach.
Ph.D. dissertation, Kansas State University.
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Algorithm selection for sorting [10]
 P=43195 instances of random sequences of different sizes and 

complexities
 A=5 sorting algorithms (InsertionSort, ShellSort, heapSort, 

mergeSort, QuickSort)
 Y=algorithm rank based on CPU time to achieve sorted 

sequence
 F=3 measures of presortedness and length of sequences (size)
 Machine learning methods: C4.5, Naïve Bayes, Bayesian 

network learner

Different other examples are given in [9] 
[10] Guo, H. 2003. Algorithm selection for sorting and probabilistic inference: A machine learning-based approach.
Ph.D. dissertation, Kansas State University.



7

Other approaches
 Hyperheuristics [11]
 Used to select between different low level heuristics
 See different approaches used in hyperheuristic 

competition:
http://www.asap.cs.nott.ac.uk/chesc2011/

 Dynamic Algorithm selection with reinforcement 
learning [12]

[11] Burke, E. K., M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and R. Qu (2010). Hyper-heuristics: A Survey of the 
State of the Art, School of Computer Science and Information Technology, University of Nottingham, Computer 
Science Technical Report No. NOTTCS-TR-SUB-0906241418-2747. 

[12] Michail G. Lagoudakis, Michael L. Littman: Algorithm Selection using Reinforcement Learning. ICML 2000: 511-518 
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Algorithm selection for tree-
decomposition based algorithms 

 Select one of algorithms based on tree decomposition features (tree 
width, size of tree decomposition, …)

 Classification
 Predict the algorithm to be used based on features of the input instance

 Regression
 Predict the running time of both algorithms and select then the more efficient 

algorithm 

Reference: 
Michael Morak, Nysret Musliu, Reinhard Pichler, Stefan Rümmele, Stefan Woltran. Evaluating 
Tree-Decomposition Based Algorithms for Answer Set Programming. Learning and Intelligent 
Optimization Conference (LION 6), Paris, Jan 16-20, 2012. Lecture Notes in Computer Science, 
Volume 7219, pages 130-144, Springer.

Problem
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Case Studies
 Case study 1: 

 Application of Machine Learning for Algorithm Selection in Graph Coloring
References:

 Martin Schwengerer. Algorithm Selection for the Graph Coloring Problem. Master Thesis, 
Vienna University of Technology, 2012.

 Nysret Musliu, Martin Schwengerer. Algorithm Selection for the Graph Coloring Problem.
Learning and Intelligent OptimizatioN Conference (LION 7), Catania - Italy, Jan 7-11, 
2013. Lecture Notes in Computer Science, to appear.

 Case study 2:
 Improving the Efficiency of Dynamic Programming on Tree Decompositions via 

Machine Learning
References:
 Michael Abseher, Nysret Musliu, Stefan Woltran. Improving the Efficiency of Dynamic 

Programming on Tree Decompositions via Machine Learning. J. Artif. Intell. Res. 58: 829-
858 (2017)

 Michael Abseher, Frederico Dusberger, Nysret Musliu, Stefan Woltran. Improving the 
Efficiency of Dynamic Programming on Tree Decompositions via Machine Learning. IJCAI 
2015: 275-282



Algorithm Selection for the Graph Coloring
Problem

Nysret Musliu Martin Schwengerer

DBAI Group, Institute of Information Systems, Vienna University of Technology

Learning and Intelligent OptimizatioN Conference 2013

Supported by FWF (The Austrian Science Fund) and
FFG (The Austrian Research Promotion Agency).



Graph Coloring

I The Graph Coloring Problem (GCP) is a well-known NP-hard
problem.

I Input: Graph G = (V,E)
I Objective: assign each node a color such that

I no adjacent nodes have the same color and
I the total number of colors k is minimized.
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Graph Coloring (cont.)

I Exact approaches are in general only usable up to 100 nodes.

I Several (meta)heuristic approaches:
I Tabu search
I Simulated annealing
I Genetic algorithm
I Ant colony optimization
I ...

I But: None of these techniques is superior to all others.

I Practical issue: Which heuristic should be used?

I Our approach: Select for each instance the algorithm which is
expected to give best performance.

2 / 27
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Algorithm Selection

I Algorithm Selection Problem by Rice [RICE, 1976]

I Main components:
I Problem space P
I Feature space F
I Algorithm space A
I Performance space Y

I Task: Find a selector S that selects for an instance i ∈ P the best
algorithm a ∈ A.

3 / 27



Related Work

I Algorithm selection for other problems
I SAT (e.g. SATzilla [XU et al., 2008])
I ASP (e.g. ME-ASP [MARATEA et al., 2012])
I TSP (e.g. [KANDA et al., 2011])
I ...

I Recent research concerning the GCP
I Predicting performance of DSATUR and TABU

search [SMITH-MILES et al., 2013]

4 / 27



Graph Coloring using Automated Algorithm Selection

Algorithm selection for the GCP using machine learning.

Our system:
I Problem space P: instances of the GCP
I Feature space F: 78 different attributes of a graph
I Algorithm space A: state-of-the-art heuristics for the GCP
I Performance criteria Y: lowest k and shortest runtime

As decision procedure S, we use classification algorithms.

5 / 27



Features

We identified 78 basic features of a GCP instance that can be
calculated in polynomial time based on:

I Graph Size
I Node degree
I Clustering Coefficient
I Clique Size

I Greedy Coloring Algorithms
I Local Search Attributes
I Lower- and upper bounds
I Tree Decomposition

6 / 27



Features

Graph Size Features:
1: no. of nodes: n
2: no. of edges: m
3,4: ratio: n

m , m
n

5: density: 2·m
n·(n−1)

Node Degree:
6-13: nodes degree statistics: min, max, mean, median, Q0.25,
Q0.75, variation coefficient, entropy

Maximal Clique:
14-20: normalized by n: min, max, median, Q0.25, Q0.75,
variation coefficient, entropy
21: computation time
22: maximum cardinality

Clustering Coefficient
23: global clustering coefficient
24-31: local clustering coefficient: min, max, mean, median,
Q0.25, Q0.75, variation coefficient, entropy
32-39: weighted local clustering coefficient: min, max, mean,
median, Q0.25 , Q0.75 , variation coefficient, entropy
40: computation time

Local Search Probing Features:
41, 42: avg. impr.: per iteration, per run
43: avg no. iterations to local optima (LO) per a run
44, 45: no. conflict nodes: at LO, at end
46, 47: no. conflict edges: at LO, at end
48: no. LO found
49: computation time

Greedy Coloring:
50,51: no. colors needed: kDSAT , kRLF
52, 53: computation time: tDSAT , tRLF

54, 55: ratio: kDSAT
kRLF

, kRLF
kRLF

56: best coloring: min(kDSAT, kRLF)
57-72: independent-set size: min, max, mean, median, Q0.25,
Q0.75, variation coefficient, entropy

Tree Decomposition:
73: width of decomposition
74: computation time

Lower- and Upper Bound:

75, 76: distance: (Bl−Bu)
Bl

, (Bu−Bl)
Bu

77, 78: ratio: Bl
Bu

, Bu
Bl

7 / 27



Algorithm Space

We tested 6 state-of-the-art heuristic algorithms:

I Foo-PartialCol (FPC) [BLÖCHLIGER and ZUFFEREY, 2008]

I Hybrid Evolutionary Algorithm (HEA) [GALINIER and HAO, 1999]

I Iteraded Local Search (ILS) [CHIARANDINI and STÜTZLE, 2002]

I Multi-Agent Fusion Search (MAFS) [XIE and LIU, 2009]

I MMT [MALAGUTI et al., 2008]

I TABUCOL (TABU) [HERTZ and DE WERRA, 1987]

8 / 27



Benchmark Data

I 3 publicly available instance sets:
I chi500: 520 graphs with 500 vertices1

I chi1000: 740 graphs with 1000 vertices1

I dimacs: 174 graphs of the DIMACS challenge2

I Each instance is tested 10 times.

I Total runtime: roughly 90.000 CPU hours.

I Focus on hard instances (859 of the 1265 graphs).

1available at http://www.imada.sdu.dk/˜marco/gcp-study/
2available at http://mat.gsia.cmu.edu/COLOR04/

9 / 27
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Solver Performance

Number of hard instances from the set chi1000 on which the algorithms
show best performance.

10 / 27



Selection Procedure

I We tested 6 popular classification algorithms:
I Bayesian Networks (BN)
I C4.5 Decision Trees (DT)
I k-Nearest Neighbor (kNN)
I Random Forests (RF)
I Multilayer Perceptrons (MLP)
I Support-Vector Machines (SVM)

I with several parameter configurations for each classifier.

11 / 27



Other Important Issues

In addition, we experimented with:
I Effect of Data Preparation:

I Study the effect of two discretization methods:
I The classical minimum-descriptive length (MDL) and
I Kononenko’s criteria (KON).

I Feature Selection:
I Use best-first and a genetic search strategy to identify useful

features.

12 / 27



Effect of Discretization

Data Discretization
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I Discretization improves the performance of almost any classifier.
I KON is slightly better than MDL for some classifiers.
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Feature Selection (cont.)

Starting with our 78 basic attributes, we:
1. Apply best-first and a genetic search strategy to identify two

subsets Ub and Ug.
2. Add the product xi·xj and the quotient xi/xj of each pair of features

xi, xj ∈ (Ub ∪ Ug) as additional features.
3. Apply again best-first and a genetic search.

14 / 27



Results of Feature Selection

Feature Selection Method
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Results of Feature Selection and Data Discretization

I Use the feature subset obtained by the genetic search.
I Data discretized with Kononenko’s criteria.

16 / 27



Results on the Training Data

Results of 20 runs of a 10-fold cross-validation using KON and the results of
the genetic search.

17 / 27



Results on the Training Data (cont.)

I We further applied a corrected resampled T-test with α = 0.05
using cross-validation.

Results:
I BN, kNN and RF are significant better than DT.
I All other pairwise comparisons do not show significant differences.

18 / 27



Evaluation on the Test Set

I We create a test set with 180 graphs of different class, size and
density.

I Our system based on automated algorithm selection:
I Using the all 6 heuristics.
I Trained with the benchmark data.
I Data discretized with Kononenko’s criteria.

19 / 27



Evaluation on the Test Set - Results

Number of best solutions per solver. The dark bar denotes the approach that shows on
the highest number of instances the best performance.
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Evaluation on the Test Set (cont.)

21 / 27



Conclusion

I We applied automated algorithm selection for the GCP.
I Key features:

I 78 basic features of an GCP instance.
I 6 state-of-the-art heuristics.
I Training data of 859 hard graphs.
I Classification algorithms as selection procedure.

Results:
I Classification algorithms predicts for up to 70.39% of the graphs the

most suited algorithm.
I Improvement of +33.55% compared with the best solver.

22 / 27
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Appendix - Evaluation on the Test Set (cont.)

Solver No. Best s(c, I, A) err(k, i) Rank
Solution (%) (%) avg σ

Heuristics (H)
FPC 17 11.18 25.42 3.29 1.42
HEA 34 22.37 14.91 2.66 1.38
ILS 1 0.66 21.73 3.82 1.36
MAFS 2 1.32 30.17 4.62 1.52
MMT 60 39.47 3.78 2.76 1.84
TABU 44 28.95 19.23 2.58 1.29

Algorithm Selection (AS)
BN 104 68.42 5.16 1.59 1.08
C4.5 76 50.00 5.86 2.21 1.50
kNN 102 67.11 3.82 1.52 0.91
MLP 31 20.39 24.90 3.14 1.66
RF 109 71.71 5.44 1.41 0.78
SVM 84 55.26 8.32 1.97 1.38

Best (H) 60 39.47 3.78 2.58 1.29
Best (AS) 109 71.71 3.82 1.41 0.78
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Improving the Efficiency of Dynamic Programming 
on Tree Decompositions via Machine Learning

Michael Abseher, Frederico Dusberger, Nysret Musliu, Stefan Woltran
TU Wien

The work is supported by the Austrian Science Fund

IJCAI 2015



Introduction

 Many NP-hard problems are known to become 
tractable for instances whose treewidth is 
bounded by some constant k

 A promising approach for solving problems using 
tree decompositions:
 Compute a tree decomposition with small width
 Compute the solutions by a dynamic programming 

algorithm that consecutively solves the respective 
sub-problems

IJCAI 2015



Tree decomposition of a graph

All pairs of connected vertices appear in some node of the tree 

Connectedness condition for vertices

1

2
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4
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6
7

89
10

7,9,10

5,6,7,9

4,6,7,8

4,5,6,7

1,2,3

1,3,4

Width: (number of vertices in the largest tree node) -1 = 3

Treewidth: minimal width over all possible tree decompositions

IJCAI 2015



Generating tree decompositions

 For the given problem find the tree 
decomposition with minimal width -> NP hard

 There exist perfect elimination ordering which 
produces tree decomposition with treewidth
(smallest width)

 Tree decomposition problem  search for the 
best elimination ordering of vertices!

IJCAI 2015



Perfect Elimination Ordering

Vertex 10 is eliminated from the graph. All neighbors of 10 are connected and 
a tree node is created that contains vertex 10 and its neighbors

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4
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Vertex 9 is eliminated from the graph. All neighbors of vertex 9 are connected
and a new tree node is created

IJCAI 2015

Elimination ordering: 10, 9, 8, 7, 2, 3, 6, 1, 5, 4
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Algorithms for tree decompositions

 Exact Methods
 Branch and bound algorithms
 A* algorithm

 Greedy methods
 Maximum Cardinality Search (MCS)
 Min-fill
 Min-degree

 Metaheuristic methods
 Tabu Search
 Genetic/Memetic Algorithms
 Iterated Local Search
 Ant Colony Optimization

IJCAI 2015
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 A problem instance has various tree decompositions:



Observation

 Experiments show that the width is likely not the only
important parameter having influence on the runtime of 
dynamic programming algorithms

 Even decompositions of the same width often yield 
extremely diverging runtimes

 How to determine the decomposition which promises best
performance?

IJCAI 2015



Improving the efficiency via machine learning
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Selection of tree decomposition
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Features of tree decomposition
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Feature BagSize
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Feature ContainerCount
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Feature ItemLifetime
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Feature AdjecencyRatio
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Feature NeighborCoverageRatio
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Methodology

 Algorithm Space:
 D-FLAT (D): 

Based on Answer Set Programming
 SEQUOIA (S): 

Based on a solver for Monadic Second-Order Logic
 Problem Space:
 3-Colorability, Minimum Dominating Set, Connected 

Vertex Cover
 Graphs based on real-world instances 

 Feature Space:
 Width, NodeCount, ContainerCount
 ... and more than 70 additional features

IJCAI 2015



Methodology

 Training data:
 900 tree decompositions for each problem and 

solver
 New features
 Runtimes of dynamic programming algorithm

 Machine learning techniques:
 Linear Regression (LR)
 k-Nearest Neighbor (IBK)
 M5P Regression Tree (M5P)
 Multi-Layer Perceptron (MLP)
 Support-Vector Machines (SMO)

IJCAI 2015



Results: Random Instances 
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Results: Real-world Instances
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Conclusion and Future Work

 The width of a tree decomposition is not a reliable measure to predict 
the runtime of a dynamic programming algorithm in a real-world 
setting on its own

 We determined various features of tree decompositions. Our
experiments indicate that ...
 the new features indeed help to find good decompositions
 computing the novel features is computationally cheap
 selecting a good decomposition is of negligible effort
 our concept also pays off in real-world settings

 Future work:
 Investigation of additional problem domains
 Identification of the most crucial features
 Ultimate goal: 
 Development of new heuristics for tree decompositions 
 ... which consider the most important features

IJCAI 2015
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