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Abstract In the variant of the well studied nurse rostering problem proposed in
the Second International Nurse Rostering Competition, multiple stages have to
be solved sequentially which are dependent on each other. We propose an integer
programming model for this problem and show that extensions in the form of
additional constraints to deal with the incomplete information are necessary to
achieve competitive results in this setting. Furthermore, we propose a local search
framework based on a combination of Min-Conflict and Tabu search. We compare
our solution approaches with the results obtained in the competiton.
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1 Introduction

The automated generation of high quality staff schedules, in particular for hos-
pitals, has been an important problem for over 40 years. Multiple variants and
solution approaches exist (to be found e.g. in surveys by Ernst et al. [7] and Van
den Bergh et al. [1]). A survey focused on variants of the Nurse Rostering Problem
can be found in [3].

In 2015, Ceschia et al. [6] proposed a variant of the nurse rostering problem for
the Second International Nurse Rostering Competition (INRC-II). In contrast to
previous problem variants, a multi-stage formulation is used, where solutions for
individual weeks have to be produced by the solver sequentially, without informa-
tion about the requirements of later weeks. In [14], such a setting was denoted a
stepping horizon approach.

This multi-stage setting poses two unique challenges for solvers: The depen-
dencies between weeks make it necessary to take the solutions of previous weeks
into account during the evaluation of the quality of a schedule. This is largely
covered in the rules for constraint evaluation of the INRC-II. Other publications
treating this issue are [8], [14] and [17].
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Further, and not explored in the previously mentioned papers, is the the fact
that due to the incomplete information during all weeks but the last, the generated
solution can no longer be guaranteed to be optimal even if each week is solved
to optimality. More so, a naive model that is not adapted to this setting will
produce imbalanced schedules that incur large penalties in later weeks as options
are restricted excessively by the solutions of the previous weeks.

There have been 15 submissions to the INRC-II, with seven of these advancing
to the final round. The results are available on the competition website1, but details
about solution methods have not yet been published (apart from an abstract by
the competition winners [13], who used a network flow-based approach.) While
many approaches using integer programming (IP) formulations for other nurse
rostering problems exist (e.g. [16], [5], [2]), to the best of our knowledge there are
no publications using IP for this exact problem.

In fact, the only publication we are aware of dealing with this exact problem so
far is by Santos et al. [15], who used a weighted constraint satisfaction approach.

In this paper, we first propose a basic IP formulation (Section 3) for the INRC-
II problem (as defined in Section 2). We then extend this model with additional
constraints to account for the multi-stage setting in Section 4. Additionally, we
propose a local search based heuristic that uses the same additional constraints
(Section 5). In Section 6, we evaluate our formulations using the instances provided
for the INRC-II and show that the additional constraints significantly improve the
quality of the generated solutions. We also compare with the results of our local
search algorithm and those of the finalists in the INRC-II.

2 Problem Definition

In this section, we give a short overview of the problem used in the INRC-II. A
detailed description of the problem structure and all constraints can be found in
[6].

For each week in the instance (either 4 or 8), a schedule has to be found by the
solver, using only the information provided in a global scenario file, containing in-
formation about the nurses and their contracts, week data about the requirements
of the current week and a history with data concerning the last assignments of the
previous weeks and some global counters. Information about the following weeks,
in particular about the covering requirements, is not available until the solution
for the current week has been fixed by the solver.

In the following, a work stretch denotes a period of consecutive working days
for a nurse. Rest stretch and shift stretch are analogously defined for periods of
consecutive days off and assignments to the same shift, respectively.

There are four hard constraints that have to be fulfilled by any solution to be
regarded as feasible:

H1. Single assignment per day: Each nurse can only work a single shift using
a single skill per day.

H2. Under-staffing: The minimum number of nurses required for each shift and
skill must be present.

1 http://mobiz.vives.be/inrc2/?page id=226
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H3. Shift type successions: Nurses must not have shifts on two consecutive
days that form a forbidden sequence.

H4. Missing required skill: Nurses can only cover assignments for which they
have the required skill.

Further, seven soft constraints are defined. Solutions should try to satisfy these
constraints, but violating them only results in a penalty to the quality of the
solution (weights are listed in the description of each constraint).

S1. Insufficient staffing for optimal coverage (30): The number of nurses
assigned to each shift and skill should not be smaller than the optimum staffing.
The penalty is multiplied by the number of missing nurses.

S2. Consecutive assignments (15/30): The length of each shift stretch (weight
15) and work stretch (weight 30) should be within the bounds defined for the
shift type resp. the contract of the involved nurse. The penalty is multiplied
by the number of missing or surplus assignments.

S3. Consecutive days off (30): As before, the length of each rest stretch should
be within the bounds defined in each nurse’s contract. The penalty is multiplied
by the number of missing or surplus days off.

S4. Preferences (10): The requests of nurses for shifts (or days) off should be
respected.

S5. Complete week-end (30): Nurses with the complete-weekend constraint in
their contract should either work both days of the weekend or none.

S6. Total assignments (20): Over the whole planning horizon, each nurse’s as-
signments should be within the bounds defined in their contract.

S7. Total working week-ends (30): Over the whole planning horizon, each
nurse should not work more than the maximum number of weekends defined
in their contract.

Constraints S6 and S7 are evaluated only after the solution for the last week
has been fixed, although they should of course be respected by solvers during all
weeks. All sequence constraints (H3, S2, S3) also use the border data from the
solution for the previous week (this is provided in the history file).

3 Basic Model

3.1 Parameters

The first set of parameters contains values that stay the same over the whole
planning horizon. These values are stored in the scenario file:
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N set of nurses
S set of shifts
K set of skills
|W | number of weeks

a
[+/−]
n maximum/minimum assignments for nurse n across planning

horizon

w
[+/−]
n maximum/minimum consecutive working days for nurse n

f
[+/−]
n maximum/minimum consecutive days off for nurse n

t+n maximum number of working weekends for nurse n across
planning horizon

bn boolean, 1 iff either both days of a weekend should be worked
by nurse n, or none

κnk boolean, 1 iff nurse n has skill k

σ
[+/−]
s maximum/minimum consecutive assignments of shift s
ust boolean, 1 iff shift t may be assigned the day after an assign-

ment of shift s

The next set of parameters is defined for each week.

w number of the current week

cdsk minimum cover requirements for day d, shift s and skill k

odsk optimum cover requirements for day d, shift s and skill k

rdns boolean, 1 iff nurse n requested not to work in shift s on day d
(s = 0 is day-off request)

Finally, these parameters specify values depending on the schedule of the pre-
vious week. This history is given for the first week and calculated from the solution
of the last week for all subsequent weeks.

lidn id of last shift worked by nurse n in previous week (0 if day off)
lns consecutive shifts of type s worked by nurse n at the end of the

previous week (0 if s 6= lidn )
lwn consecutive working days for nurse n at the end of the previous

week (0 if lidn = 0)

lfn consecutive days off for nurse n at the end of the previous week
(0 if lidn 6= 0)

atotn total number of assignments for nurse n so far
ttotn total number of weekends worked by nurse n so far

3.2 Decision variables

xdnsk ∈ {0, 1} ∀n ∈ N, s ∈ S, k ∈ K, d ∈ {1...7}
Wn ∈ {0, 1} ∀n ∈ N

xdnsk = 1 if nurse n is assigned to shift s using skill k on day d, and 0 otherwise.

The Wn variable indicates that nurse n works at least one day of the weekend.

The violation of soft constraints is measured using either non-negative or
boolean surplus variables:
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CS1skd ≥ 0 missing nurses for optimal coverage of shift s, skill k on day d

CS2ansd ≥ 0 missing days in the block of shifts s starting on day d for nurse n

CS2bnsd ∈ {0, 1} 1 iff shift s of nurse n on day d violates maximum consecutive shifts

CS2cnd ≥ 0 missing days in the work block of nurse n starting on day d

CS2dnd ∈ {0, 1} 1 iff work of nurse n on day d violates maximum consecutive work days

CS3and ≥ 0 missing days in the free block of nurse n starting on day d

CS3bnd ∈ {0, 1} 1 iff day off of nurse n on day d violates maximum consecutive days off

CS4nd ∈ {0, 1} 1 iff assignment on day d violates a request of nurse n

CS5n ∈ {0, 1} 1 iff nurse n violates complete weekend constraint

CS6n ≥ 0 number of total shifts outside the allowed bounds for nurse n

CS7n ≥ 0 number of weekends worked above the maximum by nurse n

3.3 Objective function

The objective function is the weighted sum over all violations of each soft con-
straint:

minimize f = 30 ∗
∑
s∈S
k∈K

d∈{1...7}

CS1skd

+15 ∗
∑
n∈N
s∈S

d∈{1...7}

(CS2ansd + CS2bnsd)

+30 ∗
∑
n∈N

d∈{1...7}

(CS2cnd + CS2dnd )

+30 ∗
∑
n∈N

d∈{1...7}

(CS3and + CS3bnd )

+10 ∗
∑
n∈N

d∈{1...7}

CS4nd

+30 ∗
∑
n∈N

CS5n

+20 ∗
∑
n∈N

CS6n

+30 ∗
∑
n∈N

CS7n

3.4 Constraints

The following (in)equalities model the hard constraints, as described above.

H1 ∀n ∈ N, d ∈ {1 . . . 7}∑
s∈S
k∈K

xdnsk ≤ 1 (1)
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H2 ∀s ∈ S, k ∈ K, d ∈ {1 . . . 7}∑
n∈N

xdnsk ≥ cdsk (2)

For constraint H3, any forbidden shift sequence (us1s2 = 0) must not be assigned
to the same nurse on consecutive days. This must be ensured both within the week
(a) and at the boundary of this week with the previous one (i.e. on the first day
of the week, b).

H3a ∀n ∈ N, s1, s2 ∈ S, k ∈ K, d ∈ {1 . . . 6} : us1s2 = 0∑
k∈K

xdns1k +
∑
k∈K

xd+1
ns2k

≤ 1 (3)

H3b ∀n ∈ N, s ∈ S, k ∈ K : ulidn s = 0

x1nsk = 0
(4)

H4 ∀n ∈ N, s ∈ S, d ∈ {1 . . . 7}, k ∈ K : κnk = 0

xdnsk = 0
(5)

The remaining inequalities deal with the soft constraints. Each inequality can be
deactivated by setting the appropriate surplus variable to a value greater than
zero, which results in a corresponding penalty in the objective function.

S1 ∀s ∈ S, k ∈ K, d ∈ {1 . . . 7}∑
n∈N

xdnsk ≥ odsk − CS1skd (6)

S2 actually contains various different constraints that have to be modeled sepa-
rately: consecutive assignments of the same shift (min (a)/ max (b)) and of work
in general (min (c) / max (d)), both during and at the start of the week.

For the minimum consecutive shifts constraints, all patterns that compose
a sequence shorter than the required length are prevented. For example, if the
minimum number of consecutive night shifts (N) is 4, the patterns {xNx, xNNx,
xNNNx}, where x is any other shift or a day off, should not appear.

Since each pattern incurs a penalty proportional to the number of missing
assignments, (in the example, xNx would incur a penalty of 45, while xNNNx
would incur a penalty of 15) the surplus variables are weighted correspondingly,
to ensure that a value of at least the number of missing assignments is necessary
to deactivate the constraint.

Equations 8 and 9 model the case where a stretch starts at the beginning of
the week or towards the end of the previous week.

S2a ∀s ∈ S, n ∈ N, b ∈ {1 . . . (σ−s − 1)}, d ∈ {1 . . . 7− (b+ 1)}∑
k∈K

(xdnsk +
∑

i∈{1...b}
(1− xd+insk) + xd+b+1

nsk ) ≥ 1 −
CS2ans(d+1)

σ−s − b
(7)

∀s ∈ S, n ∈ N, b ∈ {1 . . . (σ−s − 1− lns)}∑
k∈K

(
∑

i∈{1...b}
(1− xinsk) + xb+1

nsk) ≥ 1 − CS2ans1

σ−s − lns − b
(8)
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∀s ∈ S, n ∈ N : lidn = s ∧ lns < σ−s∑
k∈K

x1nsk ≥ 1 − CS2ans1

σ−s − lns
(9)

The maximum consecutive shifts constraints is modeled like this: For each shift
s with a maximum of σ+

s consecutive assignments, each block of σ+
s + 1 days

must contain at least one day where s is not assigned. Note that contrary to the
situation for S2a, violations of this constraint by more than one shift assignment
result in multiple matches of the pattern and therefore it suffices to use boolean
surplus variables.

As before, equations 11 model the case where a shift block started in the
previous week.

S2b ∀s ∈ S, n ∈ N, d ∈ {1 . . . (7− σ+
s )}∑

k∈K

∑
i∈{0...σ+

s }

xd+insk ≤ σ
+
s + CS2bns(d+σ+

s )
(10)

∀s ∈ S, n ∈ N, b ∈ {(σ+
s − lns + 1) . . . σ+

s } : lidn = s∑
k∈K

∑
i∈{1...b}

xinsk ≤ b− 1 + CS2bnsb
(11)

The inequalities modelling the maximum and minimum length of work stretches
(S2c, S2d) function analogously to those for shift stretches. The only difference is
that an assignment to any shift counts towards the length of the work stretch.

S2c ∀n ∈ N, b ∈ {1 . . . (w−n − 1)}, d ∈ {1 . . . 7− (b+ 1)}∑
s∈S
k∈K

(xdnsk +
∑

i∈{1...b}
(1− xd+insk) + xd+b+1

nsk ) ≥ 1 −
CS2cn(d+1)

w−n − b
(12)

∀n ∈ N, b ∈ {1 . . . (w−n − 1− lwn )}∑
s∈S
k∈K

(
∑

i∈{1...b}
(1− xinsk) + xb+1

nsk) ≥ 1 − CS2cn1

w−n − lwn − b
(13)

∀n ∈ N : lidn 6= 0 ∧ lwn < w−n∑
s∈S
k∈K

x1nsk ≥ 1 − CS2cn1

w−n − lwn
(14)

S2d ∀n ∈ N, d ∈ {1 . . . (7− w+
n )}∑

s∈S
k∈K

∑
i∈{0...w+

n }

xd+insk ≤ w
+
n + CS2dn(d+w+

n )
(15)

∀n ∈ N, b ∈ {(w+
n − lwn + 1) . . . w+

n } : lidn 6= 0∑
s∈S
k∈K

∑
i∈{1...b}

xinsk ≤ b− 1 + CS2dnb (16)
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S3 similarily contains two independent constraints: the minimum (a) and maxi-
mum (b) number of consecutive days off, again both during and at the start of the
week.

The equations modelling these constraints are again analoguous to those from
constraints S2c and S2d, except that days of work and days off were swapped.

S3a ∀n ∈ N, b ∈ {1 . . . (f−n − 1)}, d ∈ {1 . . . 7− (b+ 1)}∑
s∈S
k∈K

((1− xdnsk) +
∑

i∈{1...b}
xd+insk + (1− xd+b+1

nsk )) ≥ 1 −
CS3an(d+1)

f−n − b
(17)

∀n ∈ N, b ∈ {1 . . . (f−n − 1− lfn)}∑
s∈S
k∈K

(
∑

i∈{1...b}
xinsk − xb+1

nsk) ≥ 0 − CS3an1

f−n − lfn − b
(18)

∀n ∈ N : lidn = 0 ∧ lfn < f−n∑
s∈S
k∈K

−x1nsk ≥ 0 − CS3an1

f−n − lfn
(19)

S3b ∀n ∈ N, d ∈ {1 . . . (7− f+
n )}∑

s∈S
k∈K

∑
i∈{0...f+

n }

xd+insk ≥ 1 − CS3bn(d+f+
n )

(20)

∀n ∈ N, b ∈ {(f+
n − lfn + 1) . . . f+

n } : lidn = 0∑
s∈S
k∈K

∑
i∈{1...b}

xinsk ≥ 1 − CS3bnb (21)

To model nurse requests for shifts or days off, any assignment to an unwanted shift
incurs the penalty.

S4 ∀n ∈ N, s ∈ S, d ∈ {1 . . . 7} : rdns ∨ rdn0∑
k∈K

xdnsk ≤ CS4nd (22)

For the complete weekends constraint, first the additional helper variables Wn are
set if the nurse n works either of the days on the weekend. Equations 24 then
ensure that if Wn is set, and the complete weekend constraint is present for the
nurse, both days of the weekend should have work assigned.

S5 ∀n ∈ N, d ∈ {6, 7}∑
s∈S
k∈K

xdnsk ≤Wn (23)

∀n ∈ N : bn∑
s∈S
k∈K

(x6nsk + x7nsk) ≥ 2Wn − CS5n (24)
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The constraint S6 (number of total assignments) is modeled slightly differently
from its description in [6]. Originally, these constraints were evaluated only after
the schedules of all weeks were fixed. In our model, the penalties are calculated
immediately and added to the objective function value of the week in which they
arise. This does not change the overall quality of the whole schedule, so results are
still comparable, although the intermediate quality value of the individual weeks
might be different.

S6 ∀n ∈ N∑
s∈S
k∈K

d∈{1...7}

xdnsk ≤ max{a+n − atotn , 0} + CS6n (25)

∀n ∈ N∑
s∈S
k∈K

d∈{1...7}

xdnsk ≥ min{a−n − 7 ∗ (|W | − w), 7} − CS6n (26)

The equations for constraint S7 (maximum number of weekends worked) use the
variable Wn, set in equations 23.

S7 ∀n ∈ N

ttotn +Wn ≤ t+n + CS7n
(27)

4 Model Extensions

While the basic model described in Section 3 yields feasible solutions that are
optimal for each week (if given enough time), the connections between weeks are
mostly ignored. Because the weeks are solved individually, solutions are favored
that give slightly better results in earlier weeks, at the cost of having potentially
much larger penalties in later weeks.

In order to take this into account and improve the overall solution quality,
we propose the following extensions to the model, in the form of additional (soft)
constraints.

While constraints S6 in their modified form are already evaluated each week,
they are trivially satisfied in the early weeks. For this reason, nurses get assigned
too many or not enough shifts at first to satisfy other constraints, causing problems
in later weeks. To alleviate this, we tried to keep the number of assignments per
nurse roughly evenly distributed across all weeks.

S6*. Average assignments: The total number of assignments up to the current
week must be within the bounds defined in the contract, multiplied by the
fraction of weeks that have already passed.

This constraint tries to ensure that after p percent of the weeks have passed, also
p percent of the available assignments per nurse have been used. To add it to the
IP model, we introduced a new set of surplus variables:
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CS6∗n ≥ 0 number of assignments of nurse n outside the average bounds
for the current week

The constraint can then be formalized as:

S6* ∀n ∈ N

atotn +
∑
s∈S
k∈K

d∈{1...7}

xdnsk ≤ ba+n ∗
w

|W | c + CS6∗n (28)

∀n ∈ N

atotn +
∑
s∈S
k∈K

d∈{1...7}

xdnsk ≥ da−n ∗
w

|W | e − CS6∗n (29)

Floor and ceiling functions were applied to ensure that any solution satisfying
these constraints would also end up satisfying the original constraints S6, while
at the same time keeping the penalty values integer. We also experimented with
different variants, but this had no significant effect on the solution quality.

An alternative version of constraint S6* can be formulated as follows:

S6*-2. Average assignments, alternative: In each week, the remaining as-
signments (not yet used in previous weeks) should be divided equally among
all remaining weeks.

It can be formalized in a similar way:

S6*alt ∀n ∈ N∑
s∈S
k∈K

d∈{1...7}

xdnsk ≤ b(a+n − atotn ) ∗ 1

|W | − w + 1
c + CS6∗n (30)

∀n ∈ N∑
s∈S
k∈K

d∈{1...7}

xdnsk ≥ d(a−n − atotn ) ∗ 1

|W | − w + 1
e − CS6∗n (31)

Analogously, also constraints S7 (maximum total working weekends) can be
extended to distribute these weekends evenly across the weeks. This results in

S7*. Average working weekends: In each week, the still available working
weekends (not yet used in previous weeks) should be divided equally among
all remaining weeks.

with the following formalization:
CS7∗n ∈ {0, 1} 1 iff nurse n works on the weekend despite not having enough

working weekends left

S7* ∀n ∈ N

Wn ≤ b(t+n − ttotn ) ∗ 1

|W | − w + 1
c + CS7∗n

(32)



Integer Programming and Heuristic Approaches for the INRC-II 11

Another point where the solution of one week can impact the solutions of sub-
sequent weeks is at the end of the week. Since all sequence constraints (S2, S3)
are also counted between weeks, a solution of one week can restrict the options to
assign shifts to nurses without penalty at the beginning of the next week.
For example, let the minimum number of consecutive night shifts (σ−N ) be 4 and
the proposed solution for this week end with a single night shift on Sunday for
a nurse (and any other shift or a day off on Saturday, compare Figure 1). Then
we already know that any assignment for this nurse from Monday to Wednesday
that is not a night shift, will inevitably incur a penalty (and depending on the
rest of the schedule, assigning only night shifts on these three days could result in
penalties of its own).
As another example, if the maximum number of consecutive night shifts is 5 and
the proposed solution already contains a shift stretch of at least 5 night shifts in
the days leading up to Sunday, this means that assigning a further night shift on
Monday of the next week would incur a penalty for exceeding the maximum length.

Sa Su Mo Tu We

. . . - N N? N? N? . . .

Fig. 1 Example of the situation constraints S8* try to prevent. Assuming σ−N = 4, a single
night shift on Sunday will cause a penalty in the next week if any shifts other than additional
night shifts have to be assigned between Monday and Wednesday.

In order to favor schedules that leave as many options as possible for the next
week, we propose the following constraint:

S8*. Restriction of next week’s assignments: Options for next week’s sched-
ule should not be restricted. The penalty is calculated as the total number of
shifts that cannot be assigned in the next week without violating at least one
sequence constraint.

As before, we use a new set of surplus variables to measure the violation of
this constraint:

CS8an ≥ 0 number of shifts restricted from next week’s schedule of nurse
n due to shift sequence constraints

CS8bn ≥ 0 number of shifts restricted from next week’s schedule of nurse
n due to work sequence constraints

CS8cn ≥ 0 number of shifts restricted from next week’s schedule of nurse
n due to day off sequence constraints

The equations to model this constraint are similar to those for constraints S2
and S3 (equations 7 to 21), except that the patterns are matched only at the end
of the week.
The first set of equations (S8*a) deals with restrictions resulting from shift se-
quence constraints, S8*b deals with work sequence constraints and S8*c with day
off sequence constraints. In each set, the first type of equations governs restrictions
due to stretches smaller than the minimum length required, while the second type
deals with restrictions resulting from reaching the maximum length of a stretch.
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Additionally, any time a single shift type would be enforced (like in the first exam-
ple above, where the assignment of additional night shifts is enforced), the weight
of this pattern is multiplied by the number of shifts |S| (since there are |S| − 1
other shifts and a day off that cannot be assigned without penalty).

S8*a ∀n ∈ N, s ∈ S, b ∈ {1 . . . (σ−s − 1)}∑
k∈K

((1− x7−bnsk ) +
∑

i∈{0...(b−1)}
x7−insk) ≤ b+

CS8an

|S|(σ−s − b)
(33)

∀n ∈ N, s ∈ S∑
k∈K

∑
i∈{0...(σ+

s −1)}

x7−insk ≤ σ
+
s − 1 + CS8an

(34)

S8*b ∀n ∈ N, b ∈ {1 . . . (w−n − 1)}∑
s∈S
k∈K

((1− x7−bnsk ) +
∑

i∈{0...(b−1)}
x7−insk) ≤ b+

CS8bn

w−n − b
(35)

∀n ∈ N∑
s∈S
k∈K

∑
i∈{0...(w+

n−1)}

x7−insk ≤ w
+
n − 1 +

CS8bn

|S|
(36)

S8*c ∀n ∈ N, b ∈ {1 . . . (f−n − 1)}∑
s∈S
k∈K

(x7−bnsk −
∑

i∈{0...(b−1)}
x7−insk) ≤ 0 +

CS8cn

|S|(w−n − b)
(37)

∀n ∈ N∑
s∈S
k∈K

∑
i∈{0...(f+

n −1)}

x7−insk ≥ 1− CS8cn (38)

The changes to the model should also be reflected in the objective function,
by adding the new surplus variables:

minimize f ′ = f + WS6∗ ∗
∑
n∈N

CS6∗n

+ WS7∗ ∗
∑
n∈N

CS7∗n

+ WS8∗ ∗
∑
n∈N

(CS8an + CS8bn + CS8cn )

where WS6∗, WS7∗ and WS8∗ are the weights of constraints S6* and S8* respec-
tively.

After a solution has been fixed, the actual penalty has to be recalculated using
the objective function of the basic model f , to ensure that the penalties from the
additional constraints of the extended model are not included in the final result.

Obviously, all constraints introduced in this section should be ignored in the
last week, as there is no further week to influence.
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5 Local Search

We also implemented a local search framework for this problem, as a comparison
with the results from the IP model. We used a combination of Tabu-Search (TS)
[9] and the Min-Conflict heuristic (MC) [10], similar to the framework described in
[11]. Starting from an initial solution, at each step, with probability p, one move
of the TS strategy is applied, and with probability 1 − p, one move of the MC
strategy is applied. After a fixed number of successive moves that did not improve
the current best solution, the search is restarted from a new initial solution.

To generate the neighbourhood, we regarded two types of moves:

change(n, d, s, k): sets the shift and skill assignment of nurse n on day d to s and
k, respectively. If s = 0, this is treated as a day off. Only assignments to a legal
skill for this nurse are allowed.

swap(n, d, n2, l): swaps the assignments of the next l days, starting at day d, of
nurse n with those of nurse n2. As before, only moves that don’t result in
conflicts with the skills of both nurses are allowed. Blocks up to length l = 4
are considered in each step.

To reduce the time until the first feasible solution is found, only change moves
are used until the first feasible solution is found. After that point, both types of
moves are considered.

In the problem treated in [11], the exact number of employees per shift was
known in advance and therefore all staffing constraints could already be fulfilled by
the initial solution, making change moves unnecessary. In our problem, not only
can the number of nurses covering a single shift vary between the minimum and
optimum staffing levels, but there are also skill restrictions to take into account
that prevent some nurses from covering certain assignments. This makes it hard
to generate an initial solution that already contains all assignments that appear
in the final solution.

For the construction of such an initial solution, we experimented with various
heuristics, including random assignment of shifts and skills to nurses, a randomized
greedy algorithm that assigns a randomly chosen shift and skill to the nurse with
the smallest penalty and a heuristic ordering similar to the one described in [4]
(with weights adapted accordingly). There was no noticeable effect on the quality
of the final solution, so we used a simple random assignment algorithm that tried
to avoid overstaffing for all further experiments.

To ensure the satisfaction of the hard constraints, we transformed them into
soft constraints with large penalty values (3000 for H2, 1000 for H3; H1 and H4 are
satisfied in all solutions). While this does not guarantee that a generated solution
will be feasible, it proved sufficient to find feasible solutions after only a few steps
of the search algorithm.

As an alternative heuristic, we also experimented with using Random Walk
(RW) instead of MC, but this reduced the quality of the results.

As basis for our evaluation function, we used the extended model described
above, without constraints S8* and WS6∗ = WS7∗ = 1, as this configuration
turned out to provide the best results also for the IP model (compare Section 6).

To tune the parameters of the framework (i.e. the probability p of using TS to
determine the next move, the number of non-improving moves m before a restart
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and the length of the tabu list), we used IRACE [12], an automated parameter-
tuning framework. The tuning was performed on a subset of the late instances2 of
the INRC-II (chosen to contain representatives of various instance sizes), with a
limit of 1000 iterations. This gave us optimal values of p = 0.5, m = 7000 and a
tabu list length of 7∗|N |, were |N | is the number of nurses. Further experimentation
showed that the overall results are very robust versus small changes of these values.

6 Experimental Results

All algorithms were implemented in Java 7, and we used the IBM ILOG CPLEX
solver3, version 12.6.3, to solve the IP models. All experiments were performed on
an Intel Xeon 2.33GHz PC, using a single thread. The time limit for each week
was set to the time alloted by the benchmarking script4 provided for the INRC-II
(on our machine, about 1 minute for the small instances and up to 5 minutes for
larger instances).

We first evaluated our models using various different parameter settings, es-
pecially regarding the additional constraints S6*[alt], S7* and S8*, on a subset of
the set of hidden instances5 published for the INRC-II as well as four randomly
generated instances from the set of late instances. This instance set was selected
to provide results for instances of different sizes, yet still be small enough to allow
a comparison of multiple models in reasonable time.

The results can be seen on Table 1.

Model Basic S6* S6*alt S8* S6*&S8*
LS

WS6∗ / WS8∗ -/- 1/- 10/- 1/- 10/- -/1 -/10 1/1

n030w4 0 8-1-4-3 2610 2275 2100 2200 2095 2430 2740 2290 2400
n030w8 1 5-4-1-2-1-2-3-3 4320 2850 2610 2910 2715 3555 3680 2795 3190
n050w4 1 3-0-1-2 2980 1995 1920 2070 1980 2375 2650 2050 2510
n080w4 1 3-0-1-2 5580 4140 4025 4325 4180 5895 6615 5430 4770
n035w4 2 8-8-7-5 2375 1595 1505 1545 1500 2375 2260 1865 1795
n035w8 2 9-7-2-2-5-7-4-3 5320 3240 3375 3220 3505 5175 5335 4450 3950
n070w4 0 3-6-5-1 4560 3380 3320 3485 3235 4815 5345 4265 3765
n070w8 2 9-3-5-2-2-9-2-0 10190 6275 6175 6445 6225 10775 12695 9820 7875
n110w4 0 1-4-2-8 6085 3165 3260 3215 3210 5970 5850 4225 3945
n110w8 2 8-5-7-3-9-8-8-5 11465 5775 5655 6310 6290 10960 10400 7375 6800

Table 1 Comparison of experimental results on a subset of the instances. For variants of the
extended model (all columns except ’Basic’ and ’LS’), the second row denotes the weights of
the additional constraints S6* (S7*) and S8*, if used.

The first column shows results using the basic model only, without additional
constraints. Subsequent columns contain results for extended models, including
some or all of the additional constraints at various weights. Due to the similarity
in structure and purpose, we used constraints S7* wherever constraints S6* were

2 http://mobiz.vives.be/inrc2/wp-content/uploads/2014/08/late-instances.txt
3 http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/
4 http://mobiz.vives.be/inrc2/?page id=245
5 http://mobiz.vives.be/inrc2/wp-content/uploads/2014/08/hidden-instances.txt
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used and assumed WS7∗ = WS6∗. Finally, the last column has the results for our
local search heuristic, in the configuration described in Section 5.

The results of Table 1 are visualized in Figure 2. The best results were obtained
using one of the two variants for constraint S6*. While the results using constraint
S8* slightly improve upon those for the basic model, the impact is only minor and
using both S6* and S8* produces worse results than with S6* alone. This is the
case even for instances where each week is solved to optimality within the time
given, indicating that the increased complexity of the model is not the reason for
this.

We also tried assigning much higher weights to the additional constrains (up
to 50), but this resulted in solutions even worse than for the basic model and is
thus not shown here.

The results of local search, if the additional constraints are taken into consid-
eration, are promising, but still the exact method gives better results.
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Fig. 2 Relative performance of different models and algorithms. Each result from Table 1 was
scaled by the best result achieved for this instance

To reduce sample bias, we evaluated the performance of the best models over
the whole set of hidden instances. The results, as well as a comparison with those
of the finalists of the INRC-II, can be seen on Table 2. Figure 3 shows that all four
models give similar results on average, with models with WS6∗ = 10 performing
slightly better.

As we can see from Table 2, the results of our best models are comparable
to those of the finalists, although they couldn’t improve upon the best results
achieved.

Considering solution times, CPLEX was able to solve most weeks to optimality,
even for the larger instances. Over the whole set of hidden instances, using the S6*
1/- model, an optimal solution could be found for 296 out of 360 weeks. For the
remaining 64 weeks, the solver could not prove optimality within the given time
limit. The average gap between the best solution found and the final lower bound



16 Florian Mischek, Nysret Musliu

INRC-II Finalists
Instance S6* 1/- S6* 10/- S6*alt 1/- S6*alt 10/- Median Best Rank

n035w4 0 1-7-1-8 2095 1815 2005 1795 1756.5 1630 4.6
n035w4 0 4-2-1-6 2080 2110 2115 2060 2021.5 1800 4.9
n035w4 0 5-9-5-6 2085 2055 2070 2065 1928.5 1755 5
n035w4 0 9-8-7-7 1905 1755 1920 1725 1723.5 1540 4.9
n035w4 1 0-6-9-2 1770 1725 1810 1800 1737 1500 4.2
n035w4 2 8-6-7-1 1855 1795 1785 1825 1644.5 1490 5.4
n035w4 2 8-8-7-5 1595 1505 1545 1500 1407.5 1255 4.9
n035w4 2 9-2-2-6 2095 2075 2085 2085 1947.5 1705 5.3
n035w4 2 9-7-2-2 2170 2085 2200 2025 1970.5 1650 5.3
n035w4 2 9-9-2-1 2035 2025 2015 2030 1927.5 1620 5.2
n035w8 0 6-2-9-8-7-7-9-8 3530 3370 3690 3425 4171 3020 2.1
n035w8 1 0-8-1-6-1-7-2-0 3485 3370 3450 3430 4045.5 2770 3
n035w8 1 0-8-4-0-9-1-3-2 3545 3530 3390 3480 4019 2775 3.8
n035w8 1 1-4-4-9-3-5-3-2 3440 3480 3500 3580 3472.5 2805 4.7
n035w8 1 7-0-6-2-1-1-1-6 3810 3600 3910 3425 3548.5 2840 4.7
n035w8 2 2-1-7-1-8-7-4-2 3550 3505 3530 3500 4205 2910 2.6
n035w8 2 7-1-4-9-2-2-6-7 3860 3485 3730 3625 3699.5 2960 3.1
n035w8 2 8-8-7-5-0-0-6-9 3460 3400 3295 3285 3603 2815 3.1
n035w8 2 9-5-6-3-9-9-2-1 3495 3620 3625 3585 3659 3045 4
n035w8 2 9-7-2-2-5-7-4-3 3240 3375 3220 3505 3508 2715 3.2
n070w4 0 3-6-5-1 3380 3320 3485 3235 3151 2700 5
n070w4 0 4-9-6-7 2990 2825 3065 3010 2889 2430 4.1
n070w4 0 4-9-7-6 3180 2875 3200 3080 2948 2475 4.1
n070w4 0 8-6-0-8 3395 3015 3410 3075 3016 2435 4.5
n070w4 0 9-1-7-5 2945 2875 2830 2810 2864 2320 4.5
n070w4 1 1-3-8-8 3350 3130 3480 3160 3134.5 2700 4.4
n070w4 2 0-5-6-8 2960 2870 3100 2955 3012 2520 4
n070w4 2 3-5-8-2 3280 2955 3120 3020 3141.5 2615 3.8
n070w4 2 5-8-2-5 3135 2940 3030 2915 3005.5 2540 4.2
n070w4 2 9-5-6-5 3170 2985 3225 3140 3046 2615 4.1
n070w8 0 3-3-9-2-3-7-5-2 6435 6105 6650 6615 6222 5115 4.1
n070w8 0 9-3-0-7-2-1-1-0 6790 6665 6735 6545 6602 5390 4.8
n070w8 1 5-6-8-5-7-8-5-6 6815 6295 6910 6565 6236.5 5475 4.6
n070w8 1 9-8-9-9-2-8-1-4 5840 6260 5970 6105 6018.5 5100 5
n070w8 2 4-9-2-0-2-7-0-6 6600 6125 6390 6715 6259 5410 4
n070w8 2 5-1-3-0-8-0-5-8 6355 6615 6585 6785 6315 5280 5.1
n070w8 2 5-7-4-8-7-2-9-9 6925 6610 6795 6505 6317.5 5505 5.1
n070w8 2 6-3-0-1-8-1-5-9 6305 6390 6595 6200 6255 5120 4.8
n070w8 2 8-6-0-1-6-4-7-8 6455 6310 6675 6290 6890.5 5350 4
n070w8 2 9-3-5-2-2-9-2-0 6275 6175 6445 6225 6044.5 5320 4.9
n110w4 0 1-4-2-8 3165 3260 3215 3210 3539 2710 4
n110w4 0 1-9-3-5 3335 3420 3255 3460 3663 2920 4
n110w4 1 0-1-6-4 3545 3545 3445 3385 4030 2850 3.9
n110w4 1 0-5-8-8 3275 3325 3520 3450 3569.5 2820 3.9
n110w4 1 2-9-2-0 3950 3755 3920 3885 4092 3345 4
n110w4 1 4-8-7-2 3485 3480 3545 3500 3661 2805 4
n110w4 2 0-2-7-0 3730 3580 3740 3770 4198.5 3005 3.5
n110w4 2 5-1-3-0 3290 3395 3490 3470 3637.5 2925 4
n110w4 2 8-9-9-2 4050 4115 4070 3960 4025 3415 4.8
n110w4 2 9-8-4-9 3430 3475 3610 3410 3769 3135 3.6
n110w8 0 2-1-1-7-2-6-4-7 6550 6340 6505 6605 6596 5155 4
n110w8 0 3-2-4-9-4-1-3-7 5765 6045 6250 6460 6172.5 4805 4.2
n110w8 0 5-5-2-2-5-3-4-7 5895 5985 6095 6145 6227 4750 4
n110w8 0 7-8-7-5-9-7-8-1 6090 6235 6150 6165 6251.5 4855 4.4
n110w8 0 8-8-0-2-3-4-6-3 5675 5845 6115 6090 6146.5 4465 4
n110w8 0 8-8-2-2-3-2-0-8 6155 6035 6355 6295 6469 4865 4
n110w8 1 0-6-1-0-3-2-9-1 6235 6350 6425 6465 6514 5090 4.1
n110w8 1 4-1-3-6-8-8-1-3 5805 5835 6225 5820 6115.5 4315 4
n110w8 2 2-9-5-5-1-8-4-0 6325 6215 6170 6520 6222.5 4770 4.4
n110w8 2 8-5-7-3-9-8-8-5 5775 5655 6310 6290 5809 4360 4.1

Table 2 Results for S6* 1/-, S6* 10/-, S6*alt 1/- and S6*alt 10/-, compared with the median
and the best result achieved by the competition finalists. Rank is calculated as the average rank
(out of 8, seven finalists plus our results) over 10 runs of each instance for the configuration
S6* 10/-. Results for the other configurations are similar.
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Fig. 3 Relative performance of S6* 1/-, S6* 10/-, S6*alt 1/- and S6*alt 10/- and comparison
with the results of the INRC-II finalists. The baseline value for each instance is the best result
achieved by our solvers.

for these weeks was only 1.20%, indicating that substantial improvements are not
to be expected even with much longer running times.

7 Conclusions

In this paper, we have proposed and evaluated different extensions of standard
IP formulations for nurse rostering problems in order to deal with multi-stage
settings, as described for the INRC-II.

We have shown that our extensions significantly improve upon the results of
the basic model and achieve competitive results compared to the finalists in the
competition.

The fact that our model could be solved to (near) optimality in most cases, even
under the strict time limits imposed by the challenge, indicates that major im-
provements cannot be expected from varying solution techniques alone. Instead,
future research should be focused on further modifications of the model to dis-
tribute the penalties more equally between weeks and avoid blocking options for
later weeks. Techniques that try to predict the requirements of yet unknown weeks
or distinguish between nurses of different skill sets and contracts could result in
even better models.
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