
TECHNICAL

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18492

sekret@dbai.tuwien.ac.at

http://www.dbai.tuwien.ac.at/

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Local search for shift design

DBAI-TR-2001-45

Nysret Musliu Andrea Schaerf Wolfgang Slany

DBAI TECHNICAL REPORT

NOVEMBER 2001

DBAI TECHNICAL REPORT DBAI-TR-2001-45, NOVEMBER 2001

Local search for shift design

Nysret Musliu1 Andrea Schaerf 2 Wolfgang Slany3

Abstract.Designing shifts is one of the important stages in the general workforce schedul-
ing process. In this paper we consider solving the shift design problem by using local
search methods. First we propose a set of move types that give rise to a composite neigh-
borhood relation. In the move selection process, we make use of the basic prohibition
mechanisms of tabu search. In addition, in order to avoid having to explorate the whole
neighborhood which could be prohibitively large, we evaluate the moves in decreasing or-
der of their promise to yield some improvement. Furthermore, we propose an algorithm for
generating a good initial solution, which also exploits knowledge about requirements and
shift structure. Experimental results on both real-life and randomly-generated problems
show the advantages of these ingredients. The solver is part of a commercial product and
has shown to work well in practical cases.

1Technische Universität Wien and Ximes Corp. mailto: musliu@dbai.tuwien.ac.at
2Università di Udine. mailto:schaerf@uniud.it
3Technische Universität Wien. mailto: wsi@dbai.tuwien.ac.at

Acknowledgements: This work was supported by FFF project No. 801160/5979 and the Austrian
Science Fund Project No. Z29-INF.

Copyright c� 2001 by the authors

TECHNICAL REPORT DBAI-TR-2001-45 2

1 Introduction

The typical process of planning and scheduling a workforce in an organization consists of several
stages [19]. The first stage in this process is to determine the temporal requirements. In this
stage the number of needed employees of each qualification is found for every time slot of the
planning period (e.g., every Monday between 6:00-10:00 there should be 4 employees at work).
After this stage one can proceed to determine the total number of employees needed, interrelated
with designing the shifts and then assigning these shifts and days-off to employees.

There exist two main approaches in the literature to solve these stages. One of the approaches
is to coordinate the design of the shifts and the assignment of the shifts to the employees, and to
solve it like one problem [9, 10]. The other considers days-off scheduling and shift scheduling
only after the shifts are designed [4, 13, 16]. The main disadvantage of the latter approach is that
it does not guarantee that a feasible solution for the assignment of these shifts can be found. On
the other hand, solving the overall problem in several separate stages makes it easier to tackle.

We follow the second approach, and in this paper we consider in isolation the problem of
designing the shifts. For this problem, we are given the workforce requirements for a certain
period of time, along with constraints about the possible start times and the length of shifts, and
an upper limit for the average number of duties per week per employee. The aim is to generate
solutions that contain shifts (and the number of employees per shift) that minimize the number of
shifts, over- and under-staffing, and differences in the average number of duties per week. We will
give a detailed description of the problem in Section 2.

Kortsarz and Slany [12] show that it is possible to model the shift design problem as a network
flow problem, namely as the cyclic multi-commodity capacitated fixed-charge min-cost max-flow
problem. Exploiting this result, if one drops the objective of minimizing the number of shifts, the
problem can be solved very efficiently with a polynomial min-cost max-flow algorithm. Using
a reduction to the Minimum Edge Cost Flow problem (no. [ND32] in Garey and Johnson [7]),
Kortsarz and Slany show also that, on the contrary, the general shift design problem is NP complete.
In addition, it is also hard to approximate: Kortsarz and Slany [12] also show that there is a constant
� � � such that approximating the shift design problem with polynomial bounds on numbers
appearing in the requirements within � ��� is NP hard. Additionally, they convincingly argue that
it is very unlikely that the shift design problem admits an efficient algorithm with an approximation
guarantee that is substantially better than an O(

�
� ����) ratio (where� is the largest number in

the requirements), which in practice would anyway be unusable.
In conclusions, the problem that includes constraints for the minimization of the number of

shifts is NP hard and also hard to approximate. This is the reason why we rely on local search
techniques for solving this problem. The definition of the appropriate neighborhood structure is
one of the most important features of local search techniques. In this paper we propose several
move types (or repair steps) that will be used to define the neighborhood relation.

We use basic principles of tabu search [8] for the exploration of the neighborhood in order
to make it possible to escape from local minima. That is, tabu moves will not be accepted for a
number of iterations, except if the solution has a better cost than the current best one.

In order to make the search more effective, we introduced a new method that limits the ex-

TECHNICAL REPORT DBAI-TR-2001-45 3

ploration of the neighborhood. A basic feature of the guided search procedure is that the search
is concentrated in days in which a shortage or excess is present. Moreover, some of the moves
are applied only to specific shift types in the region in which the shortage or excess appears. In
addition, we use an heuristic procedure for generating a good initial solution, which is based on
the idea of starting (ending) a shift whenever the requirements increase (decrease).

In the experimental results, we show results concerning different kinds of tabu mechanisms,
lengths of the tabu list, initial solutions etc. Computational results show that the effectiveness of the
search and the quality of the solution is improved by including the knowledge about the problem
during the search and also the initial solution procedure. These techniques were implemented in a
commercial product called Operating Hours Assistant.

2 Shift Design problem

For the problem of shift design we are given:

� � consecutive time intervals ���� ���, ���� ���, . . . , ���� �����, all with the same length
slotlength in minutes. Each interval ���� ����� has an adjoined numbers �� indicating the
optimal number of employees that should be present during that interval. Time point ��
represents the begin of the planning period and time point ���� represents the end of the
planning period. The format of time points is: day:hour:minute.

� � shift types 	��

 � 	�. Each shift type 	� has the following adjoined parameters: 	� .min-
start, 	� .max-start which represent the earliest and latest start of the shift and 	� .min-length,
	� .max-length which represent the minimum and maximum lengths of the shift. In Table 1
an example of four shift types is given.

� Two scalar real-valued quantities, necessary to define the distance from the average number
of duties.

�� : the upper limit for the average number of working shifts per week per employee

�
 : Average number of working hours per week per employee

Table 1: Shift types in the shift design problem

Shift type min-start max-start min-length max-length
M 05:00 08:00 07:00 09:00
D 09:00 11:00 07:00 09:00
A 13:00 15:00 07:00 09:00
N 21:00 23:00 07:00 09:00

TECHNICAL REPORT DBAI-TR-2001-45 4

The aim is to generate a set of � shifts ���

 � ��. Each shift �� has adjoined parameters ��
start
and ��
length and must belong to one of the shift types. Additionally, each real shift �� has adjoined
parameters ��
��� �� � ���

 � �� (C represents number of days in the planning period) indicating
the number of employees in shift �� during the day �. The aim is to minimize the four components
given below:

� Sum of the excesses of workers in each time interval during the planning period.

� Sum of the shortages of workers in each time interval during the planning period.

� Number of shifts.

� Distance of the average number of duties per week in case it is above a certain threshold.
This component is meant to avoid an excessive fragmentation of workers’ load in too many
short shifts.

This is a multi criteria optimization problem. The criteria have different importance depending
on the situation. The objective function is a scalar function which combines the four weighted cri-
teria. Let us note that we usually consider designing shifts for a week (less days are also possible)
and assume that the schedule is cyclic (the element following the last time slot of a planning period
is equal to the first time slot of the planning period).

Formal definitions:
The generated shifts belong at least to one of the shift types if:

�� � ���

 � �� �� � ���

 � �� �
	�
min-start � ��
start � 	�
max-start

	�
min-length � ��
length � 	�
max-length

In order to define the shortage and excess of workers, we first define the load �� for a time slot
� as follows.

�� �
��

���

��	�

where

��	� 	�

�
��
�� if the time slot � belongs to the interval of shift �� on day �

 otherwise.

The total shortage �� and total excess �� (in minutes) of workers in each time interval during
the planning period is then defined as

�� �
��

���

��
���� 	 ���
��
 �������	�
�

TECHNICAL REPORT DBAI-TR-2001-45 5

�� �
��

���

��
���� 	 ���
��
 �������	�
�

The average number of working shifts per week per employee (�	�) is defined below:

�	� �
�
��

���

�

��� ��
���
 ����

���

�

��� ��
��
 ��
������

The penalty associated with the average number of duties is defined as.

�
���	� 	 ���
�

2.1 Previous work

The shift design problem is similar to a problem which has been addressed in the literature as the
shift scheduling problem. Typically in the shift scheduling problem it is required to generate shifts
and number of employees for each shift over as single day. The aim is to obtain the solutions
without under-staffing and to minimize the number of employees. Let us note that the problem
of shift design differs in several aspects from it. First, we consider the generation of shifts for a
week. This entails the added difficulty of having to reuse shifts on all days of the week in order
to minimize the overall number of shifts used. Also, the problem is cyclic, so special care must
be taken to connect the end of the schedule to its begin. Additionally, we consider minimizing
the average number of duties per week if it gets above some threshold. Moreover, in our problem
under-staffing is allowed.

Shift scheduling problem has been solved mainly by using Integer Programming (IP). Dantzig
[6] developed the original set-covering formulation for shift scheduling problem:

minimize
��

���

����

subject to
��

���

����� � �� for � � �� ��

 � �

�� �
 and integer for � �
where

� � index for shifts,
�� � number of employees assigned to shift �,
�� � number of employees required to work in the �th time period,
�� � cost of having an employee work in shift �,
� �number of time periods to be scheduled over a single day,

TECHNICAL REPORT DBAI-TR-2001-45 6

��� �

�
� if the time period � is a work period of shift �

 otherwise.

In this formulation for each feasible shift there exists one variable. Feasible shifts are enu-
merated based on possible starting times, length, breaks, and time windows for breaks. When the
number of shifts increases this formulation soon becomes impractical.

Bechtold and Jacobs [5] proposed a new integer programming formulation for shift schedul-
ing. In this formulation the modeling of break placements is done implicitly. Authors reported
superior results with their model compared to the set covering model. Their approach is limited to
organizations which operate less than 24 hours per day.

Thompson [18] introduced a fully implicit formulation of the shift scheduling problem. The
model combines work of Moondra [15] and Bechtold and Jacobs [5] in which respectively the
length of shifts and the breaks are modeled implicitly. Authors reported better results compared to
the model of Bechtold and Jacobs [5].

Another integer programming model for shift scheduling with multiple rest and lunch breaks
and break windows was proposed by Aykin [2]. This formulation is applicable to the shift schedul-
ing problem without the limitations in [5]. A comparison of different modeling approaches is given
by Aykin [3].

3 Local search for shift design

The basic idea of local search techniques [1, 8, 11, 17] is to improve initial solutions iteratively
during search. A neighbor of the current solution is selected from the neighborhood of the solution,
which is constructed through changing the current solution using so called ‘moves’. Basically, the
differences between individual local search techniques are found in the way they explore the neigh-
borhood and the criteria on how to accept the descendant of the current solution. The appropriate
neighborhood structure for these techniques is one of the most important features to reach ‘good’
solutions. In this section, we first give definitions of the moves used for exploring the neighbor-
hood for the shift design problem. Afterward, we describe other features of the technique we used
concerning the generation of neighborhood, acceptance of the descendant solutions and aspiration
criteria.

3.1 Neighborhood relations

Before introducing the neighborhood relations, we have to define the search space. To this regard
we define a state (an element of the search space) as consisting of a set of shifts and the duties of
the shifts for each day during the planning period.

Shifts belonging to a state obviously must be active, which means that they must have at least
one duty in some day, otherwise the do not contribute to the solution. However, we consider also
a set of so-called reserve shifts, which have no duties. In particular, we constrain all states to
contain exactly one reserve shift for each shift type. This is done to simplify the definition of the
neighborhood relation, as shown below.

TECHNICAL REPORT DBAI-TR-2001-45 7

The neighborhood of the solution is obtained by introducing altogether new shifts, removing
a shift, or changing one of the three main features of a shift, namely, start, length, and duties per
day. The basic moves presented below change these features.

ChangeDuty: The duties of the shift for the particular day are decreased or increased by 1 em-
ployee. For example, suppose that shift F1 was assigned 5 employees during the first day.
By applying this move to shift F1 (on the first day) two new shifts can be obtained that
respectively are assigned 4 and 6 employees in the first day.

ChangeLength: The length of the shift is made longer or shorter for one time slot. For example,
suppose that the length of shift F1 is 8:00 and a time slot of 30 minutes is used. By applying
this move to shift F1, two new shifts with lengths 7:30 and 8:30 can be obtained.

ChangeStart: The starting time of a shift is moved forward or backward by one time slot (the
length is left unchanged). For example, suppose that the shift F1 begins at 8:00 and the time
slot is 15 minutes. By applying this move to shift F1 two new shifts can be obtained, starting
at 8:15 and 7:45.

CreateShift: A new active shift is created. This move is implemented indirectly, by applying the
move ChangeDuty to a reserve shift. A new reserve shift is inserted.

RemoveShift: One shift is removed from the solution. This move is implemented in an indirect
way, such that a shift is removed when all its duties become equal to 0.

The moves we defined before are basic moves. Next, we define the composite moves, which
are combinations of basic moves.

MoveBorders: The borders of two shifts are moved left or right. The starting time of the first
shift (the one that begins earlier) and the end of the second shift remain fixed. For example,
suppose that the solution contains shifts F1: (6:00-14:30) and S1: (14:30-23:00). By shifting
the border of these two shifts for 30 minutes backwards, two new shifts will be created: F2:
(6:00-14:00) and S2: (14:00-23:00)

ExchangeDuties: In a particular day, one duty is passed from one shift to the other. For exam-
ple, suppose that shift F1 has the duties (2 2 3 3 3 3 0) and shift F2 the duties (1 1 1 1 1 1
1), where each element of the array represents duties of shifts for a particular day. Shifts F1
and F2 will have new duties by applying this move on these shifts and day 1: F1: (1 2 3 3 3
3 0); F2: (2 1 1 1 1 1 1).

JoinShifts: Whole duties of one shift (X) are added to the other one and the shift X is eliminated
from the solution. For example, suppose that a solution contains shifts F1: (8:00-16:00) (3 3
3 3 3 3 3) and T1: (9:00-17:00) (2 1 1 1 1 1 1). By applying this move the shift T1 is deleted
and shift F1 gets the summed-up duties (5 4 4 4 4 4 4).

TECHNICAL REPORT DBAI-TR-2001-45 8

SplitShift: A new shift is split off from an old one. The newly created shift differs from the
original shift by one time unit in the start or length (four possibilities). When possible, one
duty per day is transferred from the original shift to the newly created shift. For example,
by applying this move to shift F1: (7-15) (2 3 3 3 3 3 3), one of the solutions may consist of
shift F1: (7-15) with duties (1 2 2 2 2 2 2) and shift F2: (7-15:30) with duties (1 1 1 1 1 1 1),
the time unit being 30 minutes.

ChangeStartKeepEndFix: The start of a shift is moved forwards or backwards, while its end
is kept fixed. For example, if we use a time unit of 30 minutes, by applying this move to
shift F1: (7:00-15:00), new shifts F2: (6:30-15:00) or F3: (7:30-15:00) can be obtained.

Moves ChangeDuty and ExchangeDuties may be enhanced by applying these moves to a
number of days larger than one.

3.2 Generation of neighborhood

We experimented with different variants for the generation of the neighborhood. In a first vari-
ant, only basic moves were applied in every iteration. In another variant, all moves (basic and
composite ones) were applied to generate a neighborhood of solutions. However, in this case, for
each move, not all neighborhood solutions were generated. Indeed, in all moves except the move
ChangeDuty the exploration of neighborhood was interrupted as soon as a new better solution
than the previous one was found.

Let us note that in all search methods the position and length of reserve shifts is changed if no
improvement can be made to the solution.

3.3 Tabu mechanism

In order to avoid cycles during the search, a tabu list is used. The tabu list prohibits some of
the solutions in the neighborhood to be accepted for the next iteration unless they fulfill certain
criteria. We have experimented with two kinds of tabu lists. In the first variant, for each of the
moves described above, we add the inverse move to the list. For example, the inverse of the move
that increases by 1 the duty of shift! on day �, is the move that decreases by 1 the duty of shift!
on day �. For each applied move in memory an inverse move is stored, including the information
to which shifts the move was applied (one or two shifts) and also the day on which the move has
been applied. The stored move in memory will be tabu for a certain number of iterations.

In the second variant, certain characteristics of a solution itself are considered tabu in combi-
nation with each other: the number of shifts, the difference of the duties in each time slot, and the
average number of duties per week. Solutions with the same features are considered tabu for a
specified number of iterations.

TECHNICAL REPORT DBAI-TR-2001-45 9

3.4 Selection criteria

The best solution from the neighborhood, if it is not tabu, becomes the current solution in the next
iteration. The tabu solution will be accepted only if it has the best cost value found so far.

3.5 Cost function

The cost function is a scalar function which combines four weighted criteria.

��� � "�� ��������������� �"�� �
����	���������� �
"�� ���������
���� �"�� �������������������� ��!

For a more efficient calculation of the excess and the shortage, a history of change of the
solution is stored and these parameters are updated based on this history.

4 Exploting domain knowledge during the search

In this section, we describe a new approach that guides the search for the shift design problem,
intending to make the search more effective. Furthermore, we present the algorithm for generating
a good initial solution, which is also based on domain knowledge.

The share of the neighborhood that should be explored during every iteration can be reduced
by using the knowledge about the problem during the search. The basic idea is to take moves
which probably will most improve the solution. A similar technique for constraint satisfaction
problems was used by Minton et al. [14]. This method is based on analyzing the ‘distance’ of
the current solution to the optimal solution, with respect to the shortage and excess, which are the
most important criteria in this problem. Just to give an idea, suppose that on day � between time
8:00-16:00 one employee is missing. A complete neighborhood search, among other moves, will
perform also moves that decrease the duties of the shift for each day, which cannot contribute to
any improvement in this situation. Furthermore, while this shortage appears at a particular day and
particular shift, it is better to take moves that include only this day and shift types which cover this
region: If, for example, the night shift ranges from 23:00-7:00, the moves in this shift probably
will not bring any improvement in this situation. Our technique, based on the shortage/excess and
shift types that could be used, determines the moves and other parameters that should be used for
the neighborhood exploration of the current solution. Below we describe our technique in detail.

1. Find the shortage/excess (a zone of constant deviation) with the longest length.

2. Determine the contribution of each shift type in that shortage or excess: high, middle, small.

3. Begin with the shift type that has the highest contribution to the shortage/excess.

4. Determine the position of the shift types that contributes in the shortage/excess relative to
the shortage/excess: left, middle, right.

TECHNICAL REPORT DBAI-TR-2001-45 10

5. Shortage/excess is classified in short, middle, or long relative to the shift type for which the
neighborhood will be generated.

6. Based on the shortage/excess properties, position, and contribution of the shift type relative
to the shortage/excess, determine moves, days, and a shift type with which the neighborhood
will be explored.

7. If there exist improvements, repeat the steps from the beginning, or else if there exist no im-
provements, but still shift types that contribute in the shortage/excess then take the next shift
type and continue with step 4. In case there exist no improvements and no more shift types
that contribute to the shortage/excess, then, for the next iteration do a complete exploration
of the neighborhood (like in basic tabu search).

Note that only the length of zones of constant deviation from the requirements is taken into
account, but not the amount of the deviation. Indeed, by changing the duties of the corresponding
shifts, any devation can easily be taken care off, as long as the whole zone of constant deviation is
covered by some shifts. The challenge lies in finding the shifts best covering these zones.

The result of this technique is that the neighborhood will be generated using only some of the
moves, and that these will be applied only to particular days and for particular shift types. Another
important issue is the order of the moves. Since the procedure exits from the iteration for some
of the move types as soon as a better solution than the current one is found, the moves that have
more chances to improve the solution should be tried in the beginning. However, it is not always
clear how to determine the order of the moves. For example, if the shortage/excess is long and the
contribution of a certain shift type is high, then, logically, to improve the solution at this specific
shortage/excess point, a move that increases/decreases duties of that particular shift type could be
used.

On the other hand, suppose we have an example where the shortage/excess is short. This kind of
shortage/excess can be repaired for example by a move of type ChangeDuty, ExchangeDuties,
ChangeLength, MoveBorders, etc. and here the order of the moves is not clear. According to the
properties of the shortage/excess, the contribution of shift types and their relative position, there
exist 27 possible combinations (each of the properties is classified in three classes). Some of these
combinations are almost the same regarding the conclusion about the moves that should be taken.
In our technique, the order of the moves is the logical order when possible. In cases when is not
completely clear which order of the moves should be taken, it is taken like in the case of basic tabu
search described previously. Note that if no improvement can be found through this procedure,
a complete search of the neighborhood is done to allow the acceptance of solutions with worse
fitness, and thus making possible an escape from a local minimum.

Example: In Figure 1 the requirements are given (only the first two days can be seen) for the
first problem among the 30 randomly generated problems for which we will give computational
results later. Given an initially empty solution and applying the above procedure, the longest
shortage found would be the one that starts at the first day at 22:00, with length 8 hours and a
shortage of one employee. The highest contribution in this shortage is from the night shift. The
shortage is long and in the middle of the region of a night shift. The guided search procedure

TECHNICAL REPORT DBAI-TR-2001-45 11

Figure 1: Requirements in example 1 for Monday and Tuesday

explores first the neighborhood that is constructed by applying the move ChangeDuty (duties are
only increased) only for day one.

4.1 Initial Solution

Another ingredient added to the techniques described so far is a ‘good’ initial solution. The basic
idea in constructing a ‘good’ initial solution is that in every change of the requirements there
should begin or end a shift. Initial solutions constructed in this manner, of course, do not always
contain all shifts needed to construct an optimal solution but contain at least some of those which
could have either the correct start or end. Below, the procedure that generates the initial solution is
described.

1. Detect all time points (day:hour:minute) in the planning period in which an increase of the
requirements exists. The increases that begin at the same time (hour:minute) but on different
days are considered like one increase even if they have different values (values of increases
for each day are stored).

2. For each increase from the previous step, determine all shift types with start regions to which
the increase belongs. For each such shift type construct one shift with starting time at the
point of time of the increase (time where the increase begins) and some possible length based
on the shift type. Additionally, mark the starting time of all shifts constructed in this step as
constant during the search.

3. For each increase detected in step 1, select the first shift among the shifts constructed for that
increase in the previous step. Give to the shift the duties which correspond to the values of
the increase for each day.

TECHNICAL REPORT DBAI-TR-2001-45 12

4. Detect all time points (day:hour:minute) in the planning period in which a decrease of the
requirements exists. The decreases that begin at the same time (hour:minute) but on the
different days are considered like one decrease even if they have different values.

5. From the decreases from the previous step, eliminate decreases that can be reached with any
of the shifts constructed before, based in the increase of duties.

6. For each remaining decrease determine all shift types, the end region (which is the time
interval in which the shift type can have its end) of which contains the decrease and for each
determined shift type construct one shift with end corresponding to the time of the decrease
as well as having minimal legal length (determined from the constraints for the shift types).
Additionally, mark the end of each shift constructed in this step as constant during the search.

5 Computational results

In this section, we first report computational results for 30 artificial examples generated by the
random generator. Secondly, we report computational results for one real world example. The ran-
domly generated examples can be found on http://www.dbai.tuwien.ac.at/proj/Rota/. We describe
first how the random examples are generated. Later, we show results of experiments that were
conducted with basic and composite moves and the different types of tabu lists. Further, we in-
vestigate the impact of the initial solution and guidance of the search by including the knowledge
about the problem. The techniques we described in this chapter are implemented in a software
package called Operating Hours Assistant of Ximes1 Corp. and the system works well on real life
examples. All our results in this section have been obtained on an Intel P2 333 Mhz.

5.1 Random instances generator

The basic idea for random examples is to generate for each shift type a specific number of time
intervals which fulfill constraints about the start and length of the shifts. Each time interval corre-
sponds to one legal shift. Randomly, 1-5 time intervals are generated for each shift type. The start
of the time interval is generated randomly from the possible starts in the start region of a shift type
and the length of time intervals is one random possible length (determined by the shift type). We
use four shift types, and thus the optimal solutions to the problem can have from 1 to 20 shifts. In
Table 2 constraints for shift types are given. The time interval is taken randomly to be 15, 30 or 60
minutes.

Duties for each time interval are generated such that initially, for each time interval, a random
number between 1-5 is generated with equal probability. The time interval will have assigned
(as number of employees) this random number for each day during the week with probability 0.9
(probability that the duties for each particular day change from the standard value is 0.1). If this
value should change for a particular day, the new value (1-5) is generated randomly for that day.
During the weekend the probability that the value changes is 0.6. If the value should change, a

1http://www.ximes.com/

TECHNICAL REPORT DBAI-TR-2001-45 13

Table 2: Shift types for the random generator

Shift type min-start max-start min-length max-length
M (Morning shift) 05:00 08:00 07:00 09:00

D (Day shift) 09:00 11:00 07:00 09:00
A (Afternoon shift) 13:00 15:00 07:00 09:00

N (Night shift) 21:00 23:00 07:00 09:00

new random number is generated (the probability that either Sunday or Saturday differs from this
number is again 0.1).

Weights for shortage and excess are "� � "� � �, for number of shifts the weight is equal
to the length of the time unit in minutes ("� � ��, �
, or �
) and for duties per week it is
"� � �

. The maximum number of duties per week is set to 5. The average number of hours
per week is 38.5. As we want to generate the problems for which we can calculate the optimal cost
in advance, if the duties per week exceed 5 for an optimal solution regarding excess, shortage and
number of shifts, we put the weights of the duties per week to 0. This means we consider indeed
only minimizing the shortage, excess and number of shifts.

Like we described before, the random examples are generated such that each randomly gen-
erated time interval corresponds to one legal shift. Thus the optimal solution is likely to be the
solution which will contain the correspondent shifts for each randomly generated time interval and
its duties. Actually, there is a very small probabilitity that an even better solution may exist, but as
this is the best solution easily known and the probability is very low for a better one, we will refer
to it in this paper as the optimal solution and its cost as the cost of the optimal solution.

5.2 Computational results on random examples

In this section, we give results of four experiments over 30 randomly generated examples. The
aim of these experiments was to determine the impact of composite moves, the length of the tabu
list, and variants of the tabu mechanism. Techniques are compared regarding the dependence of
the cost from the number of evaluations and quality of the solution found after a certain number
of evaluations. All results are given for one run of the algorithm, as the latter is deterministic. For
each technique the algorithm is allowed to begin the next iteration only if a maximum number of
100000 evaluations is not exceeded for each example and the search is interrupted each time if
after 200 seconds no improvements could be found.

5.2.1 Basic moves

In this experiment the basic tabu search technique is used. During every iteration, by using only
basic steps, a complete neighborhood of the solution is generated. For each of the tabu variants
four different lengths of the tabu list were used, namely 5, 10, 20, and 40 memory slots.

TECHNICAL REPORT DBAI-TR-2001-45 14

Results of this experiment over 30 examples were not satisfactory. While in two tabu variants
the results were improved with increasing the tabu length, the best results were poor. In order
to improve the results, we included the composite moves. The results are described in the next
section.

5.2.2 Impact of composite moves

In this experiment, tabu search is used and all moves are applied (basic and composite ones) for the
composition of the neighborhood. However, we do not now explore the complete neighborhood
for each move. Indeed, in all moves except the move ChangeDuty the exploration of the neigh-
borhood is interrupted as soon as a new solution better than the previous one if found. The order
of the moves in tabu search is the same as the order described in Section 3.1, except that move
ChangeStartKeepEndFix is tried after move ChangeLength. The experiment was conducted
for two variants of tabu search and four possible lengths of the tabu list (5, 20, 40, 70).

The best results were obtained by applying the second variant of the tabu list (solution tabu)
with a length of the tabu list of 20. These results are shown in Table 3. For each example, infor-
mation for the best cost found, and number of evaluations needed for finding this cost is given. In
the second column the cost of the optimal solution is given. The best results obtained by applying
the first variant of the tabu list (moves tabu) were slightly weaker. When using all moves, the tabu
list has not such a high impact as in the case when only the basic moves are used.

5.2.3 Impact of the initial solution

The aim of this experiment is to investigate the impact of the initial solution. In the previous
experiment the initial solution was a very simple one: For each shift type it contained one empty
shift template. In contrast, now the search starts from a good initial solution which is generated
as described in Section 4.1. The length of the tabu list is taken to be 20 and the variant of making
solutions tabu is applied.

In Table 5.2.3 the results of the tabu search with good initial solution are shown. These results
are better compared to the results in Table 3 with respect to the cost of solutions the number of
evaluations and the time needed to generate the best solutions.

5.2.4 Including the knowledge about the problem during the search

In this experiment, we show the results obtained by exploiting the knowledge about the problem
(see Section 4) using tabu search with good initial solutions (TSwIS). We will call this technique
tabu search and guided search with initial solutions (TSaGSwIS).

In Table 5 the results of TSaGSwIS are presented. This technique shows the best results with
respect to all criteria: cost of solutions, number of found optimal solutions, number of evaluations
per solution, and the time in which these solution were found. With this technique, 50 % of the
optimal solutions are found in only one run.

TECHNICAL REPORT DBAI-TR-2001-45 15

Table 3: Results for 30 examples using TS with the variant of a solution-type tabu list

Tabu Search with solution tabu
Ex. Cost of optimal solution Cost Number of evaluations
1 480 2040 22322
2 300 750 62191
3 600 600 79326
4 480 1590 100388
5 480 480 25045
6 420 480 19175
7 270 1080 41525
8 150 195 100597
9 150 300 54318

10 330 1620 93847
11 30 30 2531
12 90 90 21550
13 105 105 24745
14 195 4305 100193
15 180 180 2045
16 225 540 100779
17 540 3600 100019
18 720 720 97919
19 180 2970 69726
20 540 540 53840
21 120 195 34349
22 75 75 9301
23 150 2430 75001
24 480 480 28656
25 480 2160 94991
26 600 720 46458
27 480 540 80685
28 270 1380 72192
29 360 1620 69738
30 75 75 6774

5.3 Computational results on real-world problems

In this section we present the results for one real world problem taken from a call center.
Problem 1: This problem is a real problem from a call center. Temporal requirements for this

problem are given in Table 6. Constraints about the shift types which can be used in the solution

TECHNICAL REPORT DBAI-TR-2001-45 16

Table 4: Results for 30 examples using TS with good initial solution

Tabu Search with good initial solution
Ex. Cost of optimal solution Cost Number of evaluations
1 480 480 10012
2 300 390 36182
3 600 1020 80854
4 480 1590 101057
5 480 480 8613
6 420 420 5977
7 270 570 15497
8 150 615 15631
9 150 225 13034

10 330 450 80666
11 30 30 346
12 90 90 11976
13 105 105 2197
14 195 495 90481
15 180 180 148
16 225 540 73411
17 540 1170 75119
18 720 720 18979
19 180 195 34173
20 540 540 20790
21 120 120 2674
22 75 90 4158
23 150 570 39309
24 480 480 10120
25 480 1050 46090
26 600 660 31033
27 480 480 8537
28 270 270 7297
29 360 390 23856
30 75 75 986

are given in Table 7. Weights of the criteria are: "� � "� � ��"� � �
�"� � �

. Average
number of working hours is 38.5 and an upper limit of the average number of duties per week is 5.

In Table 8 the solution produced by TsaGSwIS is shown. The second variant of the tabu
mechanism (solution tabu) is used and the length of the tabu list is 20.

TECHNICAL REPORT DBAI-TR-2001-45 17

Table 5: Results for 30 examples using TSaGSwIS

Tabu search and guided search with good initial solution
Ex. Cost of optimal solution Cost Number of evaluations
1 480 480 691
2 300 420 2623
3 600 900 85917
4 480 1170 67207
5 480 480 2299
6 420 420 887
7 270 630 17468
8 150 180 5722
9 150 225 10348

10 330 510 69811
11 30 30 68
12 90 90 1664
13 105 105 2494
14 195 390 46569
15 180 180 10
16 225 375 41182
17 540 1110 51679
18 720 720 1759
19 180 195 6985
20 540 540 27534
21 120 120 279
22 75 105 2414
23 150 540 3026
24 480 480 8674
25 480 690 29465
26 600 600 4151
27 480 480 7755
28 270 270 694
29 360 390 9461
30 75 75 379

The produced solution has no excess and a shortage of 3.99 %. The average number of duties
per week is 4.82. The solution is generated after 3771 evaluations and in about 40 seconds.

TECHNICAL REPORT DBAI-TR-2001-45 18

Table 6: Temporal requirements for the call center problem

Time interval/day Mon Tue Wed Thu Fri Sat Sun
07:00-08:00 5 5 5 5 5 1 1
08:00-08:30 10 10 10 10 10 4 4
08:30-09:30 12 12 12 12 12 4 4
09:30-10:00 14 14 14 14 14 4 4
10:00-12:00 17 17 17 17 17 4 4
12:00-13:00 17 17 17 17 17 9 9
13:00-17:00 20 20 20 20 20 9 9
17:00-18:00 18 18 18 18 18 8 8
18:00-18:30 20 20 20 20 20 5 5
18:30-19:30 18 18 18 18 18 5 5
19:30-20:00 16 16 16 16 16 5 5
20:00-22:00 13 13 13 13 13 5 5

Table 7: Constraints about shifts in the call center problem

Shift type min-start max-start min-length max-length
M (Morning shift) 05:00 08:00 07:00 09:00

D (Day shift) 09:00 11:00 07:00 09:00
A (Afternoon shift) 13:00 15:00 07:00 09:00

6 Conclusions

In this paper we presented a local search approach for the shift design problem. We proposed basic
and composite moves for the generation of the neighborhood during every iteration. Experiments

Table 8: Solution for the call center problem with TSaGSwIS

Shift Time Mon Tue Wed Thu Fri Sat Sun
M1 07:00-15:00 5 5 5 5 5 1 1
M2 08:00-15:00 5 5 5 5 5 0 0
D1 09:00-17:00 2 2 2 2 2 0 0
D2 10:30-19:30 5 5 5 5 5 0 0
D3 09:00-18:00 3 3
E1 15:00-22:00 10 10 10 10 10
E2 13:00-22:00 3 3 3 3 3 5 5

TECHNICAL REPORT DBAI-TR-2001-45 19

over randomly generated examples confirmed that composite moves improve the quality of the
generated solutions. To avoid cycles during the search, we used basic principles of tabu search
and experimented with different mechanisms for prohibiting the solutions to be descendant of the
current solution. We also experimented with different lengths of tabu lists for two variants of the
tabu list method. Experiments showed that the length of tabu list had much more impact in case
where only basic moves were used. Furthermore, we proposed a procedure for the generation of
good initial solution, which has shown to improve the results compared to the basic tabu search
over the randomly generated examples. In order to make the search more effective, we proposed
a method which exploits knowledge about the problem during the search. Using this method
the neighborhood of a solution is explored only selectively during every iteration. Experimental
results confirmed that this method improves the search effectiveness. Probably, local search can be
refined even more for this problem, but the main objective here was to show that knowledge about
the problem can significantly contribute to the search by using it in combination with classical
techniques. The methods are part of a commercial product and have been already successfully
used in many real world examples. In this paper we also described a set of random examples for
the shift design problem which can be used by other researchers to compare their results with ours.

References

[1] Emile Aarts and Jan Karl Lenstra, editors. Local Search in Combinatorial Optimization.
Wiley, 1997.

[2] Turgut Aykin. Optimal shift scheduling with multiple break windows. Managament Science,
42(4):591–602, 1996.

[3] Turgut Aykin. A comparative evaluation of modeling approaches to the labor shift scheduling
problem. European Journal of Operational Research, 125:381–397, 2000.

[4] Nagraj Balakrishnan and Richard T. Wong. A network model for the rotating workforce
scheduling problem. Networks, 20:25–42, 1990.

[5] S.E. Bechtold and L.W. Jacobs. Implicit modeling of flexible break assignments in optimal
shift scheduling. Management Science, 36(11):1339–1351, 1990.

[6] G.B. Danzig. A comment on eddie’s traffic delays at toll booths. Operations Research,
2:339–341, 1954.

[7] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman and Co., 1979.

[8] Fred Glover and Manuel Laguna. Tabu search. Kluwer Academic Publishers, 1997.

[9] Fred Glover and Claude McMillan. The general employee scheduling problem: An integra-
tion of MS and AI. Comput. Ops. Res., 13(5):563–573, 1986.

TECHNICAL REPORT DBAI-TR-2001-45 20

[10] W. Ken Jackson, William S. Havens, and Harry Dollard. Staff scheduling: A simple approach
that worked. Technical Report CMPT97-23, 1997.

[11] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated annealing.
Science, 220:671–680, 1983.

[12] Guy Kortsarz and Wolfgang Slany. The minimum shift design problem and its relation to the
minimum edge-cost flow problem. Unpublished manuscript.

[13] Hoong Chuin Lau. On the complexity of manpower scheduling. Computers. Ops. Res.,
23(1):93–102, 1996.

[14] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Minimizing con-
flicts: a heuristic repair method for constraint satisfaction and scheduling problems. Artificial
Intelligence, 58:161–205, 1992.

[15] L. Moondra. An LP model for work force scheduling for bank. Journal of Bank Research,
7:299–301, 1976.

[16] Nysret Musliu, Johannes Gärtner, and Wolfgang Slany. Efficient generation of rotating work-
force schedules. Technical Report DBAI-TR-2000-35, Institut für Informationssysteme der
Technischen Universität Wien, 2000. http://www.arXiv.org/abs/cs.OH/0002018.

[17] Colin R. Reeves, editor. Modern Heuristic Techniques for Combinatorial Problems. Halsted
Pr., 1993.

[18] G. Thompson. Improved implicit modeling of the labor shift scheduling problem. Manage-
ment Science, 41(4):595–607, 1995.

[19] James M. Tien and Angelica Kamiyama. On manpower scheduling algorithms. SIAM Review,
24(3):275–287, 1982.

