
M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-1

A Memetic Algorithm for a Break Scheduling Problem

Nysret Musliu Werner Schafhauser Magdalena Widl

Institute of Information Systems, Vienna University of Technology
Favoritenstrasse 9, 1040 Wien, Austria

{musliu, schafha, widl}@dbai.tuwien.ac.at

Abstract

In this paper we regard a break scheduling problem originating in the area of supervision
personnel. This complex task requires the assignment of several breaks per shift, satisfying
various constraints reflecting labour rules, staffing requirements and ergonomic criteria. To
solve this problem we propose a memetic algorithm combining a genetic algorithm and a local
search procedure. We evaluate the presented memetic algorithm on publicly available benchmark
instances and compare the obtained results to an existing min-conflicts based algorithm. The
memetic algorithm is able to return competitive results and for half of the regarded instances it
computes solutions of improved quality.

1 Introduction

Break scheduling problems emerge in many working areas where breaks are indispensable due to
characteristics of the tasks to be performed. These characteristics include the requirement of high
concentration during long periods of time, continuous work in front of computer monitors or other
monotonic and exhaustive activities. Typically, break scheduling problems arise in call centres,
security checking or assembly lines.

In this article we regard a real-life break scheduling problem where various breaks have to
be inserted into an already existing shift plan for supervision personnel [?]. The breaks should
be scheduled in a way such that several constraints reflecting staffing requirements, labour rules
and ergonomic criteria are satisfied completely or violated only to a minimum degree. Obtaining
solutions of satisfactory quality is crucial for the acceptance of the resulting shift plans by the
affected employees and minimises the costs for human resources.

In literature, break scheduling problems have been hardly addressed on their own, but they
can be found along with the so-called shift scheduling problem. Dantzig developed the original
set-covering formulation [5], in which feasible shifts are enumerated based on possible shift starts,
shift durations, breaks, and time windows for breaks. Bechtold and Jacobs proposed a new integer
programming formulation [2] and model break placements implicitly. Thompson introduced a fully
implicit formulation of the labour shift scheduling problem [11]. Aykin compares different shift
scheduling models with breaks in [1]. Besides exact methods, also meta-heuristic methods, such as

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

id-2 MIC 2009: The VIII Metaheuristics International Conference

tabu search have been proposed for scheduling problems similar to the one addressed in this work
and returned satisfactory results [4, 10]. The break scheduling problem for supervision personnel
has already been solved with a break scheduling system applying a min-conflicts based local search
algorithm [?]. This algorithm iteratively improves the current solution by concentrating only on
breaks causing constraint violations. During each iteration this heuristic selects randomly a break
violating a constraint and constructs its neighborhood. The soultion minimizing or at least not
worsening the violation degree of the current solution is selected for the next iteration. Additionally,
to avoid a local optimum the authors applied in each iteration with some probability the random
walk strategy. The random walk strategy applies a random move to a break that is selected from
the set of all breaks that violate constraints.

In this work we propose a memetic algorithm to obtain solutions of improved quality for the
break scheduling problem for supervision personnel. Our algorithm prevents the violation of most
constraints and assures that a returned solution conforms with labour rules and ergonomic criteria.
For our memetic algorithm we propose two crossover operators, a mutation operator, and a selection
mechanism to obtain solutions for the next generation. We enhance the basic genetic algorithm by
a local search procedure to improve a determined number of solutions in each iteration. The local
search procedure is based on a min-conflicts heuristic with three different neighbourhoods. Addi-
tionally, we propose to enumerate possible break patterns for shifts with equal start and duration
satisfying a number of constraints. These patterns are used for the initialisation process and in one
of the neighbourhoods. Our hybrid algorithm is experimentally evaluated for benchmark examples
from literature. A comparison with existing results shows that the memetic algorithm is able to
improve the existing results for 50% of all benchmark instances.

2 Problem Definition

In the break scheduling problem for supervision personnel [?] we regard shift plans for supervision
personnel in which each shift must contain a certain amount of break time. Our goal is to schedule
breaks within the shifts in such a way that we obtain a solution minimising a weighted sum of con-
straint violations. These constraints represent legal demands, staffing requirements and ergonomic
criteria and the desired solution should violate them only to a minimum degree. Formally, as input
for the break scheduling problem we are given:

• a planning period formed by T consecutive time slots [a1, a2), [a2, a3), ..., [aT , aT+1] all having
the same slot length of five minutes. The time points a1 and aT+1 represent the beginning
and end of the planning period.

• n shifts s1, s2, ..., sn representing employees working within the planning period. Each shift si

has the following adjoined parameters: si.breaktime specifying the required amount of break
time for si in time slots, si.start and si.end, representing the time slots in which a shift starts
and ends in. The value of a further parameter si.duration can be derived by subtracting the
value of si.start from si.end.

• the staffing requirements for the planning period. For each time slot [at, at+1) we are given
an integer value rt indicating the optimal number of employees that should be working during
time slot [at, at+1). An employee is considered to be working during time slot [at, at+1) if

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-3

neither he/she has a break during time slot [at, at+1) nor his/her break has ended at time
point at. After a break an employee needs a full time slot, usually five minutes, to reacquaint
him- or herself with the altered situation. Thus also during the first time slot following a
break an employee is not considered to be working.

Each break bj is associated to a certain shift and has three adjoined parameters bj .start, bj .end,
and bj .duration. We distinguish between two different types of breaks: lunch breaks and monitor
breaks. Given a planning period, a set of shifts, the associated total break times and the staffing
requirements, a feasible solution to the break scheduling problem is a set of breaks such that:

- each break bj lies entirely within its associated shift si.

- two distinct breaks bj , bk associated with the same shift si do not overlap in time.

- in each shift si the sum of durations of its associated breaks equals the required amount of
break time.

∑
bj∈si

bj .duration = si.breaktime

Among all feasible solutions for the break scheduling problem we aim at finding an optimal one
according to various criteria. These criteria are modelled as soft constraints on a solution and may
be described as follows:

C1 Break Positions: Each break bj may start at the earliest a certain number of time slots after
the beginning of its associated shift si and it may end at the latest a given number of time
slots before the end of its shift.

C2 Lunch Breaks: A shift si can have several lunch breaks, each of which is required to last a
specified number of time slots and should be located within a certain time window after the
shift start.

C3 Duration of Work Periods: Breaks divide a shift into several work and rest periods. The du-
ration of work periods within a shift must range between a required minimum and a maximum
duration.

C4 Minimum Break Times: If the duration of a work period exceeds a certain limit, the break
following that period must last a given minimum number of time slots (min. ts count).

C5 Break Durations: The duration of each break bj must lie within a specified minimum and
maximum value.

C6 Shortage of Employees: In each time slot [at, at+1) at least rt employees should be working.

C7 Excess of Employees: In each time slot [at, at+1) at most rt employees should be working.

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

id-4 MIC 2009: The VIII Metaheuristics International Conference

Objective function For each constraint we define a violation degree violation(Ck) specifying
the deviation, in time slots or employees, from the requirements stated by the respective constraint.
The importance of a single criterion and the corresponding constraint varies from task to task.
Consequently, the break scheduling problems objective function is the weighted sum of the violation
degree of each constraint, or more formally:

F (Solution) =
∑

7

k=1
Wk × violation(Ck)

3 Solving the Break Scheduling Problem with a Memetic Algo-

rithm

The term Memetic Algorithms was first used by Moscato in [7]. Memetic algorithms combine pop-
ulation bases strategies (genetic algorithms and other evolutionary algorithms) with local search to
solve optimisation problems. Genetic algorithms imitate natural evolution on search and optimi-
sation problems. Improvements on a pool of individuals, each representing a sub-optimal solution,
are to be found by applying genetic operators such as selection, mutation and crossover. The initial
population is usually created randomly or using some kind of heuristic [8].

In this section we propose a memetic algorithm that combines a genetic algorithm with a local
search mechanism on a subset of individuals to solve the break scheduling problem. The algorithm
is outlined in Algorithm 1.

Algorithm 1 Memetic Algorithm

1: I ← initialise population with n individuals
2: evaluate(each individual i ∈ I)
3: repeat

4: e ← fittest individual i ∈ I

5: I ← tournamentSelect(I) ∪ e

6: for all individuals i ∈ I \ e do

7: x ← select random float uniformly distributed in [0..1]
8: if x ≤ α then

9: j ← select random individual j 6= i

10: i ← crossover(i, j)
11: else

12: i ← mutate(i)
13: end if

14: end for

15: evaluate(each individual i ∈ I)
16: m ← |I| · λ
17: L ← m fittest individuals in I

18: for all l ∈ L do

19: l ← localSearch(l)
20: end for

21: until timeout

22: return best solution in generation

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-5

Fitness function The fitness function determining the fitness of each individual corresponds to
the objective function described in Section 2.

Solution representation A solution is represented by a set of breaks for each shift in the shift
plan. A break consists of two integers representing break start and duration.

Shift domains For each shift s there is a number of possible break patterns satisfying constraints
C1-C5. We refer to the set of all break patterns satisfying constraints C1-C5 as the shift’s domain.
Shifts with equal values for s.duration and s.breaktime share the same domain. The problem of
finding a break pattern within the shift domain can be modelled as small temporal constraint sat-
isfaction problem and consequently can be solved in polynomial time by applying Floyd-Warshall’s
shortest path algorithm [9, 6]. We use this fact to precalculate a subset of each shift domain and
will refer to it by D(s). D(s) contains all break patterns that can be formed for shift s by using
only breaks of minimal duration (as specified in constraint C5). Figure 1 shows an example of three
different break patterns.

Figure 1: Possible break patterns satisfying C1-C5

The size of D(s) strongly depends on the relation between s.duration and s.breaktime. Due to
the restrictions imposed by constraints C1-C5, a long shift with a proportionally short breaktime
results in a small number of possible break patterns. Overall, the sizes of the domain subsets for the
sample instances we regard in this paper range between 65 and 115.000. We use the precalculated
domain subsets in the initialisation and local improvement process, as described in later paragraphs.

Initialisation Each individual in the population is initialised in two steps: Firstly, for each shift s

a valid break pattern of breaks d ∈ D(s) is selected randomly. This provides us with a first solution
that fulfills constraints C1-C5. Secondly, a randomised local search procedure is executed on the
solution.

The randomised local search randomly picks a break and performs a random improving step
in the break’s neighbourhood. For this process we use the single assignment neighbourhood as
described in the local search paragraph.

The first initialisation step assures a high diversity in the gene pool, while the latter is used
to establish starting solutions of fairly good fitness. By using a randomised local search, we avoid
decreasing the diversity.

Note that constraints C1-C5 remain satisfied in all phases of our algorithm. Therefore, a partic-
ular move will be applied in the solution only if it does not violate these constraints.

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

id-6 MIC 2009: The VIII Metaheuristics International Conference

Selection The selection operator decides which individuals of the current generation are allowed
to enter the next generation. Firstly, an elitist individual is determined by selecting the individual
with the best fitness value in the current generation (ties are broken randomly). The elitist individual
will remain unaltered during the whole iteration.

Secondly, individuals are selected out of the current generation by a k-tournament selector [3]:
k individuals are selected randomly to perform a tournament. The individual with the best fitness
value wins and will serve as a crossover or mutation candidate in the next step. This procedure is
repeated n − 1 times, n being the population size (n − 1 since one individual is represented by the
elitist). The generation now consists of the elitist and the individuals selected by the tournament
selection operator.

Mutation and Crossover: In the next step of the algorithm, the crossover or the mutation
operator is applied on each individual i in the generation, except for the elitist individual. Crossover
will take place with probability α and mutation with 1−α. We propose a combination of two different
crossover operators. Both select a partner different to i randomly out of the generation and create
an offspring inheriting entire shifts with their breaks from either of the parents. They differ in the
decision, which shift to take from which partner.

Simple Crossover: The offspring is produced by randomly inheriting a percentage γ of all shifts from
one parent’s exchangeable shifts, and the remaining shifts from the other parent. By exchangeable
shifts we refer to shifts with equal shift start, shift duration and breaktime.

Smart Crossover: From the parent whose fitness value is worse, we determine a set of shifts highly
involved in constraint violations. That is, a set of shifts covering periods which include timeslots
with high shortage of working employees. The offspring inherits this set of shifts from the better
parent’s exchangeable shifts and the remaining shifts from the worse.

Mutation: The mutation operator performs one random move on the given individual using the
single assignment neighbourhood, which is described in the local search paragraph.

Local Search: In each iteration, the m individuals, m = populationSize · λ of the current gen-
eration are locally improved by the following local search procedure: In each iteration, a break b

is selected randomly out of the solution. Then a neighbourhood is selected randomly out of the
three different neighbourhoods proposed below. In this neighbourhood the most improving move is
performed. If no improving move can be found, we continue by selecting another break b at random.
The local search terminates if for a given number of subsequent iterations no improving move can
be found.

Neighbourhoods:

Single Assignment: This neighbourhood comprises all moves for a break b, in which b is assigned a
new value for b.start without violating any of the constraints C1-C5. This move may also append b

to its successor, creating a longer break period and consequently causing a longer work period, as
long as this does not violate any of C1-C5 (see Figure 2).

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-7

Figure 2: Single assignment

Double Assignment: In the second neighbourhood, two breaks are involved. It consists of all possible
moves of b and its predecessing break b′ in the same shift. Similarly to the first neighbourhood,
two breaks may be connected to form a longer break period. In case the two breaks are of different
duration, it also may happen the breaks being swapped (see Figure 3 and Figure 4).

Figure 3: Double assignment

Figure 4: Double assignment with swap

Shift Assignment: The third neighbourhood makes use of the precalculated domain subsets described
above. It determines the shift s to which b is associated and selects randomly a subset D′ ⊆ D(s).
For performance reasons, |D′| may not exceed a certain limit. One move in this neighbourhood is
performed reassigning all breaks in s according to d ∈ D′.

We have tested the algorithm using only one neighbourhood, combinations of two and a combi-
nation of three neighbourhoods. In the cases of combination, on each iteration a neighbourhood is
being selected randomly. A combination of all neighbourhoods led to the best results as it leads the
search to different areas in the search space and thus prevents being trapped early in local optima.

4 Experiments

Experiments have been conducted on randomly created instances which can be found in
http://www.dbai.tuwien.ac.at/proj/SoftNet/Supervision/Benchmarks/verb. Explications on
the generation of random instances are available on this website, too.

Each experiment was executed on one core of a QuadCore Intel Xeon 5345 and with 48GB
RAM. We benchmarked this machine in order to compare with results in [?]. According to this
benchmark, the runtime of our algorithm was 18 minutes (for each run of the algorithm).

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

id-8 MIC 2009: The VIII Metaheuristics International Conference

Parameter Settings Various parameters strongly influence the performance of the algorithm,
hence several experiments to determine the final parameter settings have been executed.

Population size: Experiments have been conducted with population sizes of 10, 20, 30, 40 and 70.
The size of 40 returned the best results. 40 individuals are enough to keep a sufficiently high
diversity, while a higher population size slows down the algorithm significantly.

Crossover/mutation rates: The probability an individual is created by the crossover operator has
been tested with α = 0.7 and α = 0.9 where α = 0.9 clearly was more competitive. The reason for
this behaviour probably lies in mutation only performing very small steps out of neighbourhoods
that are used in the local search in any case, while the crossover operator constructs different
solutions which provide good and diverse starting points for the local search.

Tournament selection ’k’: The tournament selector has been tested with k = 2 and k = 3, the
former outperforming the latter on all instances. Again, it appears like the reason for this lies in
diversity of the solution pool. k = 3 results in lower diversity and faster stagnation.

Local search rate: The local search rate determines the number of individuals to be locally improved
relative to the population size. Experimental settings have been λ = 0.1, λ = 0.15 and λ = 0.2.
λ = 0.2 caused the algorithm to stagnate in an early stage, while λ = 0.1 and λ = 0.15 performed
well, differing slightly depending on the instance. For the experiments conducted for this paper we
chose λ = 0.15.

Local search intensity: By local search intensity τ we refer to the number of iterations without
improvements causing the local search to terminate. We tested with τ = 100, τ = 500, τ = 700 and
τ = 1000. τ = 100 turned out too low, returning only small improvements on each iteration and
thus requiring more iterations for a result that could be found quicker using τ = 500 or τ = 700.
Raising the value for τ trades off higher improvement per iteration for a longer search time. We
found the best balance in τ = 700.

Crossover types Two different crossover types are described in Section 3. We have performed ex-
periments using only simple or smart crossover, as well as combinations of both. The best results
have been achieved combining both types with γ = 0.9 for smart crossover to be selected.

Results and comparison with literature The results for the final series of experiments are
described in Table 1. We report the best and mean fitness obtained in ten runs for each instance
along with the respective standard deviations. Additionally, Table 1 shows the results returned by
the min-conflicts-based local search algorithm in [?] and marks the best fitness values per instance
in bold style. For half of the regarded benchmark instances the memetic algorithm outperformed
the algorithm described in [?].

5 Conclusion

We have introduced a memetic algorithm to obtain solutions of satisfactory quality for a complex
break-scheduling problem originating in the area of supervision personnel. This algorithm consists
of the three standard operators selection, crossover and mutation and is hybridised with a min-
conflicts search. Initial solutions are constructed with break patterns already fulfilling constraints

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-9

Instance Shifts Breaks
Hybrid GA Min-Conflicts-Random-Walk [?]

Best Average Std.Dev Best Average Std.Dev.

random1-1 137 962 672 738 56 728 972 177
random1-2 164 1060 2174 2352 89 1654 1994 172
random1-5 141 950 870 1044 86 1284 1477 99
random1-7 157 1089 742 861 68 860 1077 154
random1-9 151 985 1918 2095 108 1358 1658 213
random1-13 124 884 2884 3039 98 1264 1535 245
random1-24 137 928 1182 1330 107 1586 1712 75
random1-28 124 809 2926 3018 63 1710 2020 233
random2-1 179 1255 1262 1537 117 1686 1855 142
random2-4 162 1075 2182 2336 111 1712 2053 242

Table 1: Comparison with literature

C1-C5, representing labour rules and ergonomic criteria. These constraints remain unviolated during
the entire run of the algorithm.

In each iteration, the genetic operators generate a pool of different solutions out of the previous
generation. The best solutions are further optimised by the local search procedure. This way, the
entire generation moves towards better solutions without significantly reducing the diversity. High
diversity produced by the genetic operators allows the local search to exploit different areas of the
search space and thus avoids early stagnation.

Based on our experimental results we can conclude that for the break shceduling problem the
results of genetic algorithms can be significantly improved if they are used in combination with local
search. Using of break patterns for inititial solutions and for generation of neighborhood has shown
to improve further these results.

For the future work we will consider improving of local search procedure by including a tabu
mechanism and we plan to analyze more deeply the impact of each neighborhood used in the local
search procedure.

Acknowledgements

The research herein is partially conducted within the competence network Softnet Austria (http:
//www.soft-net.at/) and funded by the Austrian Federal Ministry of Economics (bm:wa), the
province of Styria, the Steirische Wirtschaftsförderungsgesellschaft mbH. (SFG), and the city of
Vienna in terms of the center for innovation and technology (ZIT).

References

[1] T. Aykin. A comparative evaluation of modelling approaches to the labour shift scheduling
problem European Journal of Operational Research, 125:381-397, 2000.

[2] S.E. Bechtold and L.W. Jacobs. Implicit modelling of flexible break assignments in optimal shift

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

id-10 MIC 2009: The VIII Metaheuristics International Conference

scheduling Management Science, 36(11):1339-1351, 1990.

[3] A. Brindle. Genetic algorithms for function optimisation PhD thesis, University of Alberta,
Department of Computer Science, Edmonton, Canada.

[4] C. Canon. Personnel scheduling in the Call Center industry 4OR: A Quarterly Journal of
Operations Research, 5(1):89-92, 1989.

[5] G. B. Dantzig. A comment on Eddie’s traffic delays at toll booths Operations Research,
2:339-341, 1954.

[6] R. Dechter, I.Meiri, J. Pearl. Temporal constraint networks. Artificial Intelligence, 49:61-95,
1991.

[7] P. Moscato. On evolution, search, optimization, GAs and martial arts: toward memetic algo-
rithms Pasadena Tech. Rep. Caltech Concurrent Comput. Prog. Rep. 826, California Institute
of Technology, 1989.

[8] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning Addison-
Wesley Publishing Company, 1989.

[9] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity
Prentice Hall, 1982.

[10] P. Tellier and G. White. Generating Personnel Schedules in an Industrial Setting Using a
Tabu Search Algorithm E. K. Burke, H. Rudov (Eds.): PATAT 2006, 293-302, 2006.

[11] G. Thompson. Improved implicit modeling of the labor shift scheduling problem Management
Science, 41(4):595-607, 1995.

Hamburg, Germany, July 13–16, 2009

